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Abstract

Background: Short oligonucleotide arrays for transcript profiling have been available for several years.
Generally, raw data from these arrays are analysed with the aid of the Microarray Analysis Suite or GeneChip
Operating Software (MAS or GCOS) from Affymetrix. Recently, more methods to analyse the raw data have
become available. Ideally all these methods should come up with more or less the same results. We set out to
evaluate the different methods and include work on our own data set, in order to test which method gives the
most reliable results.

Results: Calculating gene expression with 6 different algorithms (MAS5, dChip PMMM, dChip PM, RMA, GC-
RMA and PDNN) using the same (Arabidopsis) data, results in different calculated gene expression levels.
Consequently, depending on the method used, different genes will be identified as differentially regulated.
Surprisingly, there was only 27 to 36% overlap between the different methods. Furthermore, 47.5% of the genes/
probe sets showed good correlation between the mismatch and perfect match intensities.

Conclusion: After comparing six algorithms, RMA gave the most reproducible results and showed the highest
correlation coefficients with Real Time RT-PCR data on genes identified as differentially expressed by all methods.
However, we were not able to verify, by Real Time RT-PCR, the microarray results for most genes that were
solely calculated by RMA. Furthermore, we conclude that subtraction of the mismatch intensity from the perfect
match intensity results most likely in a significant underestimation for at least 47.5% of the expression values. Not
one algorithm produced significant expression values for genes present in quantities below | pmol. If the only
purpose of the microarray experiment is to find new candidate genes, and too many genes are found, then mutual
exclusion of the genes predicted by contrasting methods can be used to narrow down the list of new candidate
genes by 64 to 73%.

Background expression patterns between experiments from different
Affymetrix GeneChip arrays have become a widely used  researchers. RNA expression patterns are a starting point
microarray platform. An advantage of such a broadly  for high-level analysis such as clustering, self-organising
accepted platform is that it greatly helps to compare RNA  maps or metabolic pathway analysis. The importance of
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"low level analysis", that is, calculating the expression lev-
els and the normalization procedure as explained below,
is easily underestimated.

Calculating gene expression is more complex with
Affymetrix arrays compared to spotted arrays, as the latest
generation Affymetrix arrays have 11 probe pairs available
to interrogate each gene, whereas spotted arrays in general
have only one cDNA or oligo probe per gene. Ideally, the
signal intensity from all of these 11 probes should be
equal because they all interrogate the same gene. In real-
ity, however, there are enormous differences between
individual probes in a probe set. The pattern of the probe
signals in a probe set is called a "probe response pattern”
[1]. The probe response pattern of one gene is roughly the
same from all RNA samples isolated from a given tissue,
irrespective of the treatment [1]. The Affymetrix system
uses Microarray Suite (MAS) or its successor GeneChip
Operating Software (GCOS) for operation of the microar-
ray scanner and also for calculation of the expression val-
ues. The expression values are calculated according to the
so-called "One-step Tukey's biweight algorithm", which is
based on a weighed median [2]. Recently, more methods
have become available for calculating gene expression val-
ues, such as "Model-Based Expression Indexes" (MBEI)
from Li and Wong [1,3] that are implemented in the free-
ware program dChip. Also available is the "Robust Multi-
array Average" (RMA) software from Irizarry et al. [4,5]. In
contrast to MAS 5.0 or GCOS, in which information from
only one microarray is used, model-based algorithms
incorporate information from multiple microarrays to
calculate the expression of a gene. The probe response pat-
tern is fitted over multiple arrays with a multiplicative
model in dChip and an additive model in RMA software.
These algorithms use the fitted models to detect abnor-
mally behaving probes, which are subsequently excluded
for calculating gene expression. Therefore, gene expres-
sion from these model-based algorithms can be expected
to provide more reproducible results. Both dChip and
RMA use a stochastic model to estimate gene expression.
A potentially better way of estimating gene expression
would be the use of a physical model, that is, a model that
explains the probe response pattern by physical laws. A
few attempts have been made to make such physical mod-
els [6] such as "Positional-Dependent-Nearest-Neighbour
model" (PDNN, [7]), or a combination of the two model
types GeneChip and RMA (GC-RMA, [8]).

A specific feature of Affymetrix microarrays are the so-
called MisMatch (MM) probes. Each of the 11 probe pairs
in a probe set has a Perfect Match (PM) and a MisMatch
probe, with each probe having 25 bases. The PM probes
are designed to bind perfectly to the gene of interest and
the MM probes have a contrasting base at position 13 with
the intention to measure non-specific binding [9]. The PM
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and MM probe of one probe pair are located physically
next to each other on the microarray. Both MAS5 and
dChip in the PMMM mode use this information to calcu-
late gene expression. However, in the literature there is a
debate over the usefulness of MM probes, which has
resulted in new algorithms that use only the PM signals to
calculate gene expression. These algorithms are imple-
mented in dChip PM mode [1,3], in the "Robust Multi-
array Average" (RMA) software [4,5], GC-RMA [8] and in
PDNN from Zhang et al. [7].

When dealing with experiments involving multiple arrays,
there is a need for data normalization, after calculating
gene expression. The overall signal intensity can vary
between arrays and if this variation does not have a bio-
logical origin, it should be removed. Non-biological vari-
ation can arise due to differences in sample preparation,
production and processing of arrays. There are different
algorithms available to normalize microarray data. The
MAS 5.0 or GCOS software currently assumes that inten-
sity differences between two or more arrays are linearly
related and have a zero y-intercept. This allows for a very
simple and robust normalization factor. However, the
drawback is that this method cannot adjust for non-linear
relations. Schadt et al. [10] found 10 to 50% differences in
the slope between the low and high expressed genes in
many arrays. In those cases an alternative normalization
method is needed. For example, dChip uses a non-linear
smoothing method [3]. In MAS5 and dChip one array is
chosen as the base line array, to which the other arrays are
normalized. RMA does not use a base line array, but
"quantile normalization", based on the complete data set
[8]. Furthermore, it is preferred that genes changing in
expression should not be included in the normalization
procedure. Therefore, some algorithms (like dChip) use
invariant sets; these comprise a set of probes that most
likely have the same expression between arrays. An invar-
iant set is determined by ranking probe intensities such
that when a probe has approximately the same ranking
number in two arrays, then this probe is likely to have the
same expression in both arrays [1,3].

Thus different algorithms calculate gene expression and
normalize the data in completely different ways. We
hypothesize that the signal of gene expression, and there-
fore the identity of genes that are significantly up/down
regulated, depends on the algorithm used. To test this
hypothesis a microarray experiment was performed with
Arabidopsis thaliana accession Columbia-0 and various cal-
culation methods were compared. Plants were exposed for
3 hours to elevated ethylene levels (5 ul I'1) or were trans-
ferred to low-light levels for 3 hours (from 200 to 15 pmol
m2s1). Both conditions induce an identical phenotype;
the upward bending of the leaves by 20 degrees (hyponas-
tic growth; [12]). The treated and control petioles were
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Table I: The number of differentially expressed genes. Number
of genes significant (Ttest p < 0.05) up or down regulated
between air control and ethylene or low-light treatment in six
different algorithms. The number of biological replicates for
each treatment is three. The number of probe pairs per chip is
22746.

Method Control — ethylene Control — Low-light
MAS 5.0 2201 2384
dChip PMMM 2559 2665
dChip PM 2435 2583
RMA 2470 2705
GC-RMA 2258 2411
PDNN 2972 3262

harvested at the same time with three biological repli-
cates. The dataset is publicly available [13]. These data
were analysed with six different methods: MAS5 (or
GCOS), dChip PMMM, dChip PM-only, RMA, GC-RMA
and PDNN. Some other studies have compared different
calculation methods. Barash et al. [14] compared only
three algorithms with a very limited amount of microar-
rays. Furthermore, Choe et al. [15] compared many
options in the Bioconductor's Affy package, including the
calculation of the expression values, however, again only
three algorithms were compared. Seo et al. [16] compared
six methods, four of which are also used in this paper.

Different algorithms are optimised for different experi-
mental data sets and hence to different signal to noise
ratios. Thus, the best method can depend on the specific
experiment, so there might not be a perfect method suita-
ble for all conditions [16]. It is therefore, important to test
for each experiment which method is the most appropri-
ate.

Since different calculated expression patterns were
expected between algorithms, various criteria were
designed and tested to compare the different methods,
and to select the best method. 1: We compared the per-
formance of the six methods on the spike-in data set of
Affymetrix [17]. 2: Theoretically, we expected that model-
based algorithms would produce more reproducible
results because aberrant probes are efficiently removed.
Therefore, we compared the distribution of the coefficient
of variation for three replicated microarrays between the
algorithms. 3: On the basis of data from the literature or
previous experiments we expected that specific genes are
affected by a treatment or mutation (biological rele-
vance). 4: Furthermore, the problems with the use of MM
signals as discussed in the literature are mainly statistical.
Based on the following arguments we would like to dis-
cuss the use of MM values. i: First, we expected that cRNAs
smaller than 13 base pairs bind perfectly to both probes.
Calculation of the melting temperature is performed to
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estimate the likelihood of those events. ii: Secondly, we
expected no correlation between the signals from the MM
probes and the PM probes because the non-specific bind-
ing should have a random influence on the MM probes.
To test this, we calculated correlation coefficients between
PM and MM signals of 200 randomly chosen probe sets.
5: Microarray-obtained gene expression of a subset of the
common genes was compared with Real-Time RT-PCR.
Furthermore, we compared the expression from genes
which are exclusively predicted with the best method.

The proposed criteria for biological relevance and repro-
ducibility are easily applied by any microarray user on
their own dataset. On the basis of all of the criteria
described above a choice for the most suitable algorithm
for each dataset is rationalized.

Results and discussion

Differences between six array algorithms

We hypothesized that the calculated level of gene expres-
sion is dependent on the algorithm used because these are
based on completely different ways of calculating gene
expression and normalization. As a result, a different set
of genes may be identified as differentially expressed
between a treatment and control.

After calculating gene expression with MAS5 (or GCOS),
dChip PMMM, dChip PM, RMA, GC-RMA and PDNN, a
T-test was performed to analyse differences in expression
between plants treated with ethylene and air control.
Between 2201 and 3262 genes were significantly differen-
tially expressed (Table 1). These results showed that there
were differences between the six algorithms in the number
of genes differentially expressed within one treatment.
However, the differences between the algorithms were rel-
atively small. More strikingly, only 27% to 36% (790
genes) of the differentially expressed genes between con-
trol and ethylene treated plants were identical in the six
methods (Fig. 1). Similar results were obtained when con-
trol and low-light conditions were compared (data not
shown). This means that the total number of genes
expressed differentially as calculated with these six algo-
rithms was within the same order of magnitude, but the
six algorithms identified totally different sets of genes!

When instead of a T-test with p < 0.05 more stringent con-
ditions were used (p < 0.01; < 0.001; < 0.0001), less genes
were found to be significantly regulated (2483; 798; 137;
21, respectively) and also the percentage genes signifi-
cantly regulated in all algorithms decreased (32%; 16%;
2%; 0%). Moreover, if genes were selected that showed
more than twofold up or down regulation, different num-
bers were obtained. However, the huge differences
between the algorithms remained (data not shown). The
set of genes that was detected by all methods had on aver-
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Venn diagram. Venn diagram of genes significant (Ttest p <0

.05) up or down regulated after three hours of ethylene expo-

sure, depending of the method used to calculate gene expression. This diagram shows exactly the differences and similarities
between all the methods. PDNN, MAS 5.0 (MAS, or GCOS), dChip PMMM (PMMM), dChip PM only (PM), RMA and GC-RMA
were used. Only 790 genes were in common for all four algorithms. Comparable results were obtained from the low-light

treatment. Areas with one letter shows genes which are unique
only in common between these two methods, and so on.

for one method, areas with two letters shows genes which are

age a lower p value (0.013) than the genes identified
solely by one method (p = 0.028). On average the percent-
age genes that overlapped was 61% over all possible dou-
ble combinations but dropped to 48 (all triple
combinations), 40 (4), 35 (5) and finally to 32% (6). Our
results showed a poor overlap between algorithms. This is
not in full agreement with Barash et al. [12] and Choe et
al. [14] who showed 60 to 70% overlap between algo-
rithms. However, their results were based on a small
number of microarrays or on a special (only) spike-in
experiment. To our knowledge this is the first time that
such large differences between algorithms are reported.

From the Venn diagram (Fig. 1) it is clear that MASS5 has
the highest absolute number of uniquely identified differ-
entially expressed genes compared to the other methods.
When expressed relatively, MAS5 had the highest percent-
age of unique genes (26%), followed by PMMM (18%),
PDNN (12%), PM (12%), RMA (10%) and GCRMA (9%).
Furthermore, there are six possible combinations in
which five methods might identify the same genes (Fig. 1;
abcde, abcdf, abcef, abdef, acdef, bcdef), and the only
combination in which MAS5 was not included (abcef)
contains dramatically more genes (291) than the other
five combinations in which MAS5 was included. These
data show that MAS5 gives more unique results compared
to the other five methods (Fig. 1).

Page 4 of 16

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:137

4000

3000 -

2000 -

Control signal intensity

1000 A

15000 20000

Number of genes

Figure 2

Gene signal intensity. Gene signal intensity from control
plants of all genes (22747) calculated with six methods, MAS
5.0 (MAS), dChip PMMM (PMMM), dChip PM only (PM),
RMA, GC-RMA and PDNN. The signal intensity is sorted
from low to high. Similar results where observed with
expression data from treated plants.

The differences observed between the six methods might
have resulted from differences in calculated gene expres-
sion values between algorithms. MAS5 gave the lowest sig-
nals and PDNN the highest (Fig. 2). Overall there was a
good correlation (r2 = 0.9325 - 0.9913) between the sig-
nal intensities calculated with the different methods
(Table 2, Fig. 3). However, despite this good overall corre-
lation, large local variation remained (Fig. 3). For exam-
ple, a gene with an expression of 100 (4.6 In) in MAS5
may have an expression value that ranges between 120
(4.8 In) and 500 (6.2 In) in RMA. This variation between
methods can explain partly the differences found between
the algorithms, since 50% of the genes with an intensity
between 80 (4.4 In) and 120 (4.8 In) from MAS?5 are sig-
nificantly different from RMA, after normalization for sig-
nal intensity.
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There were large differences between the six algorithms
with respect to both gene expression and the genes that
were significantly up/down regulated. This was a conse-
quence of different ways of calculating gene expression
and normalization of the microarrays. The discrepancy
between the different algorithms can also be exploited.
When the only aim of a microarray experiment is to select
new candidate genes then the list of new candidate genes
is shortened by approximately 68% by using genes pre-
dicted by all six methods. However, when the aim is to
obtain expression values from a microarray experiment, a
decision regarding which method to use has to be made.
Various criteria were designed and tested to compare the
different methods. Cope et al. [18] compared different
methods and focused their research on the assessments of
performance in terms of bias and variance. This was stud-
ied on the spike-in experiment from Affymetrix with the
HGU95A chips and on a RNA dilution study by Gene-
Logic. These authors also wrote a program to compare
other available algorithms [19]. Our study further
explored the performance of individual algorithms fur-
ther by five criteria: 1) comparison with spiked-in genes,
2) reproducibility, 3) biological relevance, 4) the use of
MM probes, and 5) comparison with Real Time RT-PCR.

1) Spike-in comparison

A commonly used RNA spike-in experiment from Affyme-
trix was used to test which method produced the most
accurate results. In this spike-in experiment RNA of 42
genes in 14 concentrations were added to a human RNA
sample. Virtually all signal intensities found in real micro-
array experiments are covered by the signal intensities
found for the spike-in genes. In this experiment, the rela-
tion between known concentrations of spiked-in RNA and
signal intensity can be compared between the six meth-
ods.

The differences between the six methods were not very
large between genes, which were intermediately or highly
expressed (Fig 4A). Genes expressed at low levels, how-
ever, showed large differences between the six methods.
PDNN and dChip PM performed worst, RMA was inter-
mediate, and MAS5 and dChip PMMM, GC-RMA showed
the most accurate results with respect to the RNA spiked-

Table 2: Correlations between the expression values. Pearson correlation between the expression values calculated with six different
methods. The average signal intensity from all 22746 probe sets from the three control chips was used.

MAS5 dCHip PMMM dCHip PM RMA GC-RMA
dCHip PMMM 0.9831
dCHip PM 0.9846 0.9889
RMA 0.9913 0.9778 0.9862
GC-RMA 0.9435 0.9325 0.9391 0.9417
PDNN 0.9767 0.9736 0.9793 0.9764 0.9534
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Figure 3

Relation between signal intensity from MAS 5.0 and
RMA. Relation between the signal intensity calculated with
MAS 5.0 and RMA software of all probe sets. In general there
is a good correlation (r2= 0.9913), see also table |. How-
ever, variation increased closer to the unity. For example a
signal of 4 in MAS 5.0 results in a signal between 4 to 5.5 in
RMA on a In scale.

in. A good accuracy, however, should not be at the
expense of precision.

As a measure of precision, the significance level was calcu-
lated between successive concentrations of all of the 42
RNA's spiked-in, so between 0 and 0.125 pM, between
0.125 and 0.25 pM up to 512 pM. Subsequently the frac-
tion of genes that were up regulated significantly was plot-
ted (figure 4B). For the higher concentrations of spike-in
genes (>1 pmol RNA or zero on a In scale), dChip PM,
dChip PMMM, RMA and GC-RMA showed almost perfect
results, this in contrast to PDNN and MAS5. The results of
the ROC curves from Cope et al. [18] also showed that
MAS5 performed worse than RMA and PM. For the genes
expressed at low levels, all methods performed inade-
quately. Also, when all successive spike-in concentrations
were compared with the zero control, again the six meth-
ods showed adequate results only at higher concentra-
tions (>1 pmol, data not shown). This shows that
although there are differences between methods in accu-
racy at low concentrations (Fig. 4A), these do not seem to
be relevant, since no significant differences between any
of the methods were observed in this lower range (Fig.
4B).

By extrapolating the results of the 42 spike-in genes and
using the signal intensity from 1 pmol spike-in RNA, it is
easy to calculate the number and percentage of genes
which are equal to the background control (Table 3). In
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the normal data analysis these genes can be ignored.
Depending on the method expression levels of 12 to 49%
of the genes should be considered as not above back-
ground. A possible explanation for the poor results of the
spike-in controls for the MAS5 and PDNN models at the
higher expression levels would be the lower reproducibil-
ity of these methods. The data for the genes with the high-
est and lowest 10% of all the standard deviations from the
spiked-in genes are excluded, then as expected MAS5
(0.131), PDNN (0.078) and GC-RMA (0.071) showed on
average the highest standard deviations followed by RMA
(0.055), PMMM (0.051) and PM (0.030).

2) Reproducibility

Algorithms that are model-based can detect abnormally
behaving probes more efficiently than non model-based
algorithms. Therefore, gene expression values from
dChip, RMA, GC-RMA and PDNN result in more repro-
ducible results. The coefficient of variation (standard devi-
ation/average * 100%) is a measure of reproducibility
which is independent from the mean. The coefficient of
variation for all genes from the three control microarrays
were calculated using the six algorithms (Fig. 5). When
gene expression was calculated with MAS5 algorithm,
12752 genes (56%) showed a coefficient of variation
lower than 20%. Therefore, in general the results from
three biological replicates were highly reproducible, with
only a small portion of the genes behaving inconsistently
between the replicates. As expected the model-based algo-
rithms produced more reproducible results in that 18000
(dChip PMMM), 19209 (GC-RMA), 21167 (dChip PM),
21787 (RMA), or 22504 (PDNN) genes had a coefficient
of variation lower than 20%. Furthermore, if the data for
the genes with the highest and lowest 10% of all the
standard deviations from all the genes were excluded,
than MAS5 (0.136) showed on average the highest stand-
ard deviations, followed by PMMM (0.058), GC-RMA
(0.056), PM (0.038), RMA (0.035) and PDNN (0.024).
Surprisingly, the PDNN method showed the most repro-
ducible results, which contrasted with the reproducibility
of the spike-in data. Similar results were obtained with the
microarray data for the ethylene or low-light treatments
(data not shown). The model-based algorithms showed
the best reproducibility and discarding the MM values
improved the reproducibility of these methods even
more. Cope et al. (2004) also calculated the median stand-
ard deviation for different methods and showed that RMA
and PM gave better results than MASS5.

3) Biological relevance

For many genes it has been unambiguously demonstrated
that their expression is affected by a particular treatment
or mutation. It is well known that upon addition of ethyl-
ene the expression of several genes in ethylene biosynthe-
sis and ethylene signal transduction pathways show a
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Figure 4

Spiked-in data. (A) Average observed In intensity plotted against normalized In concentration for 42 spiked-in genes of the
Affymetrix spike-in experiment. The observed concentrations are adjusted so that all lines have the same intercept at a In con-
centration of 2.8 (16 pmol). The solid line without symbols represents the ideal slope-1 line. (B) The accuracy of picking up the
spiked-in genes. The significance between two successive spike-in concentrations (0-0.125; 0.125-0.25; etc.) was calculated for
each gene. The number of genes where calculated per spike-in concentration that significantly where up regulated, and pre-
sented on the y-axis as percentage. This means that at "|" all 42 genes where significant at a given concentration.
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Table 3: Minimum signal. Signal intensity from the RNA spike-in experiments at a concentration (I pmol) where the spiked-in
concentrations were significant different from the background. The number (#) and percentage (%) genes below the minimal signal

(Min. signal) is obtained from non-transformed data.

MAS5 dCHip PMMM dCHip PM RMA GC-RMA PDNN
Min signal 404 46.5 1122 59.2 27.4 261.3
# genes 11109 2651 3895 6750 9174 2651
% genes 48.8 1.7 29.7 40.3 1.7

consistent up-regulation. For example, the expression of
ACC oxidase increases after ethylene addition in several
model systems [20-22]. Also, some ethylene receptors
[23-25] and the CTRI gene [26] are known to be up-regu-
lated after ethylene addition. Since the change in expres-
sion has been reported to occur within 3 hours after
ethylene treatment we also expect such changes in our
array data, based on a treatment of 3 hours. Data calcu-
lated using all six algorithms indeed showed up regula-
tion of an ACC oxidase and of several ethylene receptor
genes (Table 4). There were small differences between the
results depending on the method used. Nevertheless, on
the basis of these few genes all six methods produced bio-
logically correct data. Therefore, this "biological rele-
vance" criterion is not useful to differentiate between the
methods until it is biologically proven how thousands of
genes may respond to a given treatment.

4) The usefulness of mismatch (MM) probes

MM signals on Affymetrix arrays are designed to interro-
gate the level of non-specific binding for the PM probes.
In principle, carefully designed mismatches but not con-
ventional probes can be used to solve the cross-hybridisa-
tion to non-target sequences from genes in large families
[27]. Only Choe et al. [15] concluded that subtraction of
the MM signal yields better results, because by subtracting
the MM signals the variance at low signal-intensity levels
is increased, thereby effectively reducing the false positive
call. However, the use of MM values has been questioned
by others [28-30,4]. Zhou and Abagyan [30] concluded
that the MM values are not necessary as a previous version
of MAS software, MAS 4.0, discards the one-one corre-
spondence between a PM and its MM partner and still
gives satisfactory results. A large number of MM probes
show higher intensities than the corresponding PM probe
and can therefore not simply be reporting background
hybridisation. For this reason, Neaf et al. [28] concluded
that MM values should not be used. According to Irizarry
et al. [4] it is possible that information about non-specific
binding is contained in the MM values, but their empirical
results demonstrate that "mathematical subtraction does
not translate to biological subtraction". They stated that,
until a better solution is proposed, simply ignoring these
values is preferable. Also, Allemeersch et al. [31] con-
cluded that the MM values should be ignored because

RMA outperformed MAS5 in reproducibility, dynamic
range and other related criteria. In this paper we would
like to discuss the use of MM values. We assessed whether
identical cRNAs bind to both the PM and MM probes by
i) calculating melting temperatures, and ii) analysing the
relation between signals from PM and MM probes.

i) One possible contributor to the MM values may be
binding of small cRNAs to the lateral sequence of both PM
or MM probes. In other words, since the difference
between the PM and MM is at position 13 of an oligonu-
cleotide 25 bases long, any cRNA that can bind to either
of those lateral 12 bases might remain bound in the detec-
tion step. It is similarly likely that a cRNA fragment with
its terminal 12 base pairs complementary to either lateral
12 base sequence of the probe may also remain bound at
detection. In this latter case if the cCRNA represents a trun-
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Figure 5

Reproducibility. Reproducibility of expression data
between three biological replicates (air), compared between
MAS 5.0, dChip PM, dChip PMMM, RMA, GC-RMA and
PDNN. Reproducibility is calculated as the standard devia-
tion divided by the average signal, which is the coefficient of
variation (CV). The CV values are sorted from low to high.
The PM, RMA and PDNN algorithms are giving the best
reproducible results and MAS 5.0 the worst. Reproducibility
of the two other replicated treatments ethylene and low-
light gave similar results (data not shown).
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Table 4: Biological comparisons. Expression of genes in ethylene biosynthesis and signal transduction cascade as calculated with six
different methods. Numbers in brackets after a gene name show how many genes of a family are on the microarray, followed by the
size of the family. Expression data of a gene family is the summation of expression of the individual gene members. The columns with
a p showing the significance of the fold change ('x' columns) between air control and ethylene (eth) treated plants. ns = not significant

#=p < 0.05, * = p < 0.01, #* = p < 0.00.

MAS 5.0 dChip PMMM dChip PM
gene Air eth p X Air eth p X Air eth p X
ACC synthase (10/11) 378 339 ns - 1882 1760 * 0.9 2489 2373 ns -
ACC oxidase (10/10) 2960 5845 ok 2.0 6196 12866 ok 2.1 8301 16931 ok 2.0
Receptors (5/5) 327 932 wok 2.9 806 2104 ok 2.6 1331 288I ok 22
CTRI 55 242 ook 44 120 614 otk 5.1 278 877 ok 3.1
EIN2 191 182 ns - 429 415 ns - 588 558 ns -
EIN3/EIL (4/4) 578 652 ok 1.1 1464 1714 wok 1.2 2075 2377 ok 1.1
RMA PDNN GC-RMA
gene Air eth p X Air eth p X Air eth p X
ACC synthase (10/11) 1304 1186 ns - 4337 4057 * 0.9 801 567 ok 0.7
ACC oxidase (10/10) 7341 15768 ok 22 14731 28773 ok 2.0 9116 23075 ok 2.5
Receptors (5/5) 869 2150 ok 25 2419 5059 ok 2.1 600 2221 ok 3.7
CTRI 210 904 ok 43 558 1566 ok 2.8 140 1031 ok 74
EIN2 608 563 ns - 1029 974 ns 407 369 ns 0.9
EIN3JEIL (4/4) 1493 1740 ook 1.2 3678 4416 * 1.2 1785 2207 ok 1.2

cated version of the expected signal cRNA then true tran-
script signal may be added to both PM and MM values.
According to the rules regarding maximum GC content for
probes described by Lockhart et al. [32] the experimental
hybridisation for affymetrix arrays is performed at a tem-
perature (45°C) and stringency wash (50°C) which are
both higher than the maximum possible melting temper-
ature of a 12 mer. Based on this argument, cCRNAs smaller
than 13 bases will not contribute to the microarray signal
values. Furthermore, since the cRNAs are fragmented
before hybridisation to an average length of 100 bases
long the percentage of small stretches is low.

ii) One of the probe rules described by Lockart et al. [32]
is that each probe should differ at least three bases with
any other locus on the genome, to avoid cross hybridiza-
tion. The MM probes are designed on purpose in such a
way that they violate this rule, because MM probes differ
by only one base from the PM probes. Therefore, DNA or
RNA binding to the PM could possibly also bind to the
MM probes and vice versa. This hypothesis is supported
by the results of resequencing (or 4 L tiled) microarrays.
On these arrays the position of a genomic mutation is
detected by a so called "footprint", a characteristic
decrease of signal for the probes flanking the mutation
[33], also illustrated in figure 1 of both Chee et al. [33]
and Wang et al. [34]. This loss of signal in the footprint
shows clearly that a MM probe binds to the same targets
as a PM probe but at a much lower efficiency or resulting
signal intensity. To further test this hypothesis we checked
the correlation between the MM signals and the corre-
sponding PM signals in our data set. The MM signals of

the nine arrays were plotted against the PM signals, and
since each probe set has 11 probe pairs, a maximum of 99
data points were plotted per probe set. Probe pairs were
only plotted when the MM signals were smaller than PM
signals (Fig. 6). On average 22.4% of the probe pairs on
the Arabidopsis ATH1 microarray had MM signals higher
than PM signals. This is similar to results found by Naef
who showed that 17% (yeast) to 35% (mouse, humans
and Drosophila) of the MM probes have a higher signal
than the PM probes. Possibly this is related to the com-
plexity of regulatory processes like RNA editing and alter-
native splicing.

In figure 6A and 6B we show two examples in which there
is clearly no correlation (Pearson correlation coefficient
and slope close to 0) between the MM and PM signals and
two examples (C and D) with a clear correlation (Pearson
correlation coefficient and slope close to 1). It is obvious
that in the latter two examples the gene expression levels
of those two genes were severely underestimated. The
slope and Pearson correlation coefficient of 2 x 100 ran-
domly chosen probe sets were calculated. Only probe sets
were used that represent one gene (indicated with suffix
_at following the probe number), because those probe
sets should have the least likelihood of cross hybridisa-
tion. The results of the first and second 100 probe sets
were identical (data not shown) therefore only the result
of the combined data set is shown (figure 7). From the
200 probe sets 60 had a slope larger than 0.50 and 95
probe sets had a Pearson correlation coefficient larger
than 0.75. This means that in 30% of all genes the expres-
sion was underestimated with at least 50% and that in
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Examples of the relation between PM and MM signals. Relation between the PM and MM signals of four probe sets
from all 9 arrays (A...D). Only the data point are plotted when the MM signal intensity is smaller than the PM signal. In panel A
and B there is no correlation between the PM and MM signals as can been seen by the low slope and Pearson correlation coef-
ficient. This in contrast to results in panel C and D were the slope and Pearson correlation coefficient are large. These signals
are obtained from the microarray scanner and are the input for the six calculation methods.

47.5% there was a clear correlation between the MM and
PM signals. Ignoring the MM probe signals lead to an
increase in the calculated expression values (Table 4, Fig.
2 and 3). There was no clear relation between the level of
gene expression and probe sets with a correlation between
the PM and MM signals (data not shown). To our knowl-
edge we show for the first time that many probe sets had
a correlation between the MM and PM signals, and MM
probes could therefore be less good estimators for the
non-specific binding of PM probes. It is not clear though
in which cases there really is non-specific binding, or
binding of the same gene transcript to both MM and PM
probes. Considering the strong correlations found, proba-
bly the same transcript is binding to both probes. If this is

true then algorithms making use of MM signals can seri-
ously underestimate the gene expression signal intensity,
and as a result, different genes will be falsely identified as
differentially regulated.

If MM signals are important for detecting genes expressed
at low levels, differences are expected between algorithms
using the MM signals (MAS, PMMM) and methods not
using the MM signal. Analysis of the spike-in data shows
(Fig. 4B) that MAS and PMMM are, at best, performing
equally well in detecting low expressed spiked-in genes.
Of the four methods that do not use the MM signals one
performed poorly for highly expressed spike-in genes,
compared to one out of two for the methods using the

Page 10 of 16

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:137

1.0 -

0.8 - e

0.6 ~

0.4 <

0.2 4 slope
’ ———corr

slope and correlation between PM and MM signals
LS

0.0 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200

number of genes

Figure 7

Relation between PM and MM signals. Slope and Pear-
son correlation coefficient calculated between the PM and
MM signals from 200 random chosen probe sets. Only probe
sets are used which represents one gene. Both slope and
correlation are sorted from low to high. See figure 6 for fur-
ther explanation and individual examples.

MM signals. These data suggest that the MM signals do not
increase the detection of spike-in genes in this data set.
Future research with independent techniques and inde-
pendent data sets will have to prove how useful MM sig-
nals are.

5) Real Time RT-PCR

To further test which algorithm calculates microarray gene
expression most accurately, the results of the six algo-
rithms were compared with Real Time RT-PCR on a subset
of 18 genes. These 18 genes are predicted by all the six
methods to be differentially regulated. Real Time RT-PCR
data can also be calculated with several different algo-
rithms. Most widely used is the AACt method [35]. One of
the assumptions of this method is that the efficiencies of
the PCR reactions are the same for the gene of interest and
for a reference gene. More recently, other methods have

http://www.biomedcentral.com/1471-2105/7/137

become available, such as the "Assumption-free analysis"
[36]. This method determines the efficiency of each PCR
reaction by calculating the slope for the exponential part
of the curve. Czechowski et al. [37] combined the two
methods by using the average efficiency of a gene to cor-
rect each AACt value.

A comparison was made between three Real Time RT-PCR
algorithms and six microarray algorithms. The ACt and
the ACt in combination with the Assumption Free
method gave highly significant correlations with all
microarray methods (Table 5). The Real Time RT-PCR
Assumption Free method had less significant correlations
with the microarray methods. Regardless of the used Real
Time RT-PCR method the best correlation was always
found in combination with RMA. Moreover, the highest
correlation was found for RMA [4,5] in combination with
the AACt method [35]. No significant different correla-
tions were detected. However, the used test is very con-
servative and will only render significant differences if the
correlation coefficients are very different or if the sample
sizes are much larger [[38], p582].

To test if there are differences between genes (18) with
respect to what the best method for calculating expression
levels, the same correlations were calculated per gene.
However, due to the low number of data points per corre-
lation (3), hardly any significant correlations were found.
Therefore, we were not able to determine if there is a gene
dependency for the best method. To resolve this matter, a
wider range of expression levels per gene should be exam-
ined.

We also tested if the correlations between the microarray
and Real Time RT-PCR data depended on signal intensity.
Possibly such correlations might be weak or absent at low
signal intensities. However, we did not find any signifi-
cant relation between these parameters. Moreover, except
for one, the signal intensities where all larger than the
minimal signal intensity to detect spike in gene expression
as found in table 3.

Table 5: Correlation between microarray and RT-PCR data. Pearson correlation of expression values between six microarray
algorithms and three Real Time RT-PCR algorithms on a subset of 18 genes. The negative sign from the numbers in the second and
last column are removed, because a lower ACt value means more gene product present, consequently leading to a negative
correlation with microarray data. All correlations were significant. ns = not significant (p < 0.01). * = p < 0.05, ** = p < 0.0l

ACt Assumption Free ACt + Assumption Free
MAS 5.0 0.515%* 0.311* 0.406*
dChip PMMM 0.468** 0.298* 0.382°*
dChip PM 0.460%* 0.300* 0.397%
RMA 0.554%* 0.378** 0.459**
GC-RMA 0.495%* 0.297%* 0.407°*
PDNN 0.4627* 0.252ns 0.386%*

Page 11 of 16

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:137

http://www.biomedcentral.com/1471-2105/7/137

Table 6: RT-PCR data of RMA specific genes. Ethylene/air expression signals from 10 genes calculated with RMA and compared to the
Real Time RT-PCR data as calculated with ACt. All RMA signals from ethylene treated plants are significantly (0.05 > p > 0.01) different
from the air controls (average p = 0.037). The Real Time RT-PCR data shown, are averages, standard deviations and p values after
comparison with the control. The average control signal is set to |I. The numbers in bold indicate genes which show a change in
expression similar for both methods. For RMA, n = 3 and for Real Time RT-PCR, n = 3-5.

AGI Eth/air RMA Eth/air RT-PCR
average average stdev p

At5g23060 0.65 0.83 0.075 0.456
At2g36850 0.72 0.76 0.135 0.181
Atlg70710 0.73 0.82 0.089 0.155
At5g03760 0.78 0.54 0.109 0.021
At3g49530 1.29 0.99 0.134 0.958
At2g31800 1.31 0.72 0.104 0.065
At5g25930 1.35 1.22 0.523 0.700
Atlg77380 1.44 0.84 0.066 0.270
At5g57120 1.51 0.72 0.227 0.356
Atlgé4710 1.99 0.96 0.132 0.804

Besides comparing gene expression values from genes pre-
dicted to be changed in expression by all microarray
methods we also measured Real Time RT-PCR (ACt)
expression from 10 genes which were only shown by the
RMA method to have a changed expression but not by one
of the other algorithms. Of these 10 genes, 5 showed the
same change in direction (either up- or down regulated)
with Real Time RT-PCR upon ethylene treatment (table
6). From those 5 genes, only one showed a significant
change in expression. There could be two reasons why the
RMA microarray data poorly corresponds with the Real
Time RT-PCR data. First, the changes in expression of
genes exclusively detected with RMA are rather small (on
average -28 or +48%). Differences of this magnitude are
difficult to detect with Real Time RT-PCR. Second, the
standard deviation of the calculated gene expression is
compressed by RMA, which could result in a high number
of false positives. So while the correlations suggest that
RMA is the best method, for the most part we could not
verify expression changes exclusively detected by RMA
with Real Time RT-PCR.

Conclusion

Gene expression was calculated with six algorithms,
MAS5, dChip PMMM, dChip PM, RMA, GC-RMA and
PDNN. All six algorithms resulted in different levels of
gene expression, with MAS5 calculating the lowest and
PDNN the highest signals. Consequently, depending on
the method used, different genes will be identified as up
or down regulated by a given treatment. Therefore, it is up
to the user to decide which method to use to calculate the
gene expression profile. The spike-in experiment showed
that the differences between the methods for the low
expressed genes are not relevant since measurements up
to 1 pmol RNA, did not result in significant signals above
background. Furthermore, for relatively high expressed
genes MAS5 and PDNN showed the lowest percentage of

correctly calculated genes. In our comparison all six meth-
ods yielded the expected biological results, with respect to
ethylene-induced gene expression. Furthermore, all
model-based algorithms produced more reproducible
results in comparison to MAS5. Moreover, we conclude
that MM signals do not represent non-specific binding for
PM signals, since in 47.5% of the cases there was a signif-
icant correlation between the MM and PM signals. Sub-
tracting the MM from the PM signals will therefore most
likely underestimate the expression signal. RMA generally
yields the most reproducible results. However, we were
not able to verify most genes which were solely identified
as having changed expression by RMA with Real Time RT-
PCR. Different experimental systems may require differ-
ent methods to obtain the best result [16]. If the only pur-
pose of the microarray experiment is to find new
candidate genes, and too many genes are found, then
mutual exclusion of the genes predicted by contrasting
methods can be used to narrow down that list of candi-
date genes.

Methods

Plant material and growth conditions

Arabidopsis thaliana accession Columbia-0 (Col-0; N1092,
Nottingham Arabidopsis Stock Centre) was used. Seeds
were sown on moistened filter paper in sealed Petri-dishes
and cold-stratified in the dark at 4°C for 4 d. Subse-
quently, the seeds were germinated for 4 d in a growth
chamber with the following conditions: 20°C, 70% (v/v)
relative humidity, 9 h photoperiod: 200 pumol m-2s-! pho-
tosynthetic active radiation (PAR). Seedlings were trans-
ferred with a brush to pots (70 ml) containing a mixture
of potting soil and perlite (1:2, v:v), enriched with 0.14
mg MgOCaO (17%; Vitasol BV, Stolwijk, The Nether-
lands) and 0.14 mg slow-release fertilizer (Osmocote
"plus mini"; Scotts Europe bv, Heerlen, The Netherlands)
per pot. Prior to seedling transfer, to each pot 20 ml nutri-
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Table 7: RT-PCR primers. Primers for the genes used in Real-Time RT-PCR and the length of the PCR product. Each gene is
represented with the Affymetrix probe number and the Arabidopsis Genome Initiative (AGI) code.

probe

AGI

length (bp)

Forward primer

Reverse primer

Genes common for all microarray methods

245098_at  At2g40940 148 5'-CGGAACTCAGAGGAACCATT-3'
245264 _at  At4gl7245 50 5'-CAAGACGGTGACACCTTACG-3'
247486_at  At5g62140 158 5'-ACGGAGGAATCGATAGGAGA-3'
247954_at  At5g56870 96 5'-CAGAGAGTTCCGGTGTGAGA-3'
249125_at  At5g43450 99 5-GTTCTTGAGCGTGGAGCATA-3'
250598_at  At5g07690 75 5'-AACAAGCGTTGATGAAGACG-3'
25091 1_at At5g03730 67 5'-CGAGATGAGCCGTCTAATGA-3'
251058_at  At5g01790 133 5-AGAAACTGTCGGCTTCATCA-3'
251373_at  At3g60530 129 5'-ACCGCTTGGACCTAAAACAC-3'
253302_at  At4g33660 83 5'-ACCACCACGAAAAGTTGGTT-3'
254371_at  At4g21760 51 5'-TTCATCTTCCAGCACAGAGC-3'
258181_at  At3g21670 96 5'-GCTTACGTTGGACAGCTTGA-3'
258468_at  At3g06070 100 5'-GTTCCTTTATCCCCAAGCAA-3'
259982 _at  Atlg76410 142 5'-TGGCTTGGATCACACTCTTC-3'
263653_at  Atlg04310 83 5-ACGCTTGCCAAAACATTGTA-3'
264624_at  Atlg08930 135 5'-TGGAATGCATCAGGAATGTT-3'
265194_at  Atlg05010 59 5'-TATAATCCGGGAAGCGACTC-3'
266884_at  At2g44790 152 5'-ACTCCTACCACACCGGAATC-3'
RMA specific genes

262870_at  Atlg64710 129 5'-CCGATGGAAAGACCAGATTC-3'
260181_at  Atlg70710 107 5'-~ACACAAAGCCTCGAGGAAAC-3'
246389_at Atlg77380 6l 5'-AATGTACATCGCGCAGAAGA-3'
263461_at  At2g31800 52 5'-GGGACCTTGGGAGCTATCTT-3'
263891_at  At2g36850 139 5-ATGGCTACTCGTGGGTTGTT-3'
267592_at  At2g39710 128 5'-CGTATTGCATATCCGGTTCA-3'
252278_at  At3g49530 73 5'-CGTGACCGGTTTTGTGTTTA-3'
250892_at  At5g03760 77 5'-CTGCTTGTGGACTCTCATGG-3'
249876_at  At5g23060 103 5'-GCACAACAGACGTCAAAAGC-3'
249822 at At5g23710 52 5'-CGGGAAAAAGTTCGGTAATG-3'

5'-GCAGATACCAAGCCTGATGA-3'
5'-TGGAATCCATGTTTGCATCT-3'
5'-TGTAGATCGGCGAGACACTC-3'
5-TTCCTGCTGGTGTAGCAAAC-3'
5'-ACCGTGGAATTTGGAGAAAG-3'
5'-AAATCGGAATGGTCAAGGAG-3'
5'-TAGCAAGCTCCCACAAGATG-3'
5'-TCAGCAGAAGAGTCGAAGGA-3'
5'-TTCCGATGAGAGTTCGAATG-3'
5'-GGTCACAGCAACATTCATCC-3'
5-TTGTTTCAGGCACCAATCAT-3'
5'-TCCCATCGATATCGTGCTTA-3'
5'-GCATGATGAAAGGTGATGCT-3'
5'-CAGGACCATCTTCACGTTGT-3'
5'-TGAGACGCTTTTCACCAAAC-3'
5'-TTGCACAGAGTTGTTGAGCA-3'
5'-GCTTCTTTTCCGATCAGCTC-3'
5'-ATCGAGACTCCCACCAAAAC-3'

5'-GAAACAGAGGGTCCACCTTG-3'
5'-CATGCTTATTGTCCCAACCA-3'
5'-GACTTGAAGGCAAACCCATC-3'
5-ACTTTGGCTGGAGAAAGACG-3'
5'-CCAAGGACACATGCAAACAT-3'
5'-CCGGTCGAAATAAGGTAACG-3'
5-TACTGCCGCCCTAAAGAGTC-3'
5-TTTGATCGTTGGATCAGTGG-3'
5'-CAGCAGCAACAACAATGACA-3'
5'-AATCGAAGCAAAAGCTCCAG-3'

ent solution was added, containing: 2.6 mM KNO;, 2.0
mM Ca [NO3],, 0.6 mM KH,PO,, 0.9 mM MgSO,, 6.6 uM
MnSO,, 2.8 uM ZnSO,, 0.5 uM CuSO,, 66 uM H;BO3, 0.8
uM Na,MoO, and 134 uM Fe-EDTA, pH 5.8. All chemi-
cals were p.a. grade and obtained from Merck (Darmstadyt,
Germany). Following transplantation, plants were grown
for 28 d in a growth chamber (conditions as described
above). Pots with seedlings were kept in a glass-covered
tray for the first 4 d following transplantation, after which
they were transferred to irrigation mats (Maasmond-West-
land, The Netherlands). The mats were automatically
watered with tap water to saturation once a day (at the
beginning of the light period), and the excess water was
drained.

Ethylene and low-light experiments

Ethylene (100 uL L-1; Hoek Loos BV, The Netherlands)
and air (70% relative humidity) were mixed using flow
meters (Brooks Instruments BV, The Netherlands) to gen-
erate a concentration of 5 pl L! ethylene, which was
flushed continuously through glass cuvettes (13.5 x 16.0

x 29.0 cm) at 75 L h'!, and then vented to the outside of
the building. This concentration saturates ethylene-
induced petiole elongation in R. palustris [39]. A concen-
tration of 1 pL L-! ethylene was reached in the cuvettes
after approximately 10 min of starting the treatment; 5 puL
L-! was reached after 40 min. The ethylene concentration
was checked regularly on a gas chromatograph (GC955,
Synspec, Groningen, Netherlands), and remained con-
stant for the duration of the experiment. Control cuvettes
were flushed with air (70% relative humidity) at the same
flow rate.

For the shading treatment, the light quantity was reduced
by 90% to 15 - 20 pmol m2 s'! (photosynthetic active
radiation) at the start of the experiment. This was achieved
by switching off a number of lamps in the growth cham-
ber and by using a mesh black spectrally neutral shade
cloth. These alterations did not change the light quality
when checked with a Licor1800 spectro-radiometer (Li-
cor, Lincoln, Ne, USA) (data not shown).
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RNA isolation

Petioles were harvested and directly frozen in liquid nitro-
gen from plants in stage 3.9 according to Boyes et al. [40],
which means a plant with approximate 17 rosette leaves.
Subsequently RNA was isolated from these petioles with
RNeasy extraction protocol from Qiagen (Valencia, CA,
USA).

cDNA synthesis

Approximately 10 pg of total RNA was reverse transcribed
at 42°C for 1 h to generate first strand DNA using 100
pmol oligo-dT(24) primer containing a 5'-T7 RNA
polymerase promoter sequence (5'-GGCCAGTGAATTG-
TAATACGACTCACTATAGGGAGGCGG-(dT)24-3"), 50
mM Tris-HCI (pH 8.3), 75 mM KCl, 3 mM MgCl,, 10 mM
dithiothreitol (DTT), 10 mM dNTPs and 200 units Super-
Script II reverse transcriptase (Invitrogen Life Technolo-
gies, Breda, The Netherlands). Following first strand
synthesis, second strand DNA was synthesized using 10
units of E. coli polymerase I, 10 units of E. coli DNA ligase
and 2 units of RNase H in a reaction containing 25 mM
Tris-HCI (pH 7.5), 100 mM KCl, 5 mM MgCl,, 10 mM
(NH,)SO,, 0.15 mM b-NAD+ and 10 mM dNTPs. The sec-
ond strand synthesis reaction proceeded at 16°C for 2
hours before 10 units of T4 DNA polymerase was added
and the reaction allowed to proceeded for 5 minutes. The
reaction was terminated by adding 0.5 M EDTA. Double
stranded ¢cDNA products were purified using the Gene-
Chip Sample Cleanup Module (Affymetrix, USA).

cRNA synthesis

The synthesized cDNAs were in vitro transcribed by T7
RNA polymerase (ENZO BioArray High Yield RNA Tran-
script Labeling Kit, Enzo, San Francisco, CA, USA) using
biotinylated nucleotides to generated complementary
RNAs (cRNAs). The cRNAs were purified using the Gene-
Chip Sample Cleanup Module (Affymetrix, USA). The
cRNAs were then randomly fragmented at 94°C for 35
min in a buffer containing 40 mM Tris-acetate (pH 8.1),
100 mM potassium acetate, and 30 mM magnesium ace-
tate to generate molecules of approximately 35 to 200
bases long.

Array hybridization

The fragmented cRNA were mixed with 0.1 mg ml! of
sonicated herring sperm DNA in a hybridisation buffer
containing 100 mM 2-N-morpholino-ethane-sulfonic
acid (MES), 1 M NaCl, 20 mM EDTA and 10% Tween-20
making a hybridisation mixture. The hybridisation mix-
ture containing the fragmented cRNA was denatured at
99°C for 5 min and equilibrated at 45°C for 5 min and
centrifuged at maximum speed in a microcentrifuge for 5
min to remove any insoluble material from the hybridisa-
tion mixture. The hybridisation mix was transferred to the
Arabidopsis ATH1-121501 genome array (Affymetrix)
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cartridge and hybridised at 45°C for 16 h on a rotisserie at
60 rpm. After a 16 h hybridisation period, the arrays were
washed and stained in a fluidics station (Affymetrix). The
arrays were initially washed in a low stringency buffer A
(6x SSPE (0.9 m NaCl, 0.06 M NaH,PO,, 0.006 M EDTA),
10% Tween 20) at 25°C for 10 min and then incubated
with a high stringency buffer B (100 mM MES, 0.1 NaCl,
10% Tween-20) at 50°C for 20 min, then stained with 10
mg ml! of Streptavidin Phycoerythrin (SAPE), in stain
buffer containing 100 mM MES, 1 M NacCl, 0.05% Tween
20 and 2 mg ml-! BSA at 25°C for 10 min, washed with
wash buffer A at 25°C for 20 min and stained with bioti-
nylated anti-streptavidin antibody at 25°C for 10 min.
After antibody staining the arrays were stained again with
SAPE for signal amplification and washed with buffer A at
30°C for 30 min. The arrays were finally scanned and the
intensities averaged with a Agilent GeneArray Scanner.

Real time RT-PCR

For one RNA sample eight petioles obtained from two
plants were mixed and ground in liquid nitrogen. Samples
were taken after 3 h of ethylene treatment or from plants
in air for 3 h. Total RNA was isolated from Arabidopsis thal-
iana petioles using RNeasy Plant Mini Kit (Valencia, CA,
USA). Genomic DNA was removed using the DNA-Free
kit (Ambion, Cambridgeshire, United Kingdom). cDNA
was synthesized using 3.3 pg total RNA with Superscript
III RNase H- Reverse Transcriptase (Invitrogen, Breda, The
Netherlands) using Random-Hexamer Primers. Real time
PCR reactions were performed on MyiQ Single-Color
Real-Time PCR Detection System and Software using iQ
SYBR Green Supermix fluorescein (Bio-Rad laboratories,
Veenendaal, The Netherlands).

Real time PCR was conducted (12.5 pL SYBR Green Super-
mix fluorescein, 1 pL from each primer (100 pmol), 1 puL
cDNA, 9.5 ulL water) for 40 cycles with the following tem-
peratures: 30 sec 95°C denaturation, 30 sec 60°C anneal-
ing, and 60 sec 72°C extension. Melt curves showed single
products for all samples (data not shown). All mRNA
expression values are relative to Actin 2 (At5g09810) that
is constitutively expressed in vegetative structures, and is
not influenced upon the treatment (data not shown). See
table 7 for the primers used, the length of the PCR prod-
ucts and the gene codes.

Spike-in experiment

The RNA spike-in experiment is carried out by Affymetrix
on Human HG-U133 chips. The CEL files are available
online [17]. In this experiment the RNA of 42 genes are
spiked-in at 14 concentrations 0, 0.125, 0.25, 0.5, 1, 2, 4,
8, 16, 32, 64, 128, 256, 512 pmol and in total 42 micro
arrays were used. For more details see the Affymetrix web-
site.
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Data analysis

The following programs are used, MAS 5.0 from Affyme-
trix (Santa Clara, USA), DNA-Chip analyser (dChip) ver-
sion 1.2 [41], RMA version 0.2 [42], PDNN version 2.3
[43], GC-RMA as was incorporated in the program Arra-
yAssist Lite version 3.2.1954.31591 (Stratagene, La Jolla,
CA, USA) and Excel 2000 (Microsoft, Redmond, USA).
Cel files from MAS5 containing the signal intensity per
feature were used as input for dChip, RMA and PDNN. A
two-sided T-test with unequal variances was performed in
Excel with a p value of 0.05 unless stated otherwise. The
coefficient of variation or CV is calculated in Excel as the
standard deviation divided by the average signal. The CV
was sorted separately for each algorithm before the distri-
bution of the CV was plotted; this was also the procedure
for the signal distributions, slope and correlation data in
figure 2, 5, and 7. A macro was written in Excel to find
common genes between two sets of genes to construct fig-
ure 1, this macro is available [44].

Real Time RT-PCR data were calculated in three ways: 1)
comparative Ct method described by Livak and Schmitt-
gen [35], 2) "Assumption-free analysis" by Rademakers et
al. [36] and 3) a combination of the first two methods by
Czechowski et al. [37].
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