
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
mGrid: A load-balanced distributed computing environment for the
remote execution of the user-defined Matlab code
Yuliya V Karpievitch*1 and Jonas S Almeida2

Address: 1Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, 135 Cannon Street, Suite 303,
Charleston, SC, 29425, USA and 2Department of Biostatistics and Applied Mathematics, Dept Biostatistics and Applied Mathematics, Univ. Texas
MDAnderson Cancer Center – unit 447, 1515 Holcombe Blvd, Houston TX 77030-4009, USA, USA

Email: Yuliya V Karpievitch* - karpik@musc.edu; Jonas S Almeida - jalmeida@mdanderson.org

* Corresponding author

Abstract
Background: Matlab, a powerful and productive language that allows for rapid prototyping,
modeling and simulation, is widely used in computational biology. Modeling and simulation of large
biological systems often require more computational resources then are available on a single
computer. Existing distributed computing environments like the Distributed Computing Toolbox,
MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab
commands with varying support for features like an easy-to-use application programming interface,
load-balanced utilization of resources, extensibility over the wide area network, and minimal
system administration skill requirements. However, all of these environments require some level
of access to participating machines to manually distribute the user-defined libraries that the remote
call may invoke.

Results: mGrid augments the usual process distribution seen in other similar distributed systems
by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native
Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is
unaware that the code is executing somewhere else). Run-time variables are automatically packed
and distributed with the user-defined code and automated load-balancing of remote resources
enables smooth concurrent execution. mGrid is an open source environment. Apart from the
programming language itself, all other components are also open source, freely available tools: light-
weight PHP scripts and the Apache web server.

Conclusion: Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid
prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab
command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server,
installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid
allows for it to be easily extensible over the Internet.

Background
The term 'grid' was coined in the mid-1990s and desig-
nates distributed computing infrastructures for science

and engineering [1]. Today, Grids seek to provide seam-
less, scalable, high-performance and secure mechanisms
for locating and negotiating access to remote and possibly

Published: 15 March 2006

BMC Bioinformatics2006, 7:139 doi:10.1186/1471-2105-7-139

Received: 17 May 2005
Accepted: 15 March 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/139

© 2006Karpievitch and Almeida; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16539707
http://www.biomedcentral.com/1471-2105/7/139
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
heterogeneous resources [2,3]. The specific goal underly-
ing the Grid concept is coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual
organizations [4].

Computational biology applications with large memory
and CPU requirements have been a significant driving
force behind grid development [2,5-9]. However, the dis-
covery mode of many computational biology initiatives
which favours the autonomous use of rapid prototyping
environments by small groups or even individual
researchers, which does not bode well with the predomi-
nant, heavier, distributed computational infrastructures
available. In this regard it is useful to recall the context of
their development and in particular the eroding distinc-
tion between data and computational grids.

Some grid middleware has evolved to bind data resources
scattered across a network into a unified environment to
make it appear to the user as if all the data is stored locally
on that user's desktop (data grids). Computational grids,
on the other hand, provide the ability to perform compu-
tations remotely, possibly in parallel, without the user
having to know anything about networking and commu-
nication between the computers (distribution transpar-
ency). Majority of grids today act as both data and
computational grids [6-9].

Particularly illustrative examples of working grid systems
for computational biology are Folding@home, North
Carolina BioGrid, caBig, and myGrid. The goal of Fold-
ing@home is understanding protein folding, protein
aggregation, and related diseases by utilizing idle CPU
cycles (i. e. computational grid) over a collection of com-
puters [5]. NC BioGrid combines computing and data
resources into a unified environment for genomic
research (data and computational grid) [8]. caBig is the
cancer Biomedical Informatics Grid, it is made up of net-
work of individuals and institutions to enable the sharing
of data and tools for cancer research [9,10]. Another
example of the grid that is being used in bioinformatics is
myGrid [11,12]. myGrid is an infrastructure specifically
designed to support biological applications. It provides
access to analysis tools (computations) or database serv-
ices thus making it a diverse service grid. Although the
above implementations are excellent examples of the
working bioinformatics grids, their scope is far beyond the
scope of the solution proposed in this report, and most
importantly none of these grids allow for distribution of
user-defined libraries on remote machines at runtime,
which is the main goal of mGrid.

Matlab is a particularly popular computing environment
for rapid prototyping [13]. The potential advantages of
building a distributed computing capability in Matlab

were reflected by the development of over twenty infra-
structures to distribute and/or parallelize Matlab [14-19].
Some examples are: MultiMatlab, MatlabMPI, MAT-
LAB*G, Distributed Computing Toolbox. Most of the
existing tools require an underlying parallel library or lan-
guage, such as Message Passing Interface (MPI) [20], Par-
allel Virtual Machine PVM [21], or a communication
technology like Jini [22] or ALiCE [2]. The installation and
configuration of such environments often require a signif-
icant level of system administration knowledge and
makes systems less secure. Also, message-passing and
shared-memory tools are designed to work best on a local
area network (LAN), for example on a cluster of machines.
These tools are not easily extensible to span across large
heterogeneous wide area networks (WANs) such as the
Internet [23,24]. Moreover, none of these environments
allow for distribution of user-defined Matlab libraries.

It is noteworthy that our method relying on code distribu-
tion is not proposed in strict alternative to message pass-
ing. Quite the opposite, there is no fundamental reason
why they cannot be mixed.

Some environments only allow for coarse-grained paral-
lelization, i.e. at the functional level or only paralleliza-
tion of matrix operations and for-loops [15,18]. For
example, the Distributed Computing Toolbox [15] is a
Matlab native toolbox that enables users to execute inde-
pendent parallel algorithms on a set of machines simulta-
neously. This library, which works together with the
Distributed Computing Engine, requires Jini technology
to facilitate communication between computers that com-
prise a distributed computing environment. Jini is a Java
based software and thus requires installation of the Java
specific runtime environment and Jini servers on all
machines. Once again, the Distributed Computing Tool-
box does not allow for the dynamic distribution of the
user code.

The differentiating characteristic of mGrid is indeed user
code distribution. While this report focuses on a proof-of-
concept of Matlab implementation of code distribution,
the concept itself is general and can be embedded in other
programming environments. mGrid allows unique user
code to be dynamically migrated to heterogeneous com-
puters, i.e. it allows for user-defined Matlab commands
and libraries of functions needed to execute those com-
mands, and run-time variables, to be passed to the remote
machines automatically. This involves run-time alloca-
tion of resources, such as, available CPU cycles, memory,
and user code and data distribution.

A reliable file transfer capability is provided by GridFTP
which could be used for transferring the necessary user
code in mGrid. Using GridFTP for our purposes would
Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
require the installation of both the GridFTP client on the
client machines and the GridFTP server on the worker sys-
tems. Furthermore, the worker machines must also have
the Globus Toolkit installed. The authors believe that
these installation requirements are overly complicated
and have decided to implement a simpler solution using
PHP [25] and hyper text transfer protocol (HTTP).

A second feature of mGrid is support for parallel remote
Matlab command execution. Thus, mGrid includes the
ability to distribute computations in parallel, although in
a basic sense, i.e. what is commonly called "embarrass-
ingly parallel" computations [23]. In the code distribution

by mGrid this is achieved by coarse-grained paralleliza-
tion, at the function level.

The specific goal of this research was to advance the auto-
matic distribution of algorithms written in Matlab by
developing a library for distributed computing on blade
servers at the Bioinformatics Core of the NHLBI Proteom-
ics Center at MUSC. The original motivation was to speed
the reverse engineering of biological networks using S-Sys-
tems [26,27] by allowing numerical decoupling of the
ensuing system of coupled differential equations [28,29].
The bioinformatics justification and likely usefulness of
the code distribution scheme proposed here is a reflection

mGrid architecture and client communicationFigure 1
mGrid architecture and client communication. Architecture of full mGrid implementation: load management and multi-
ple, parallel, remote calls are mediated by dedicated mGrid master server machines upon receipt of a global evaluation calls
(using command geval) by client machine. geval requests the IP address of the current best available worker form one of the
masters, then sends the job request to the worker which IP address was returned by the master. For parallel evaluation geval
will simply ask for multiple IP addresses and issue the job requests to multiple worker computers.
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
of the particular need to systemically integrate a variety of
data and models [30] which themselves may change in
structure and even in purpose over time. Furthermore,
tackling the systems biology challenge is increasingly not
just a matter of coping with large amounts and large vari-
ety of data and applications but also of testing alternative
theoretical foundations. Consequently, the challenge that
mGrid seeks to address is the creation of a user-friendly
programming environment tailored to rapid prototyping
such that algorithm and theory development could share
a common programming environment.

Implementation
The 'm' in mGrid
The letter 'm' in mGrid refers to Matlab, a programming
environment by Mathworks Inc. [31], the implementa-
tion language of the mGrid software and also the language
of the code being distributed. The choice of Matlab to
implement code distribution is a reflection of its popular-
ity for rapid prototyping of scientific and engineering
applications. The combination of user-friendliness and
support for high end applications makes it a natural
choice for the implementation of grid computing through
code distribution. Nevertheless, it should also be noted
that Matlab is a commercial product witch raises a cost
barrier to access and scaling up the proposed implemen-
tation. Nevertheless, there are free, open-source, Matlab-
like tools available (Octave, FreeMat, SciLab, Tela, Euler
[32-37]) onto which the implementation described here
can be easily ported. Other then the language itself, this is
an open source, freely distributed tool (see Availability).

Matlab was chosen for being the most complete of these
environments and for the availability of implementations
for all the major operating systems. The same is true for
the other components of mGrid – Apache web server
package and its PHP module. Therefore, the grid comput-
ing implementation described here is truly platform inde-
pendent. Finally, this is also the environment of choice for
training in scientific computing and computational statis-
tics in academia.

Connectivity
At the heart of every Grid is a network that links together
distributed resources. It is important to note that mGrid
uses the standard HTTP protocol which runs on top of
TCP/IP, which facilitates interoperability, extensibility
and portability of the software. TCP/IP also provides reli-
able delivery of the data, as it automatically detects errors
and requests retransmission until all data is received.
mGrid uses the Apache web server [38] to establish com-
munication with contributing computers, and PHP [25]to
structure the data transferred between participating com-
puters.

mGrid architecture
The full mGrid implementation includes dedicated medi-
ating server machines to manage the client requests and
select the best available workers, following a semi-hierar-
chical architecture (Figure 1). This architecture consists of
two master servers (main and backup master servers) that
can independently decide which worker to send a given
request to, based on user requirements for CPU speed,
available RAM, and workload.

The master servers are defined as a redundant set of two
machines that maintain balanced workload distribution
among workers in mGrid (Figure 1). The main and
backup systems maintain identical information on the
availability of the worker machines to be targeted by
remote calls. Global eval function geval initially commu-
nicates with the main master server. A request will always
go to the same main server. The backup master will be
contacted only in the case of the main server not respond-
ing to the client's request, thus preventing any downtime
of the mGrid. The mGrid will be temporarily unavailable
in the case of both the main and the backup master servers
being down simultaneously. After geval receives the
worker IP address it sends the job request to that worker.

Addition of workers to the mGrid requires a request to be
sent (via the volunteer command in Matlab) to both mas-
ter servers so that a consistent view of the worker states is
maintained. Master servers have a check mechanism to
prevent multiple additions of the same worker to the
mGrid if volunteer command is executed more then once.
Thus repeated executions of the volunteer command will
have no effect on the masters.

Master servers maintain workload information on the
workers by periodically polling the workers about the
number of their available CPU cycles. This is done by
crontab calling a PHP script update_busyinfo.php, which
in turn contacts all the workers to get the workload infor-
mation by calling a PHP script busyinfo.php on remote
machines. The information returned includes CPU idle
time, amount of available memory, and processor speed.
Based on the results returned by each worker, the work-
load of each worker is accurately updated. If a worker
becomes unavailable, then all three of the above resources
are set to zero, and that particular worker will no longer
be considered for incoming requests. Also, after a particu-
lar server assigns a job to a worker the workload informa-
tion stored on that master server is updated by
incrementing the record of the worker's workload by a
constant load percentage. A load percentage of 15%
empirically found to be sufficient for the purpose of stati-
cally estimating the expected workload increase on that
computer and thus making it no longer the least busy
worker.
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
The basic call to mGrid is mediated by the function geval
(global evaluation) that selects a main master server from
a list of two candidate mGrid master server machines. A
message is then sent to the chosen master server request-
ing the IP address of the current 'best' available worker
known. Upon receiving the IP address of the best available
worker, geval, packs all the information necessary for the
command to execute successfully on the remote machine:

• converts this command to a string, encoded in a format
appropriate for use within a Unified Resource Locator
(URL)

• encodes any workspace variables

• encodes client toolbox

geval then calls the reval procedure, which is responsible
for data transfer to the remote worker(s) and collection of
the results after worker(s) complete the assigned jobs.

The task of adding the master server to the mGrid needs to
be performed before any other components are installed,
as both client and worker installations require the address
of two master servers to which they relay their requests
and accept reassignments to worker machines. On the
contrary, as mentioned before, dynamic accommodation
of new participants is provided by the master servers so
the constellation of worker machines available to the mas-
ter servers for assignment of incoming jobs, can be
changed at anytime without interruption of ongoing jobs
or submission of new jobs. Two additional functions dis-
tinguish master servers from the workers:
add_worker.php and get_worker.php. The first function,
add_worker.php, allows a new worker machine to be
added to the grid. This function verifies that the worker is
accessible via HTTP (on top of TCP/IP) protocol and that
it is ready to accept the remote jobs. Function
get_worker.php is used by mGrid to provide client with
the IP address(es) of the current best available worker(s).

At this time mGrid does not incorporate a client-control
system. Control is managed by the network configuration,
currently mGrid is located behind a university firewall
preventing outside access. Anyone within the university
can be an mGrid client. Virtual Private Network (VPN)
can be set up to enhance security by utilizing data tunnel-
ling and encryption to work over the Internet.

Results
User-defined code distribution
User code distribution is the defining feature of mGrid,
allowing a user to provide and operate a new function or
a library of functions that is not kept on the grid itself.
mGrid supports client functionality to pack the user's

unique code and variables, transfer them over a network
to a remote worker machine where they are unpacked and
evaluated. This makes mGrid a desirable tool for scientists
that write their own functions and want them to be exe-
cuted on one or more remote computers without having
to install those functions on all of the machines partici-
pating in the mGrid. This is a convenient and more secure
feature than process distribution, because it eliminates the
need to require that users have permissions to install or
write files on the distributed computers. It also eliminates
having to propagate every small user code changes to all
of the machines.

A client can issue a command to a specific worker
machine, possibly passing local work space variables and
functions or entire Matlab toolboxes necessary for compu-
tation. In this basic remote evaluation mode of operation
(not the optimal setting as detailed later), the worker
machine autonomously handles the request, makes
results available to the client and then removes the client
code from its hard drive, following a standard client-
server model [24]. mGrid automatically handles the entire
process such that user specification of parallel execution
does not depend on the code, unlike other parallel envi-
ronments like MPI or PVM [20,21,23] that require users to
learn a parallel programming language in order to write
code that can be run in parallel.

mGrid provides a fully parallel configuration where the
user simply has to list the multiple commands to be exe-
cuted in an array. Both the selection of worker machines
and code distribution are automatically mediated by
mGrid. Of course, for parallel execution, the multiple
Matlab commands given by the user have to be independ-
ent of each other [23].

Client side of mGrid
In order to access an existing mGrid infrastructure, a
potential client needs only to have a small Matlab toolbox
and learn how to use three new commands. As any other
Matlab function, these functions can be inserted any-
where into other scripts and functions in order to have the
corresponding input argument command expression eval-
uated by mGrid.

Using mGrid
From the user's perspective, the toolbox is simple to
install (just download) and use. It runs on Windows, Mac-
intosh and Linux systems. Clients wanting to utilize
mGrid on a computer with a current copy of Matlab, must
perform the following steps:

1. Download 'mGrid client toolbox.

2. Start using mGrid.
Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
The toolbox comes with a text file, masterservers, listing the
IP addresses of the two mGrid servers (the main machine
and its backup, see Implementation section) available to
that user. This text file can be generated by the system

manager and made available to the users as a separate
download or the user can edit its contents to include the
correct IP addresses for the target mGrid server installa-
tion.

Code exampleFigure 2
Code example. A client constructs proper parameters to the geval procedure and executes it. Upon receiving the results cli-
ent unpacks resulting variables into the local workspace.
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
Client toolbox functions
There are only three functions that need to be learned to
use mGrid, though the client toolbox consists of approxi-
mately twenty:

geval – global eval procedure, evaluates command(s) on
remote machine(s) participating in mGrid (line 10, Figure
2).

worksp – Matlab script, packs workspace variables into
one structured variable wksp (line 5, Figure 2).

uworksp – Matlab script, places fields of the structured
variable result_ into workspace (line 12, Figure 2).

Figure 2 shows an example of using mGrid. It illustrates
the ease of using function geval to specify a list of com-
mands to be executed in parallel (in this case 2 com-
mands). If the first parameter is a cell array of commands,
geval will execute them in parallel. Second parameter is a
structures variable which allows the user to pass user-
defined code, workspace variables and memory require-
ments to the grid. Memory requirement allows user to
specify if larger amounts of random access memory
(RAM) is needed, otherwise the CPU speed and its idle
cycles will be used for deciding on the best available
worker for a particular request. Second parameter can be
omitted or only parts of it may be specified depending on
user needs.

Because of the simple design of mGrid, the user is
required to read very little documentation in order to
begin writing parallel Matlab computations. Therefore,
the user manual is minimal.

Return variables
After the completion of a geval procedure one structured
variable, result_, is returned to the client with the new var-
iables or new values of original variables. The return value
should be assigned to the variable result_ if the use of the
script uworksp to automatically unpack the values to the
client's local workspace, is desired.

Server side of mGrid
The configuration of an mGrid facility requires the config-
uration of master server and worker machines. Both are
fairly simple to follow. The worker configuration in partic-
ular is designed to be accessible to the average Matlab user
wanting to contribute a machine to a local mGrid infra-
structure. This requires minimal system administration
expertise. At this time, automated server side installers are
only provided for Linux machines. Client side is platform
independent. A worker can be a client of mGrid at the
same time.

Adding a worker to the mGrid
To ensure that mGrid can dynamically accommodate new
participants across different platforms, the worker side
toolbox includes a function to mediate volunteering their
CPU-cycles: any computer with a copy of Matlab and a
web server can be made a worker without interruption or
reconfiguration of ongoing processes. The automatic con-
figuration of a new worker consists of three easy steps:

1. Download the 'mGrid Worker Toolbox'.

2. Execute the workerconfig script. Upon completion the
Matlab function todoprocessor will be running as a back-
ground process.

3. Execute the volunteer command from Matlab, upon
completion check for either an error or success message
displayed. Once a success message is displayed, the
worker system is ready to accept remote jobs.

A script for automatic Apache web server configuration is
available for Linux computers. The script is geared
towards the default installation and configuration of
Apache. If some user modifications are present, the script
may not be able to perform all of its tasks. The user then
will have to make sure that Apache is running and is able
to access users' public_html directories manually.

A todopr is a startup script that is added to the list of jobs
started upon boot up of the computer to automate the
process of restarting todoprocessor in case of a shutdown or
reboot of the machine. todoprocessor can also be stopped,
started and restarted manually by executing the todopr
shell script manually with proper arguments.

Worker toolbox functions
There are two important functions in the worker toolbox:

volunteer – requests that the current computer be added
to the workers pool on the master servers. This function
should be executed after the installation of the toolbox.

todoprocessor – executes commands that arrive from
remote machines. See display of the help file bellow.

Function todoprocessor is a service started automatically at
computer boot time. It locates newly arrived requests,
starts the execution of the requests, updates the status of
the request to 'running', and finally when request is com-
pleted it makes results available to the client.

Adding a master server to the mGrid
As for the worker side toolbox, the automatic installation
scripts provided for the master side toolbox were written
specifically for computers running the Linux operating
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139

Page 8 of 12
(page number not for citation purposes)

Communication between processes on the master serverFigure 3
Communication between processes on the master server. Communication between processes on a master server
(configured strictly as a master server, not also as a worker). At the top, the down pointing arrow indicates a client request for
the IP of an available worker computer (geval). The Apache web server (large oval) accepts the request via a PHP script, which
gets the IP address of the currently best available worker from the worker workload information file (rectangle) and returns it
to the client. The worker workload file is updated periodically by a crontab job which polls the necessary information form the
workers. Each new worker (outside the Master rectangle on the right) willing to participate in mGrid, executes a volunteer
command, which calls a PHP script on the master node (going through Apache) to update the workers workload file. Note that
if a given worker is already registered with this master, the request will simply be ignored. If a worker is new, then before add-
ing it to the list the master will request the workload information from the potential worker and only upon successful receipt
of the workload information, which verifies that the worker responds to the HTTP requests, will this volunteering computer
be added to the pool of workers.

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
system and the Apache web server. Equivalent versions for
other combinations of other operating system / web server
should be straight forward. The automatic configuration
consists of three easy steps:

1. Download the 'mGrid Master Server Toolbox'.

2. Execute the masterconfig script. Upon completion the
Matlab function todoprocessor will be running as a back-
ground process. At this time the master is ready to issue IP
addresses for the best available workers.

3. Execute the volunteer command from Matlab, upon
completion check for the display of either an error or suc-
cess message. When a success message is displayed, the
worker component of the system is ready to accept remote
jobs.

The masterconfig script is built on top of the workerconfig
and has additional functionality necessary for the master
server configuration. Thus any master server has the full
functionality of the worker and is added to the pool of
worker machines by the volunteer command. If a master
is not intended to participate also as a worker, then step 3
should be omitted. A master can also be removed from
the pool of workers at any time by manually removing its
IP address from the workers file and stopping the todoproc-
essor by executing the todopr script with the option stop ('./
todopr stop').

Figure 3 shows communication between processes on a
master server and communication of the master server
with the other machines. Apache web server accepts the
requests from the clients executing geval, a PHP script on
the master looks up the workers information in the work-
ers' workload files and provides the IP address of the best
available worker machine to the client, which sends its
request directly to that worker. Best available worker is
determined as a combination of the available CPU cycles,
CPU speed and available memory. Computers willing to
be a part of the mGrid execute volunteer command, which
goes through the Apache to the PHP script which adds the
volunteering computer to the list of the available workers
if that computer is able to respond to the request for the
workload information.

Discussion
This paper presents an easy-to-use, configurable, distrib-
uted system that allows for parallel Matlab user code dis-
tribution. The main objective was to allow users to execute
exclusive Matlab code, possibly in parallel, on a remote,
perhaps more powerful, machines with minimal learning
curve. To use mGrid, the user, familiar with the simple
Matlab programming language, only needs to learn a sin-
gle new command, the global eval procedure (geval),

described in this paper. The implementation, which is
based on two redundant master servers that hand down
the jobs submitted to a fluid set of worker machines (Fig-
ure 1), further contributes to the user not having to be at
all aware about the resources recruited to support distrib-
uted execution. Furthermore, committing new workers to
mGrid is, like the code distribution itself, entirely web-
based and automated through the execution of a single
automatic command.

Although the initial specific motivation for the develop-
ment of mGrid was to assist in experimenting with paral-
lelizing data collocation schemes for numerical
decoupling of systems of differential equations describing
metabolic networks the use of code distribution was
found to have a more general applicability. Consequently,
mGrid was developed, as described here, with a wider
range of scientific and engineering applications, within
and beyond Bioinformatics. Although the implementa-
tion described is specific to the Matlab programming envi-
ronment, it is simple enough to be readily portable to its
open-source publicly licensed clones such as Octave and
FreeMat [32,33] and to Matlab-like environments such as
Euler, Tela or SciLab. [34-36]. The remaining software
components of mGrid, Apache and PHP, are themselves
mainstream open-source public license applications. The
future development of mGrid is hereby opened to the
community by releasing it under GNU General Public
License (see Availability) and will likely include a version
for Octave and FreeMat and a graphical user interface
(GUI) with time information and various statistics on cur-
rent remote executions to assist in identifying optimal
load balancing schemes. Some modifications to the
installation scripts are also immediately anticipated to tai-
lor the installation to the particular design of the operat-
ing system – for example implementing todoprocessor as a
SysV Init script (under Linux).

It is immediately apparent that the proposed implementa-
tion requires fast communication among participanting
machines. Therefore, mGrid is not suitable for speeding
up processes that would run in a few seconds on a single
machine. A more suitable scenario is the one where the
execution of an algorithm takes a long time to complete,
thus justifying the migration of the libraries to different
computers. Figure 4 displays the execution time for the
identification of the density distribution using Parzen ker-
nels for different sizes of the resulting matrix. mGrid was
used to distribute this computation among two and later
among three computers. The results were compared with
a sample run where no distribution was used at all. Parzen
kernels superimpose Gaussian "hat" distributions to
determine the density distribution for a scatter plot. This
is a very convenient alternative to discretizing the scale
and representing the histogram of frequencies. The com-
Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
putation of this kernel consists of centering a Gaussian
"hat" on each available point in the scatter plot. Each indi-
vidual "hat" has unitary volume so the superimposed dis-
tribution can simply be divided by the number of points
to get a unitary density distribution. The illustration
described here applies the Parzen kernel to a replicate
series of microarrays with the purpose of identifying a ref-
erence conditional cumulative distribution to access the
statistical significance of observed differential expression.
The rationale for this empirical solution to statistical
modeling was recently illustrated by one of the authors for
a proteomics dataset [39]. The superimposition of Gaus-
sian hats is an additive procedure that can be independ-
ently computed in parallel. As can be seen from figure 4,
even computations that take several minutes to complete,
can benefit greatly from using mGrid. In this case, the
speedup in execution time of the parallel algorithm on

three computers is 2.8. This speedup is slightly less then
the theoretical maximum of three, due to the overhead of
user-code transfer time and remote request assembly time.
Computations that can be formulated as a composition of
independently computed parallel results, as exemplified
by the suprapositioning of Parzen kernels illustrated
above, often occurs in computational biology applica-
tions. The applications typically include multiple, inde-
pendent, time consuming operations such as querying
public databases, non-linear regression, and numerical
simulations.

Conclusion
Distribution of user-defined Matlab toolboxes and rapid
prototyping of many coarse-grained parallel applications
can now be done with a single easy-to-use Matlab com-
mand. The implementation is made available as a suite of

Execution time comparison of Parzen kernels superpositioning algorithm on one, two and three computersFigure 4
Execution time comparison of Parzen kernels superpositioning algorithm on one, two and three computers.
The Parzen kernel is applied to a replicate series of microarrays to identify a reference conditional cumulative distribution to
access statistical significance of observed differential expression. The number of possible comparisons in a replicate series with
N genes and M arrays is NM-1, thus the computation can be quite time-consuming. The number of kernel evaluations is also
dependent on the dimension of the resulting matrix, K, of the conditional distribution. The number of kernel evaluations would
therefore be (K2.N) M-1. The speedup gained by using mGrid and separating the task into three independent subtasks for
larger matrices (150 × 150 or 200 × 200) is 2.8. This is considered excellent as the maximum theoretical execution time spee-
dup possible is 3. As the problem size increases, the data transfer time becomes relatively insignificant.
Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
three Matlab toolboxes, collectively described as mGrid,
with client, master and worker implementations. Multiple
roles can be assigned to the same machine. Because mGrid
utilizes only Matlab, light-weight PHP scripts and Apache
web server the installation and configuration are very sim-
ple. Moreover, the web-based infrastructure of mGrid
allows for it to be easily extensible over the Internet.

The implementation of mGrid is being made freely avail-
able under a GNU General Public License [40], where
contributions for further development are invited, partic-
ularly in regards to developing a version that relies entirely
on public license components. A particular note regarding
copyright issues is warranted for implementations relying
on Mathworks Inc. Matlab environment [31]. The proto-
type described here relies on a set of machines served by
the same concurrent license manager. For more distrib-
uted implementations attention should be paid to the
details of the particular license agreement associated with
the purchase. In that regard porting the implementation
to Octave, FreeMat or porting the code distribution envi-
ronment to support other advanced programming lan-
guages such as Python may be an alternative worth
exploring. Considering the fact that all the communica-
tion is done via PHP scripts, modifications to accommo-
date more languages will be minimal.

Availability and requirements
The client, worker and master mGrid toolboxes are made
freely available with open source at http://source
forge.net/projects/mgrid.

The code distribution toolbox was developed and tested
for Matlab version 8, release 14, PHP 4 and Apache HTTP
(Web) Server version 2.0.40. The client side toolbox dis-
tributed is Operating system independent and uses only
native functions of Matlab, itself available for Linux, Sola-
ris, Windows and MacOS [31]. The worker and master
server toolboxes were developed for Linux OS. Accord-
ingly, the automatic configuration scripts for those two
toolboxes are only guaranteed to work for that choice of
OS and web server. However, both Apache and PHP are
widely available in equally open source and freely distrib-
uted implementations for other operating systems. Simi-
larly, porting the automatic configuration scripts for other
web-servers should be straight forward.

Authors' contributions
YVK performed software development (design, coding,
testing, debugging) and elaboration of manuscript. JSA
developed the original concept and drafted the imple-
mentation layout.

Acknowledgements
This work was partially supported by the NHLBI Proteomics Initiative
through contract N01-HV-28181 (http://proteomics.musc.edu) and by the

training grant 1-T15-LM07438-01 "training of toolmakers for Biomedical
Informatics" of the National Library of Medicine of the National Institutes
of Health, USA (NLM/NIH, http://www.nlm.nih.gov/ep/T15Training.html).
The authors thank Anthony Leclerc, Ph.D. for revising the paper and pro-
viding technical advice and Chuming Chen for assisting in configuration of
computers.

References
1. Foster I KC: The Grid: Blueprint for a new Computing Infra-

structure. Morgan Kaufmann Publishers; 1999.
2. ALiCE Grid Computing Project [http://www.comp.nus.edu.sg/

~teoym/alice.htm]
3. mGrid project homepage [https://sourceforge.net/projects/

mgrid]
4. Berman F FGHA: Grid Computing: Making the Global Infra-

structure a Reality. Wiley; 2003.
5. Folding@Home [http://folding.stanford.edu]
6. NetSolve [http://icl.cs.utk.edu/netsolve/index.html]
7. Globus Toolkit [http://www.globus.org/toolkit]
8. North Carolina BioGrid [http://www.ncbiogrid.org]
9. caBIG [https://cabig.nci.nih.gov]
10. Kakazu KK, Cheung LW, Lynne W: The Cancer Biomedical

Informatics Grid (caBIG): pioneering an expansive network
of information and tools for collaborative cancer research.
Hawaii Medical Journal 2004, 63(9):273-275.

11. Stevens RD, Robinson AJ, Goble CA: myGrid: personalised bioin-
formatics on the information grid. Bioinformatics 2003,
19(90001):302i-304.

12. Stevens RD, Tipney HJ, Wroe CJ, Oinn TM, Senger M, Lord PW,
Goble CA, Brass A, Tassabehji M: Exploring Williams-Beuren
syndrome using myGrid. Bioinformatics 2004,
20(suppl_1):i303-310.

13. Gilat A: Matlab: an Introduction with Applications. Wiley;
2003.

14. MatlabMPI [http://www.ll.mit.edu/MatlabMPI]
15. Distributed Computing Toolbox [http://www.mathworks.com/

products/distribtb]
16. Parallel Matlab Survey [http://supertech.lcs.mit.edu/~cly/sur

vey.html]
17. MultiMATLAB [http://www.cs.cornell.edu/Info/People/lnt/multi

matlab.html]
18. MATLAB*G: A Grid-Based Parallel Matlab [http://ntu-

cg.ntu.edu.sg/Grid_competition/report/grid-9.pdf]
19. Menon V TA: MultiMatlab: integrating MATLAB with high-

performance parallel computing. 1997.
20. Message Passing Interface [http://www.mpi-forum.org]
21. Parallel Virtual Machine [http://www.csm.ornl.gov/pvm/

pvm_home.html]
22. Jini Network Technology [http://www.sun.com/software/jini]
23. Akl S: Parallel Computation: Models and Methods. Prentice

Hall; 1997.
24. Tanenbaum A, Steen M: Distributed Systems: Principles and

Paradigms. Prentice Hall; 2002.
25. PHP [http://www.php.net/]
26. Savageau MA, Voit EO: Recasting Nonlinear Differential-Equa-

tions As S-Systems - A Canonical Nonlinear Form. Math Bio-
science 1987, 87:83-115.

27. Sorribas A, Savageau MA: Strategies for representing metabolic
pathways within biochemical systems theory: reversible
pathways. Math Bioscience 1989, 94(2):239-269.

28. Almeida JS, Voit EO: Neural-Network-Based Parameter Esti-
mation in S-System Models of Biological Networks. 2003,
14:114-123.

29. Voit EO, J.S. A: Decoupling Dynamical Systems for Pathway
Identification from Metabolic Profiles. Bioinformatics 2004,
20(11):1670-1681.

30. Weston AD, Hood L: Systems biology, proteomics, and the
future of health care: toward predictive, preventative, and
personalized medicine. Journal Proteome Research 2004,
3(2):179-196.

31. Mathworks Inc. [http://www.mathworks.com]
32. FreeMat [http://freemat.sourceforge.net]
33. Octave [http://www.octave.org]
Page 11 of 12
(page number not for citation purposes)

http://sourceforge.net/projects/mgrid
http://sourceforge.net/projects/mgrid
http://proteomics.musc.edu
http://www.nlm.nih.gov/ep/T15Training.html
http://www.comp.nus.edu.sg/~teoym/alice.htm
http://www.comp.nus.edu.sg/~teoym/alice.htm
https://sourceforge.net/projects/mgrid
https://sourceforge.net/projects/mgrid
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14515574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14515574
http://folding.stanford.edu
http://icl.cs.utk.edu/netsolve/index.html
http://www.globus.org/toolkit
http://www.ncbiogrid.org
https://cabig.nci.nih.gov
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15540527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15540527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262813
http://www.ll.mit.edu/MatlabMPI
http://www.mathworks.com/products/distribtb
http://www.mathworks.com/products/distribtb
http://supertech.lcs.mit.edu/~cly/survey.html
http://supertech.lcs.mit.edu/~cly/survey.html
http://www.cs.cornell.edu/Info/People/lnt/multimatlab.html
http://www.cs.cornell.edu/Info/People/lnt/multimatlab.html
http://ntu-cg.ntu.edu.sg/Grid_competition/report/grid-9.pdf
http://ntu-cg.ntu.edu.sg/Grid_competition/report/grid-9.pdf
http://www.mpi-forum.org
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.sun.com/software/jini
http://www.php.net/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988125
http://www.mathworks.com
http://freemat.sourceforge.net
http://www.octave.org

BMC Bioinformatics 2006, 7:139 http://www.biomedcentral.com/1471-2105/7/139
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

34. Euler Software [http://mathsrv.ku-eichstaett.de/MGF/homes/
grothmann/euler/]

35. Scilab [http://www.scilab.org]
36. Tela, the Tensor Language [http://www.ava.fmi.fi/prog/tela.html]
37. Girvan R: The battle for hearts and minds . Scientific Computing

World 2002.
38. Apache HTTP Server Project [http://httpd.apache.org/]
39. Almeida JS, Stanislaus R, Krug E, Arthur JM: Normalization and

analysis of residual variation in two-dimensional gel electro-
phoresis for quantitative differential proteomics. Proteomics
2005, 5(5):1242-1249.

40. GNU General Public License [http://www.fsf.org/licensing/
licenses/gpl.html]
Page 12 of 12
(page number not for citation purposes)

http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/euler/
http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/euler/
http://www.scilab.org
http://www.ava.fmi.fi/prog/tela.html
http://httpd.apache.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15732138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15732138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15732138
http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/gpl.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	The 'm' in mGrid
	Connectivity
	mGrid architecture

	Results
	User-defined code distribution
	Client side of mGrid
	Using mGrid
	Client toolbox functions
	Return variables

	Server side of mGrid
	Adding a worker to the mGrid
	Worker toolbox functions
	Adding a master server to the mGrid

	Discussion
	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

