@,

BiolVled Central

Methodology article

Empirical validation of the S-Score algorithm in the analysis of gene
expression data
Richard E Kennedy*!, Kellie ] Archer!# and Michael F Miles2:3:4

BIVIC Bioinformatics

Address: 'Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA, 2Department of Pharmacology and
Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA, 3Department of Neurology, Virginia Commonwealth University,
Richmond, VA 23298, USA and “Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23298, USA

Email: Richard E Kennedy* - rkennedy@vcu.edu; Kellie J Archer - kjarcher@vcu.edu; Michael F Miles - mfmiles@vcu.edu
* Corresponding author

Published: 17 March 2006
BMC Bioinformatics 2006, 7:154  doi:10.1186/1471-2105-7-154

Received: 26 October 2005
Accepted: 17 March 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/154

© 2006 Kennedy et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Current methods of analyzing Affymetrix GeneChip® microarray data require the
estimation of probe set expression summaries, followed by application of statistical tests to
determine which genes are differentially expressed. The S-Score algorithm described by Zhang and
colleagues is an alternative method that allows tests of hypotheses directly from probe level data.
It is based on an error model in which the detected signal is proportional to the probe pair signal
for highly expressed genes, but approaches a background level (rather than 0) for genes with low
levels of expression. This model is used to calculate relative change in probe pair intensities that
converts probe signals into multiple measurements with equalized errors, which are summed over
a probe set to form the S-Score. Assuming no expression differences between chips, the S-Score
follows a standard normal distribution, allowing direct tests of hypotheses to be made. Using spike-
in and dilution datasets, we validated the S-Score method against comparisons of gene expression
utilizing the more recently developed methods RMA, dChip, and MASS.

Results: The S-score showed excellent sensitivity and specificity in detecting low-level gene
expression changes. Rank ordering of S-Score values more accurately reflected known fold-change
values compared to other algorithms.

Conclusion: The S-score method, utilizing probe level data directly, offers significant advantages
over comparisons using only probe set expression summaries.

Background corresponds exactly to the transcript of interest. The corre-

Affymetrix GeneChip® microarrays are the most widely
used and best standardized platforms for large-scale anal-
ysis of gene expression data [1,2]. Current chips are capa-
ble of measuring essentially whole genome expression
values (>3 x 10% genes) simultaneously. The Affymetrix
technology uses a set of probe pairs, typically 11 to 20 in
number, to represent a gene [3,4]. Each probe in the probe
pair is 25 bases in length. The perfect match (PM) probe

sponding mismatch (MM) probe in the probe pair differs
only in the middle (13t%) base and is intended to measure
nonspecific binding [3,4]. Prior to class comparisons, typ-
ically the signal intensities for the probe pairs in a probe
set are condensed into an expression summary value, a
measure representing the abundance of the corresponding
gene transcript [1-3,5]. Statistical tests are then applied to
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these probe set expression summaries to identify which
genes should be declared as differentially expressed [6].

Such an approach reflects the two central goals of statis-
tics, estimation and inference. Although usually consid-
ered in tandem in microarray data analysis, the two steps
are potentially separable [6]. The purpose of most micro-
array experiments is to draw inferences regarding changes
in expression for a large number of genes, and estimating
the level of gene expression per se is rarely of interest. The
intermediate step of estimating expression summaries
may introduce a source of variability to the analytical
process, which in turn may affect error estimates used in
hypothesis testing. A direct test of hypotheses using probe
level data may potentially improve the accuracy of identi-
fying differentially expressed genes. Alternatively, an
increase in accuracy naturally leads to tests that offer the
same statistical power using smaller sample sizes. Most
algorithms have focused on improving expression sum-
mary methods, and emphasized the need for adequate
numbers of replicates to ensure the accuracy of results
[1,7]. This paper reports the results of our validation of the
S-score algorithm, a method that offers unique advantages
in the analysis of gene expression by using probe level
data directly.

The S-score algorithm and software was originally
designed in response to the limitations of MAS 4.0 com-
parison call algorithm [7,8]. It was specifically developed
for comparing two hybridized GeneChips® when it is of
interest to identify a list of differentially expressed genes.
It was developed assuming a simple error model for the
expression of probe pair signals, in which the detected sig-
nal is assumed proportional to the probe pair signal for
highly expressed genes, while approaching a background
noise level (rather than 0) for genes with low levels of
expression [8]. A similar model, with both additive and
multiplicative components, has been empirically vali-
dated for cDNA microarrays [9]. For two GeneChips A and
B, the error estimate for the ith probe pair is given by

ei:Jf(li+lé)+bi+b§ (1)

where b, and by are the background noise estimates asso-
ciated with GeneChips A and B, respectively; [;, and ;5 are
the PM;,-MM,, and PM,;-MM;;; probe pair differences for
GeneChips A and B; and y is a predefined value assumed
to be constant for all GeneChips which represents the pro-
portionality of error attributed to highly expressed genes.
Therefore, y may be thought of as the additional propor-
tion of error attributed to ;4 and I;z, which results in a
larger quantity for highly abundant genes when [;, and ;5
are much greater than b, and by,
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The ¢; in equation (1) does not represent a rigorous statis-
tical error estimate, but an intuitive proxy for this quantity
[9]. The variance of I;; - 1,5, the difference in signal inten-
sities between GeneChips A and B, would be

Var(liy —lig) = Var(lyy ) + Var(lyy) + b3 + b3 (2)

assuming that the standard deviation of the background
for GeneChips A and B is b, and by as defined in equations
(4) and (5) below. However, the variance of I;, and ;5 can-
not be directly estimated as there is only one observation
for the probe on each chip. The equation in (1) utilizes

2 = ((PMip —1\’111\’11'A)—0)2 (3)

as a proxy variance estimate for [;, (and similarly for I;3),
weighted by the factor y.

The values of b,, by, y are given by

BG
1 {4 stdev,
by =SDT, =4* RawQy =4*—— ——= [|*SF, 4
A A Q BGA[}F1 pixelk] A (4)
BG
1 b stdevy,
bg =SDTp =4* =RawQp =4*—— *SH 5
B B Qp BGB(,“ pixelkJ B (5)
y=0.1 (6)

where SDT, and SDTj are the Statistical (or Standard) Dif-
ference Threshold (SDT) values of GeneChip A and B,
respectively. RawQ is an estimate of the background
noise, where BG is the number of probes used in the back-
ground estimate; stdev, and pixel, are the standard devia-
tion and number of pixels for the kth probe; and the Scale
Factor (SF) is used to scale each of the intensities on the
chip to a specified target background value [10]. The val-
ues of RawQ and SF are available from the Affymetrix
GeneChip Operating Software (GCOS). The value of y was
chosen as indicated in equation (6) so that the scale of the
S-scores does not depend on the expression levels of a
gene. This is consistent with previous work showing that
the additive component of the error model (1) varies from
array to array (and so is derived from the background fluc-
tuation level for each array), while the fractional multipli-
cative error is fairly constant [9].

These probe pair level error estimates are then used in the
calculation of a new measure of relative change in gene
expression, called the significance score or S-score. A rela-
tive change in probe pair intensities is calculated that con-
verts the probe pair signal differences into multiple
measurements with equalized errors. These relative
changes are then summed to form the S-score, which is a
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single measure of the significance of change for the gene
in question. For probe set j, the S-score is calculated as

N

i Ln—1:
S'=2 iB — YHA (7)
b5 e N

where I, l;5, and ¢;are as in equation (1); N;is the number
of probe pairs within the probe set; and a is a normaliza-
tion factor that corrects for the effect of correlation among
probe pair signals. The value of a was chosen for an indi-
vidual chip so that the variance of S-score values on an
array is 1 when outliers are excluded. Under these condi-
tions, for non-differentially expressed genes, the S-score
follows a standard normal distribution [8,9]. Thus, p-val-
ues are readily calculated and used to determine the signif-
icance of change in gene expression. The S-score method
thereby eliminates the need for estimation of probe set
expression summaries, simplifying the analytical process.
S-scores, by virtue of their direct comparison of individual
probe-pair data, provide comparison of the expression
change between two chips. This allows at least inferential
statistics on experiments with limited numbers of micro-
arrays [8].

The S-score has been used in selecting differentially
expressed genes in peer-reviewed, published studies [11-
13], but has not yet achieved widespread use despite its
attractive features. This may be due to concerns that the
initial validation studies of the S-score algorithm utilized
data sets for which the identification of genes that were
differentially expressed were not known, and therefore
may be considered inadequate by today's standards.
Therefore, we performed an additional empirical valida-
tion study of the S-score algorithm against comparisons
utilizing more recently developed methods - RMA, MAS5
and dChip - using data sets in which each probe set was
known to be either differentially or non-differentially
expressed. Such an analysis would also determine whether
hypothesis testing using probe level data directly offers
advantages over testing using expression summaries.

Results

For the quality control measures, quantile-quantile plots
for the Dilution dataset showed that the assumption of a
single distribution is reasonable (Additional File 4). The
Latin Square dataset showed problems with linearity,
which was especially notable for chips 92562, 92563, and
92564 where the R2values were less than 0.15 (Additional
File 5). Analyses were repeated after excluding these three
chips (Additional File 6, Tables 13 through 20). The
impact of this departure on the analysis is discussed
below.

http://www.biomedcentral.com/1471-2105/7/154

Dilution dataset

Typical plots of S-score values against other algorithms for
representative concentration levels are shown in Figures 1-
3. (A full set of plots for all but the highest concentration
is provided in Additional Files 1-3. The 150 pM condition
was omitted for reasons of space.) The S-score values
clearly separated the spike-in clones from other probe sets
at concentrations of 3 pM and greater, with some loss of
accuracy at lower concentrations. RMA expression sum-
mary values also separated the spike-in clones from the
remaining probe sets, although this did not occur com-
pletely until concentrations of 12.5 pM and greater. The
MBEI values produced by dChip did not provide total sep-
aration at any concentration, although definite improve-
ment was noted with concentrations of 5 pM and greater.
Similarly, MAS5 p-values did not provide total separation
at any concentration.

Latin square dataset

For each GeneChip analyzed from the Latin Square data-
set, observed ranks of the spike-in clone probe sets for
each algorithm were examined in comparison to their true
underlying rank using chip 92561 as the reference (Table
1). Similar results were obtained when other chips were
used as the reference (Additional File 6, Tables 3 through
12). Ideally, the observed rank should equal the true
underlying rank. Therefore, the proportion of spike-in
clones with ranks less than or equal to 11 should be 1.0.
Further, it should be noted that as the observed rank for
the spike-in clones falls, it becomes more likely that the
associated probe set will fail to be identified as differen-
tially expressed, and hence will be missed as an important
gene (probe set) for further study (i.e. sensitivity
decreases). The MAS5 algorithm had the highest propor-
tion of clones in the top 11 (Table 2), though it had diffi-
culty in separating the clones from each other despite clear
differences in fold-change (Table 1). Compared to RMA
and dChip, the observed ranks for the S-score are gener-
ally much closer to the true underlying ranks, and the pro-
portion of clones in the top 11 is higher (Table 2). These
differences were statistically significant between the S-
score and RMA (y2(1) = 17.88, p < 0.001) and between
the S-score and dChip (¥2(1) = 21.33, p < 0.001). The dif-
ferences between the S-score and MAS5 were not statisti-
cally significant (yx2(1) = 0.40, p > 0.52). Analyses
conducted using other chips as the baseline exhibited sim-
ilar trends, although the results were not always statisti-
cally significant. Analyses conducted after excluding
arrays 92562, 92563, and 92564 showed the performance
of the S-Score, RMA, and MAS5 to be comparable (x2(1)
> 0.51 for all comparisons of the S-Score versus RMA and
x2(1) > 0.26 for all comparisons of the S-Score versus
MAS?S).
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Comparison of S-Score and RMA. Plot of absolute value of S-Score vs absolute value of difference in RMA expression
summaries, comparing the specified concentration to the baseline chip. X- and Y-axis projections are added to show separa-

tion of spike-in probes more clearly.

Discussion

This study validates the S-score using standardized data-
sets that were unavailable at the time the algorithm was
developed. In their original paper, Zhang and colleagues
provided initial validation of the S-score using three dif-
ferent methods [8]. First, the S-score values were clearly
reproducible when comparing dissimilar brain regions,
where many gene expression differences would be
expected (R = 0.75). This was not the case when compar-
ing similar brain regions, where few expression differ-
ences would be expected (R = 0.17). Second, the S-score
values were found to be more consistent than MAS4 in
labeling expression differences between dissimilar brain
regions, without loss of sensitivity. Third, clusters gener-
ated using the S-score were much tighter than those gen-
erated using the logarithm of the fold-change ratio, In(Fc),
with an average R of 0.80 and 0.52 respectively. Later work
yielded results similar to the initial validation, finding the
S-score values highly reproducible between dissimilar
brain regions (R = 0.65) but not between similar brain
regions (R = 0.00002) [7]. Finally, a reanalysis of a previ-

ous study using the S-score generally confirmed the prior
results, but also revealed a number of genes with signifi-
cant, reproducible changes that were not identified in the
original analysis [14].

However, since all of these validation studies involved
experimental samples, the true gene expression changes
were unknown. By using datasets in which individual
probes are spiked in at known concentrations, the accu-
racy of the algorithm can be externally validated by inde-
pendent means. Using two widely available spike-in
datasets, the S-score compares very favorably to the more
recently developed algorithms available in RMA, dChip,
and MASS in detecting differential gene expression.

The Dilution dataset assesses the sensitivity and specificity
of each algorithm at various concentrations, and allows a
determination of the limits of detection. The S-score
exhibited an excellent combination of sensitivity and spe-
cificity in the detection of differentially expressed genes,
clearly separating the spike-in clones from the other probe
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sets except at the lowest concentrations. The S-score and
RMA outperformed both dChip and MAS5, with the S-
score capable of separating the spike-ins from other probe
sets at slightly lower concentration than RMA.

The Latin Square dataset assesses the performance of each
algorithm under more realistic conditions, where expres-
sion differences vary by gene. In such situations, investiga-
tors will often be interested in those genes showing the
most significant changes between experimental and con-
trol conditions. This is typically accomplished by ranking
genes by increasing order of significance, and selecting the
top M ranked genes for further study. Thus, it is critical for
an algorithm to assign observed ranks that are similar to
expected ranks that would be obtained using the known
fold-change in gene expression; otherwise, genes that play
a critical role in the difference between the experimental
and control condition might be overlooked. The arrange-
ment of spike-in concentrations in the Latin Square data-
set allows expected ranks to be calculated based on the
true fold-change and compared to the observed ranks gen-
erated by the different algorithms. Again, the S-score com-

pared favorably to the other three algorithms. MAS5 did
perform slightly better, with a higher proportion of spike-
in genes ranked in the top 11, though the difference was
not statistically significant. It is also concerning that the
MAS5 p-values were unable to differentiate among the
spike-in genes despite clear differences in fold-change.
This is particularly critical if resources permit follow-up of
only a limited subset of genes; in such situations, the
MASS5 p-values would provide little help in choosing from
the list of genes to explore. The S-score had significantly
better performance than RMA or dChip, with a greater
proportion of spike-in genes ranked in the top 11 than the
proportion obtained using either of the other two pro-
grams. After excluding three arrays of potentially poor
quality, RMA was able to equal the performance of the S-
Score on most chips and slightly outperform the S-Score
on a small number of chips, although the difference was
not significant. MAS5 continued to detect a larger number
of spike-in probes, though again the difference was not
significant.
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tion to the baseline chip. MAS5 p-values were transformed so that significantly up- and down-regulated genes will have p-values
approaching 0. X- and Y-axis projections are added to show separation of spike-in probes more clearly.

Some limitations of this investigation must be noted. The
analytical methods, particularly for RMA and dChip, were
unusual in that replicate experiments were not used. Cur-
rently, the S-score method and its software implementa-
tion allow only the comparison of two chips at a time.
Thus, the datasets were limited to one chip for each exper-
iment so that the conditions would be similar for all four
algorithms. Clearly, replication is necessary to assess bio-
logical variation. When multiple chips per condition are
available, the utility of the other algorithms - RMA,
dChip, and MAS5 - in detecting differentially expressed
genes has been well documented. However, this study
provides evidence that additional refinement might be
achieved using methods similar to the S-score, which per-
form tests of hypotheses based on probe level data rather
than expression summaries. Further work is clearly
needed in extending the S-score method to allow compar-
ison of multiple chips simultaneously, as the biological
significance of the gene expression changes can only be
addressed using replicate experiments [8]. A limitation of
using the S-Score for a two-chip comparison is that it is

possible that a large observed S-score might be indicative
of a defect in the chip (or other unexplained factors)
rather than a biologically significant change [8]. Such an
occurrence would not be a problem for the current study,
where the biological truth is known, but would be of con-
cern in studies involving only experimental data sets. Nev-
ertheless, the results of this study provide excellent
justification for further development of the S-score
method. Such extensions of the S-Score are currently
being developed, using a mixed-effects approach to model
the probe level data for multiple GeneChips.

Another limitation of this study relates to the datasets
examined. Many standard quality control measures for
microarray data could not be applied to these datasets.
Thus, while the data used in this study are generally
believed to be of good quality, this is difficult to verify.
This may be a particular issue for the Latin Square dataset,
where several probes had markedly different values
between expected and observed ranks. Examination of
GeneChip level plots of concentration of spike-in by
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Table I: Observed and expected ranks. Observed and expected ranks from the Latin Square dataset for each of the four comparative
methods, with linear correlation (R2) of MASS intensity vs concentration as quality control data.

Chip 92562 (R2= 0.042) 92563 (R2=0.123)
Probe Set Rank Observed Rank Rank Observed Rank
S-Score RMA dChip MASS5 S-Score RMA dChip MAS5
BioB-5 4 5042 7182 88 491 7 11826 9395 125 539
BioB-M 8 20 5898 93 516 8 9 11023 136 6l
BioB-3 7 1966 3490 74 516 9 7 11810 145 3
BioC-5 9 391 1336 53 110 | 3 2 2 |
BioC-3 | 5 5 1 | 2 4 3 4 |
BioDn-3 6 | 3 5 | 9 5 12560 179 |
DapX-5 9 9652 1526 57 450 4 2 4 3 |
DapX-M 6 3 | | | 9 64 9497 132 96
DapX-3 5 2 2 2 | 6 6 12443 155 |
CreX-5 2 7018 1795 66 372 3 | | | |
CreX-3 3 501 7575 95 516 5 1080 481 | 92 251
Chip 92564 (R2= 0.047) 92558 (R2=0.234)
Probe Set Rank Observed Rank Rank Observed Rank
S-Score RMA dChip MAS5 S-Score RMA dChip MASS5
BioB-5 8 9628 4393 96 513 6 8 8 8 |
BioB-M 10 5 213 147 | 2 3 3 2 |
BioB-3 9 6 47 140 | | 2 2 3 |
BioC-5 4 2 12626 | | 9 5 5 6 |
BioC-3 5 4 2119 112 | 10 6 6 7 |
BioDn-3 3 8 359 138 | | | 4 4 |
DapX-5 2 | 12625 2 | 5 12 13 30 |
DapX-M | 1656 7093 105 513 7 10 7 9 |
DapX-3 6 3 1233 122 | 3 7 9 13 |
CreX-5 | 7 320 145 | 8 4 | | |
CreX-3 7 22 11569 51 16 4 9 1 18 |
Chip 92559 (R2=0.302) 92560 (R2= 0.745)
Probe Set Rank Observed Rank Rank Observed Rank
S-Score RMA dChip MASS5 S-Score RMA dChip MAS5
BioB-5 6 10 8 9 | 2 5 4 4 |
BioB-M 3 | 3 3 | 7 9 189 74 |
BioB-3 4 2 4 4 | 3 | 2 2 |
BioC-5 8 5 6 7 | 6 4 5 5 |
BioC-3 9 7 7 8 | 9 6 6 6 |
BioDn-3 9 9 16 73 | 8 10 881 87 |
DapX-5 7 4 2 2 | 6 3 3 3 |
DapX-M 5 6 5 6 | 4 265 7339 115 130
DapX-3 | 1 12 17 | | 7 7 9 |
CreX-5 9 3 | | | 9 2 | | |
CreX-3 2 8 9 1 | 5 670 2511 95 126
Chip 92554 (R2 = 0.874) 92555 (R2=0.668)
Probe Set Rank Observed Rank Rank Observed Rank
S-Score RMA dChip MAS5 S-Score RMA dChip MASS5
Page 7 of 11

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:154

http://www.biomedcentral.com/1471-2105/7/154

Table I: Observed and expected ranks. Observed and expected ranks from the Latin Square dataset for each of the four comparative
methods, with linear correlation (R2) of MASS intensity vs concentration as quality control data. (Continued)

BioB-5 3 | | | | | 2 | | |
BioB-M 6 4 5 6 | 5 7 10 1 |
BioB-3 5 3 3 4 | 4 5 6 6 |
BioC-5 | 8 12 37 | 2 10 7 7 |
BioC-3 2 7 8 9 | 3 1 8 8 |
BioDn-3 7 6 14 27 | | | 3 2 |
DapX-5 4 10 6 13 | 3 9 9835 127 |
DapX-M 4 2 2 2 | 2 3 2 3 |
DapX-3 9 5 4 5 | 6 6 5 5 |
CreX-5 4 I 7 14 | 6 4 4 4 |
CreX-3 8 19 178 64 4 4 8 9089 122 |
Chip 92556 (R2=0.748) 92557 (R2= 0.756)
Probe Set Rank Observed Rank Rank Observed Rank
S-Score RMA dChip MASS S-Score RMA dChip MAS5
BioB-5 | 3 | | | | 2 2 2 |
BioB-M 3 2 3 2 | 4 4 3 | |
BioB-3 8 7 22 37 | 2 3 | 3 |
BioC-5 4 9 19 29 | 3 14 373 54 |
BioC-3 4 8 6 1 | 9 5 300 56 |
BioDn-3 4 | 4 4 | 5 | 4 4 |
DapX-5 8 6 8 9 | 10 9 9 10 |
DapX-M 2 4 2 3 | Il 10 87 78 |
DapX-3 5 14 1 23 | 6 7 7596 107 |
CreX-5 7 5 5 7 | 8 8 16 19 |
CreX-3 6 10 7 12 | 7 6 1151 72 |

expression revealed why problems in detecting differen-
tial expression among specific comparisons may be diffi-
cult. That is, for some probe sets, the absolute expression
change is likely too small to be detected, even though the
fold-change is great (e.g. a change from 0.5 pM to 1.5
pM). For other probe sets, the degree of true fold-change
is likely too small to be detected (e.g. a change of 1.3-fold
from 25 pM to 35.7 pM). However, there remain a small

number of probes where the known and calculated ranks
are markedly different without an obvious explanation.
These problems were encountered with all four algo-
rithms, and were most notable with chips showing a poor
degree of linearity when examining concentration of
spike-in and expression for the probe sets. It is unknown
if these differences in the ranks might be due to poor chip

Table 2: Number and proportion of spike-in clones detected using chip 92561 as baseline

Clones Detected

GeneChip Array S-Score RMA dChip MASS
92562 4 (0.36) 4 (0.36) 4 (0.36) 4 (0.36)
92563 8(0.72) 4 (0.36) 4 (0.36) 7 (0.64)
92564 8(0.72) 0 (0.00) 2 (0.18) 8(0.72)
92558 10 (0.90) 10 (0.90) 8(0.72) Il (1.00)
92559 11 (1.00) 9 (0.81) 9 (0.81) I'l (1.00)
92560 9 (0.81) 7 (0.63) 7 (0.63) 9 (0.81)
92554 10 (0.90) 8(0.72) 6 (0.54) I'l (1.00)
92555 11 (1.00) 9 (0.81) 9 (0.81) Il (1.00)
92556 10 (0.90) 9 (0.81) 7 (0.63) I'1(1.00)
92557 10 (0.90) 5 (0.45) 5 (0.45) I'l (1.00)

Comparison of S-Score vs. RMA, p < 0.001; vs. dChip, p < 0.001; vs. MAS5, p = 0.40
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quality, hybridization conditions under which these chips
were run, or scanning issues.

Conclusion

In summary, the S-score algorithm utilizes a novel
approach to detecting differential gene expression, basing
tests of hypotheses on probe level data rather than expres-
sion summaries. Results indicate that such a method per-
forms very favorably compared to other currently
available methods using a standardized dataset. Further
research is needed to confirm these results and fully
explore the gains that may be achieved using probe level
data directly; some of these goals may be realized by cur-
rent efforts to refine the S-score method. The analysis of
gene expression data is a complex and evolving field, and
the S-score algorithm offers distinct advantages that make
it an attractive option for analysis of oligonucleotide
microarray experiments.

Methods

Data

The data for this study were drawn from two datasets (i.e.,
Dilution and Latin Square) created by Gene Logic, Inc.
using the human U95 GeneChip™ [14]. Each dataset con-
sists of a series of *.CEL files, with one file for each chip
hybridized. For both datasets, a common complex cRNA
derived from an acute myeloid leukemia (AML) tumor
cell line was hybridization to each chip. Prior to hybridi-
zation, clones from different regions of 4 bacterial genes
(BioB, BioC, BioD, and Dap) and of 1 phagemid gene
(Cre) were spiked into the sample at known concentra-
tions. For the Dilution data set, 10 different clones were
spiked into the hybridization cocktail at the same concen-
tration on each array. The concentrations ranged from 0.5
to 150 pM, with 1 to 3 replicates at each level (Additional
File 6, Table 1). For the Latin Square data set, 11 clones
were spiked into the hybridization cocktail using a differ-
ent concentration arranged in a Latin Square design. The
concentrations ranged from 0.5 to 100 pM, with 2 to 3
replicates at each level (Additional File 6).

Statistical methods

Since we were comparing two GeneChips at a time, it was
necessary to identify a baseline GeneChip to which all
other chips were compared. For the Dilution dataset, the
0 pM concentration (chip 92466) was used as a baseline
to which the remaining GeneChips were compared. For
the Latin Square data set, the BioB-5 0.5 pM concentration
(chip 92561) was used as a baseline for the initial analy-
sis. Since the choice of baseline chip for this data set is
arbitrary, analyses were repeated using each chip in turn as
the baseline chip. For attaining optimal sensitivity and
specificity, comparisons using each algorithm (S-Score,
RMA, dChip, and MAS5) should identify all 10 (Dilution
data) or 11 (Latin Square data) spiked probe sets as differ-

http://www.biomedcentral.com/1471-2105/7/154

entially expressed. Identification of fewer probe sets
among these 10 or 11 would be false negative findings,
while identification of probe sets in addition to these
would be false positive findings. Therefore, using this
information, sensitivity and specificity of comparisons
made with each algorithm can be estimated.

Prior to analysis, a quality assessment was performed on
each chip. Because of the nature of the spike-in experi-
ments, many tests for quality control, such as RNA degra-
dation, could not be performed. Assessment of linearity
and lack of fit, another quality control measure, also
could not be performed due to lack of replicates. The Dilu-
tion dataset did not have multiple concentrations on a
single chip, and the Latin Square dataset did not have
multiple probes at the same concentration on each chip.
For the Dilution dataset, the intensities of all probe sets at
a fixed concentration level should be similar under the
assumption of linearity. Quantile-quantile plots of the
MASS intensity values were used to test the assumption
that the intensities were from a single distribution with a
common mean. For the Latin Square dataset, plots of
probe set concentration versus the MAS5 intensity value
were generated for each chip. Visual inspection of linearity
within a chip was supplemented with calculation of the R2
value of the linear regression equation.

In comparing the four methods using the Dilution data
set, the *.CEL files were read into the appropriate program
for analysis and commonly used measures for declaring
genes differentially expressed were calculated. That is,
RMA expression summaries were determined using the
rma function in version 1.6.7 of the affy package [1] and R
version 2.1.0 [15] The expression change was calculated as
the absolute difference in expression summaries between
the chip of interest and the baseline chip. MAS5 expres-
sion change p-values were calculated between the chip of
interest and the baseline chip using the GCOS version
1.1.1 [16]. As described in the Affymetrix GCOS manual,
p-values near 0 or 1 are indicative of differential expres-
sion, while p-values near 0.5 are indicative of no differen-
tial expression. Thus, we transformed the Affymetrix p-
values p to a common scale p* ranging from 0 to 1, with
low values indicating significant change:

. [2*p ifp<0.5
P = 2*¥(1-p) ifp = 0.5

(8)

For the dChip method, the data were transformed using
the base 2 logarithm. The Li & Wong model based expres-
sion index (MBEI) was then calculated using a PM only
model in dChip version 1.3 [17]. The expression change
was calculated as the absolute difference in the MBEI
between the chip of interest and the baseline chip. For the
S-score method, S-scores were determined using the

Page 9 of 11
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SScoreBatch function in version 1.1.1 of the SScore package
[18] in R version 2.1.0. Values for the Scale Factor (SF)
parameter and RawQ were obtained from the GCOS 1.1.1
output, and the Statistical Difference Threshold (SDT)
parameter was calculated as 4 times RawQ times the Scale
Factor. The S-scores were used directly as a measure of
expression change. Plots of the S-scores versus each of the
other algorithms were used to assess the comparative abil-
ity of each algorithm to clearly separate the spike-in clones
from the remaining probe sets.

Due to the varying concentration of spike transcripts in
the Latin Square experiment, a different procedure for
comparing the four algorithms was conducted. As
described with the Dilution dataset, the *.CEL files were
read into the appropriate program and commonly used
measures for declaring genes differentially expressed were
calculated. Probe sets were then rank ordered based on the
results provided by each algorithm. Calculation of ranks
was carried out using JMP version 5.1 [19]. Rankings from
each algorithm were compared to the true underlying
fold-change values of the spike-in clones. The true under-
lying fold-change ranks were determined using the con-
centration of the spike-in clones (Additional File 6, Table
2) for the two chip comparisons. A comparative method
would have optimal performance if all of the spike-in
clones were ranked among the top 11 genes identified as
differentially expressed. Therefore, the proportion of
spike-ins ranked less than or equal to 11 was calculated,
and the Cochran-Mantel-Hanzel test used to compare
these proportions across all chips.

Implementation

The S-score algorithm is available through Bioconduc-
tor[20]and is currently implemented in version 1.1.1 of
the SScore package [18], which runs in R version 1.8 or
later. An implementation using Borland Delphi version 5
and compiled as a stand-alone program for the Windows
operating system is also available [21].
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Additional material

Additional File 1

Comparison of S-Score and RMA

Comparison of S-Score and RMA. Plot of absolute value of S-Score vs
absolute value of difference in RMA expression summaries, comparing the
specified concentration to the baseline chip. X- and Y-axis projections are
added to show separation of spike-in probes more clearly.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-154-S1.pdf]

Additional File 2

Comparison of S-Score and dChip

Comparison of S-Score and dChip. Plot of absolute value of S-Score vs
absolute value of difference in base 2 logarithm of dChip model-based
expression index, comparing the specified concentration to the baseline
chip. X- and Y-axis projections are added to show separation of spike-in
probes more clearly.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-154-S2.pdf]

Additional File 3

Comparison of S-Score and MAS5

Comparison of S-Score and MAS5. Plot of absolute value of S-Score vs
MASS5 p-values, comparing the specified concentration to the baseline
chip. MAS5 p-values were transformed so that significantly up- and down-
regulated genes will have p-values approaching 0. X- and Y-axis projec-
tions are added to show separation of spike-in probes more clearly.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-154-83.pdf]

Additional File 4

Quantile-quantile plots of intensity data for the Dilution dataset
Quantile-quantile plots of intensity data for the Dilution dataset.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-154-84.pdf]

Additional File 5

Linearity plots for the Latin Square dataset

Linearity plots for the Latin Square dataset.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-154-85.pdf]

Additional File 6

Supplementary Tables 1-20

Supplementary Tables 1-20.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-154-S6.doc]
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