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Abstract
Background: Many genome projects are left unfinished due to complex, repeated regions.
Finishing is the most time consuming step in sequencing and current finishing tools are not designed
with particular attention to the repeat problem.

Results: We have developed DNPTrapper, a shotgun sequence finishing tool, specifically designed
to address the problems posed by the presence of repeated regions in the target sequence. The
program detects and visualizes single base differences between nearly identical repeat copies, and
offers the overview and flexibility needed to rapidly resolve complex regions within a working
session. The use of a database allows large amounts of data to be stored and handled, and allows
viewing of mammalian size genomes. The program is available under an Open Source license.

Conclusion: With DNPTrapper, it is possible to separate repeated regions that previously were
considered impossible to resolve, and finishing tasks that previously took days or weeks can be
resolved within hours or even minutes.

Background
High-throughput methods for genome sequencing, in
combination with increased computer power and better
algorithms for sequence assembly, have yielded a plethora
of genomes accessible for analysis. However, complicated
parts of sequenced genomes tend to be left unfinished to
a large extent. This is especially the case for eukaryotic
genomes, where the majority of the genomes presently
sequenced have repeated regions that were left unresolved
(see e.g. [1] and [2] for discussion on how duplications
affect eukaryotic genome projects). Current shotgun
sequencing assembly programs are not designed to han-
dle long stretches of repeated DNA in the target sequence,

and it is common that repeated sequences are left out of
the assembly altogether. In addition, repeats often cause
assembly errors, e.g. large artificial rearrangements due to
misassembled repeat regions. Also common are assem-
blies with the repeat copies merged into alignments of
high coverage, with reads of the repeat region piled on top
of each other. Although many repeats appear to have no
discernible biological function, in many cases the repeats
play an important role in the biology of the organism [3],
and some organisms have a significant amount of their
genes organized into head-to-tail tandem arrays consist-
ing of nearly identical genes. One example is Trypanosoma
cruzi, a protozoan parasite with a highly repetitive genome
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[4] containing multi-copy gene families such as cruzipain
[5], histone H1 [6] and HSP70 [7].

The presence of repeated regions in the target sequence is
thus the key problem in shotgun sequencing. This is espe-
cially true for the whole genome shotgun (WGS)
approach that has emerged as the method of choice in
recent years. Where the previous clone-by-clone strategies
allowed for compartmentalizing the genome and han-
dling of repeat regions locally, the WGS approach requires
handling of all copies of a repeat region simultaneously,
even if they are spread throughout the genome. The prob-
lems caused by repeats can be somewhat reduced by com-
bining the two approaches, but the incidence of repeats
remains a key problem and major cause of errors in shot-
gun sequencing assemblies.

A successful strategy for solving the problem for short
repeat regions has been the use of mate pairs [8]. Using
mate pairs it is possible to correctly assemble tandem
repeat regions or single repeat units dispersed in unique
genomic sequence, depending on the order in which the
fragments are assembled and providing that a sufficient
amount of the sequence reads sampling the repeat copies
have mate pairs in the unique regions. However, this strat-
egy fails when nearly identical repeats are organized in
tandem stretches longer than twice the shotgun fragment
insert length. In this case, the mate pairs of reads sampling
repeat units, sample another part of the same repeat
region, which makes it impossible for current assembly
algorithms to determine the correct layout of the shotgun
fragment reads.

These problems of the common assembly methods place
a heavy burden on the biologists working on the finishing
stage of sequencing projects and add to the bottleneck
that finishing constitutes. A number of tools have been
developed to aid this process [9-12]. However, these tools,
although very useful for non-repeated sequences, are not
designed for finishing complex, repeated regions. Gener-
ally, a major problem with current finishing tools is that
they provide either a close-up view of the shotgun reads in
the different contigs of the assembly, or a zoomed out
view of the entire genome, with nothing in between. With
a rigid close-up view, the user can only view a small por-
tion of the repeat region at a time, and much scrolling is
required in order to get a clear understanding of the
region, whereas a genome wide view does not allow for
manual inspection and correction at the read level. Fur-
thermore, common tools generally lack the flexibility
needed to correct obvious errors in a straight forward fash-
ion, often requiring the user to re-run the whole assembly
and hope for the reads to end up in the correct positions.
Most importantly, although other systems use high qual-
ity mismatches between reads in attempt to separate

repeats, none of them have adequate specificity and fully
utilize the presence of single base differences between
repeat copies as a resource in repeat resolution.

We here present DNPTrapper, an assembly editing and
visualization tool specifically designed for manual analy-
sis and finishing of repeated regions. It differs from previ-
ous tools by providing flexibility and an overview that
greatly simplifies the finishing process, by allowing the
user to view whole repeat regions at once and to edit
assembly errors manually by drag and drop. The program
implements and visualizes the results of a previously
described statistical method that detects defined nucle-
otide positions (DNPs, representing single base differ-
ences between repeat units) in the presence of sequencing
errors [13].

The source code is available from the authors under an
Open Source license.

Implementation
Overview
DNPTrapper is a sequence alignment editing tool devel-
oped for finishing complicated shotgun sequencing
projects. It combines relatively simple but powerful algo-
rithms with visualization of problematic assembly loca-
tions, thus providing detailed information for biologists
and allowing rapid decision making to make necessary
corrections. The main goal of DNPTrapper is to provide
more power to the user than other finishing tools. The
user can move sequences using drag and drop; re-align
them; cut, copy, and paste them; run algorithms on them;
add and remove features; choose between view modes;
zoom in and out. The user interface is a front end to a
database, and changes made using Trapper are automati-
cally propagated to the database. DNPTrapper is essen-
tially an editor that visualizes assemblies of shotgun
sequence fragment reads as gapped multiple alignments.
The assemblies can be produced by any assembler that
produces the supported file formats (e.g. .ace-files from
Phrap), and can be exported to the same format after
repeat analysis and resolution. In addition to the read
sequences, different features and data such as DNPs, vec-
tor sequence, quality values, chromatograms and mate
pairs are visualized in the editor according to the prefer-
ences of the user. Sequence features can be present in the
input assembly files, or be added during the finishing
process by running default built-in algorithms that detect
and label the desired features.

Finishing of repeated regions is made less complicated
using DNPTrapper by providing three key features that
common finishing tools lack. The first feature is the avail-
ability of a birds-eye view of all the reads in a contig. By
zooming out, the user gets an overview of the contig, its
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length and depth, and can get a clear picture of the general
properties of the region at once. In combination with the
second key feature, the built-in DNP visualization, this is
very powerful for resolving repeats that differ in only a few
positions along the repeat unit. The DNPs are color coded,
which makes it possible to distinguish different repeat
groups in a high coverage alignment by eye (Figure 1).
Whereas other finishing tools can be quite rigid in the
editing choices available to the user, DNPTrapper also
allows for manual editing operations such as cut, copy
and paste. In this respect, DNPTrapper is similar to editors
from other problem domains, e.g. word processing soft-
ware. This flexibility offered to the user is the third key fea-
ture of the program. It enables the user to correct errors in
the assembly directly in the program window, without

having to re-run the previous assembly step, and also to
use a "sand-box" approach, which allows a user to try out
different editing solutions in parallel within a single ses-
sion. By using drag and drop, it is possible to sort reads
into different repeat groups according to DNP content. By
default, only vertical movement of reads is allowed to
avoid breaking the overall layout of the assembly but hor-
izontal moving of reads followed by re-aligning can also
be performed.

Together with default built-in algorithms for sorting reads
according to a variety of criteria (e.g. DNP content), these
features allow for semi-automatic resolution of almost
identical repeats in a straight forward fashion, reducing
finishing time for such regions from days to a matter of

Partial view of an alignment in DNPTrapperFigure 1
Partial view of an alignment in DNPTrapper. Boxes represent shotgun fragment reads, colored dots represent DNPs. This is a 
zoomed out view of a simulated dataset after DNP detection. The difference between repeat copies was 2% between any two 
units. At this zoom level, DNP patterns are visible.
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hours or even minutes. Below, the flow of a typical session
with DNPTrapper is outlined, with description of some
key aspects of program use.

Importing data
The first step in a DNPTrapper session is to import data
into the editor. File formats currently supported are the
Phrap .ace format and a native XML format described in
the documentation. Other formats will be added; in the
meantime there are free converters between different file
formats available at the AMOS website [14]. After import-
ing, contigs in the project are available for analysis. In the
default visualization mode after opening a contig,
sequence reads are represented by black-bordered boxes
on white background. When zooming in, the base
sequences and quality values, visualized by a grey-scale,

become visible. The user can customize the visualization
mode of quality values and other features.

ReAligning
Since most assembly programs produce assemblies that
are locally non-optimal, the next step is to apply the built-
in ReAlign algorithm [15] to the contigs that appear to
contain repeats. This step is crucial for the subsequent
application of the DNP algorithm.

DNP method
When the selected contig has been ReAligned, the DNP
algorithm can be run with the desired parameters (see
[13] for details) in order to detect single base differences
between repeat copies. These appear as color coded dots
in the alignment. The different colors represent different

DNP walkingFigure 2
DNP walking. Manual repeat resolution is carried out by starting with a read and locating other reads with the same DNP pat-
tern. The repeat group is extended to the right and left by locating reads with the same DNPs at the ends of the reads. In this 
simple example, the two top reads constitute the beginning of a repeat group. The group is extended by identification of the 
same DNP pattern in the left end of the two bottom reads. This can be done by eye or searching the alignment for reads with 
the same DNP ID.
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DNP types, where a type is defined by the consensus base
and the base of the single base difference. There are thus
twelve different DNP types and twelve corresponding
colors.

Repeat resolution
When the DNPs have been detected, the actual finishing
begins. Using the DNPs the reads can be separated into
different repeat groups, and the color coding of the DNPs
makes it possible to distinguish patterns in the alignment
visually. Two different techniques are available in order to
perform the separation. One is to start with a read, select
one of its DNPs and automatically locate and group all
other reads containing a DNP of the same type at the same
column in the alignment. Another DNP present in the
group can subsequently be selected to locate other reads
that belong in the same group. In this way, the user
"walks" along the DNPs in a group to extend it in both
directions until all the DNPs of the group have been
exhausted (Figure 2). The same procedure is subsequently
performed on the reads that are left after extraction of the
group. Individual reads or groups of reads can be dragged
in and out of repeat groups as the user sees fit.

Another strategy is to start by applying a sorting algorithm
to the contig before finishing. It sorts the reads into differ-
ent groups according to their DNP content by picking out
a read and locating all other reads sharing DNPs with the
original read and adding them to the set. Since the newly
found reads may contain additional DNPs, the process is
repeated until all the DNPs in the set have been
exhausted. However, the DNP detection method may pro-
duce false positives, and it is often necessary to perform
manual correction of the group assignments after sorting
since groups may have been merged together due to erro-
neous DNP assignments. Still, this simple algorithm per-
forms remarkably well due to the low error rate of the
DNP detection method, and errors are easy to resolve
using human judgment and other available data such as
mate pairs and chromatograms. The most straightforward
way to use DNPTrapper is to use the sorting procedure
and resolve the remaining ambiguities manually.

Exporting data
After analysis and resolution, the database can be
exported as a flat file (currently available formats are .ace
and the native XML format), so that the data can re-enter
the normal finishing pipeline. There are also other export
options that are more suitable if the objective is analysis
rather than finishing; arbitrary subsets of sequences, or
their consensus sequence, can be extracted and written to
file in FASTA format for analysis with other tools.

Implementation
DNPTrapper has been implemented using C++ and relies
on Open Source Software. The graphical user interface
library is Qt [16], and the Berkeley Database [17] is used
for storing the data.

Great care has been taken to make the system suitable for
projects of varying sizes. All data is stored in the database
and is read from a disc on request from the GUI. This
makes the RAM requirement low, allowing handling of
projects of virtually any size. This includes, but is not lim-
ited to, mammalian size genomes. The parsers used for
importing data into DNPTrapper are event-based and file
size is thus not a limiting factor.

Apart from the scalability, flexibility has also been a major
design goal. A plug-in system and a well documented
Application Program Interface makes adding new algo-
rithms, visualization modes and sequence features sim-
ple.

DNPTrapper currently runs under Linux Fedora Core 3
and have been tested on 32 and 64 bit platforms. Ports to
other platforms may be carried out in the future.

Results
In order to further illustrate the functionality of DNPTrap-
per, we have tested it on three data sets, one simulated and
two from the T. cruzi whole genome shotgun sequencing
project [4]. In all three cases, the reads from each project
were assembled with Phrap and subsequently imported
into DNPTrapper for further analysis. Phred quality values
were not used in the assembly steps, in order to make sure
that all reads with sequence similarity ended up aligned to
each other. The use of quality values causes Phrap to par-
tially resolve repeated regions, which makes for en incom-
plete analysis. Instead, the parameter -default_qual was
set to 10. Regions of 89% average Phred quality or more
in the reads was subjected to DNP analysis.

The simulated data set was included as a proof of concept,
to verify the correctness of the implementation of the
DNP method and the functionality of the program. The
regions from T. cruzi were chosen since they are examples
of complicated genomic regions of biological importance
(both contain genes), and regions where the assembly
program (Celera assembler, [18]) has failed to assemble
the reads correctly. Furthermore, they constitute two dif-
ferent types of tandem repeats that can be resolved using
DNPTrapper. These genes have not been characterized
previously in T. cruzi. The regions were located by scan-
ning the assembly for regions with unusually high shot-
gun coverage, and reads matching these regions where
extracted by performing sequence similarity searches in
the read database.
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Simulated project
We simulated shotgun sequencing of a 20 kb template
sequence consisting of 10 repeat units of 2 kb in tandem,
with a pair-wise sequence difference between any two
repeat copies of 2%. The simulation was performed using
sim_gun (described in [19]), an in-house shotgun
sequencing simulation program that emulates the
sequencing process as closely as possible. It uses quality
values from real shotgun projects when constructing reads
at random places in the target sequence.

Figure 1 shows a zoomed out view of the data after ReA-
ligning and DNP detection. The colored dots represent the
detected DNPs. Figure 3 shows the same alignment, but at
a closer zoom level. This level is often the only available
one in other finishing tools (e.g. Consed).

This dataset could be resolved and divided into the ten
repeat groups known to be present within minutes using
the DNP sorting algorithm built into DNPTrapper in com-
bination with manual curation (Figure 4). The algorithm
performed the division almost single-handedly, apart
from a case where erroneous DNP assignments had
caused two groups to merge (Figure 5). This error was eas-
ily corrected manually by moving reads directly in the
DNPTrapper window.

Elongation factor 2 (EF2)
The consensus sequence of the T. cruzi whole genome
shotgun assembly contains a region with strong sequence
homology to EF2, crucial for the translocation step in
eukaryote protein synthesis [20]. The assembly program
had assembled 202 shotgun reads covering this region

Zoomed in view of the simulated datasetFigure 3
Zoomed in view of the simulated dataset. The different colors of the DNPs represent different DNP types. For instance, the 
light green DNPs indicate that the single base difference is an 'a' while the consensus base is a 'g'. This color coding makes it 
easy to observe DNP patterns in the alignment. Gaps are denoted by '*' in the alignment.
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into one pile, unable to separate the repeat copies. The
sequence similarity search located an additional 140 reads
from this gene that had not been included in the original
assembly.

The Phrap assembly of these 342 reads was readily divided
into two large groups (Figure 6) using a combination of
manual and automatic sorting by DNP content. Within
each group, no further division was possible. The region
illustrates a previously observed phenomenon in T. cruzi,
where genes repeated in tandem are conserved within the
repeat arrays on each allelic chromosome locus and more
divergent between homologs. In this analysis, the division
into two groups was confirmed by examining the distribu-
tion of mate pairs in the assembly (mated read distance 2–
3 kb and 3–4 kb). No reads in one group had mate pairs
in the other group, which supports the hypothesis that

this is indeed a case where the repeats are virtually identi-
cal within one homolog and differ across homologs. The
mechanism behind this phenomenon is currently
unknown; this separation of the two haplotypes, pin-
pointing their differences, enables further studies.

Monoglyceride lipase (MGL)
Another region present in the T. cruzi assembly is homol-
ogous to MGL, which is part of the fat digestion pathway
[21]. Again, the reads sampling this region had been
assembled in one pile consisting of 71 reads. Another 439
reads matching this region, discarded by the assembly
program, were also located in the read database.

This repeat region was found to have a different structure
than the EF2 region described above. Instead of two large
groups corresponding to conserved repeat arrays on each

Five of the ten repeat groups in the simulated dataset after automatic sorting and manual correctionFigure 4
Five of the ten repeat groups in the simulated dataset after automatic sorting and manual correction. Each group consists of 
reads sampled from one repeat unit in the target sequence respectively. The repeat groups are clearly distinguishable from 
each other by their DNP patterns.
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homolog, the reads could be divided into several small
groups representing repeat units present in one or two
copies each.

The Phrap alignment consisted of 510 reads and had a
maximum coverage of 285 reads. Due to the fact that a
high coverage yields more erroneous DNP assignments,
most of the repeat separation had to be performed manu-
ally since false DNP positives have a bad effect on the
DNP sorting algorithm. Still, within one hour's work by
one person, 25 distinct repeat groups could be identified
and separated (Figure 7), with their respective unique sites
pinpointed. A coverage analysis of the different groups
indicated that four repeat units were present in one copy,
seven were present in two copies, and eleven were present
in one or two copies. Three additional groups had higher
coverage, indicating copy numbers between three and
eight. Again, the reason for this arrangement in the para-
site genome is not understood, much due to the fact that
such regions previously have been too difficult to resolve
and characterize. With the single base differences between
repeat copies identified, it becomes possible to study such
regions in detail and determine the functional conse-
quences of the different variants present in repeat arrays.

Discussion
Repeated regions remain the key problem in shotgun
sequencing. Current assembly algorithms are unable to
assemble nearly identical repeats correctly. Repeated parts

of the target genome are routinely left out of the assembly
altogether, and when they are included, the resulting
assemblies are full of errors such as large rearrangements,
merged repeat copies and broken scaffolds.

Finishing is the major bottleneck in sequencing projects,
and complex, repeated regions are often left unresolved.
Despite the fact that repeats are the main reason for
assembly errors, commonly used finishing tools, e.g.
Consed, are not designed with the repeat problem in
mind. The software is very useful for gap closure and other
finishing operations on non-repeated sequences. How-
ever, when repeats are encountered, current tools lack in
flexibility and overview, not allowing the user to correct
obvious errors manually and presenting a rigid, too close-
up view of the repeat region. Moreover, no current finish-
ing software utilizes single base differences between
repeat copies as a tool for repeat separation.

With this in mind, we have developed a shotgun sequenc-
ing assembly editor specifically designed to cope with the
problems encountered when the target sequence contains
nearly identical repeats. By zooming out of a contig, the
user gets an overview of its length and depth, and the
color coding of DNPs makes it possible to directly see pat-
terns of repeat groups in the data, which allows for rapid
manual repeat separation. Instead of only allowing
assembly programs to determine the positions of reads,
the user is allowed to drag and drop sequences into the

Zoomed in view of an erroneous merging of two repeat groups by the DNP sorting algorithmFigure 5
Zoomed in view of an erroneous merging of two repeat groups by the DNP sorting algorithm. The error is caused by two 
sequencing errors in the read at the top, where two bases (first red and third cyan) have been erroneously sequenced into 
DNP bases of another group.
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positions they see fit. The option of re-assembly is still
available, and the number of options for finishing is
therefore increased. These three features – DNP method,
overview, and flexibility – set this tool apart from other
finishing software and introduce a new concept for finish-
ing.

The structure of DNPTrapper makes it possible to add new
features. Several possible extensions can already be envis-
aged. Most important is the addition of an algorithm that
uses mate pairs to order the resolved repeat groups. Other
improvements include supporting more input file for-
mats, adding more viewable features, and adding a global

view of all contigs in a project, with specific algorithms for
comparing, ordering and merging contigs. Also, work is in
progress to interface DNPTrapper to TIGR's open source
assembler AMOS [14].

Conclusion
Our results show that finishing tasks previously deemed
impossible to resolve or very time consuming can be per-
formed in a straight-forward fashion using DNPTrapper.
Using this tool, the process of resolving repeat regions that
would take days or weeks using current software, instead
can be resolved within hours or even minutes. The use of
DNPTrapper as a finishing tool reduces finishing times

EF2 assembly after division into two groups according to DNP contentFigure 6
EF2 assembly after division into two groups according to DNP content. Mate pair analysis of the two groups confirmed the two 
groups are located on different homologs.
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and thus costs. It also allows in-depth studies and charac-
terization of the poorly understood repeat regions present
in most genomes.

Availability and requirements
Project name: DNPTrapper

Project home page: http://dnptrapper.sourceforge.net/

Operating system: Linux

Programming language: C++

License: BSD Open Source license

Any restrictions to use by non-academics: No restric-
tions
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Four of the 25 different repeat groups found after manual repeat resolutionFigure 7
Four of the 25 different repeat groups found after manual repeat resolution. A coverage analysis of the different groups indi-
cate that the majority of the repeat units are present in copy numbers of one or two, with an additional three units with copy 
number three to eight.
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