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Abstract
Background: A large number of genes usually show differential expressions in a microarray
experiment with two types of tissues, and the p-values of a proper statistical test are often used to
quantify the significance of these differences. The genes with small p-values are then picked as the
genes responsible for the differences in the tissue RNA expressions. One key question is what
should be the threshold to consider the p-values small. There is always a trade off between this
threshold and the rate of false claims. Recent statistical literature shows that the false discovery
rate (FDR) criterion is a powerful and reasonable criterion to pick those genes with differential
expression. Moreover, the power of detection can be increased by knowing the number of non-
differential expression genes. While this number is unknown in practice, there are methods to
estimate it from data. The purpose of this paper is to present a new method of estimating this
number and use it for the FDR procedure construction.

Results: A combination of test functions is used to estimate the number of differentially expressed
genes. Simulation study shows that the proposed method has a higher power to detect these genes
than other existing methods, while still keeping the FDR under control. The improvement can be
substantial if the proportion of true differentially expressed genes is large. This procedure has also
been tested with good results using a real dataset.

Conclusion: For a given expected FDR, the method proposed in this paper has better power to
pick genes that show differentiation in their expression than two other well known methods.

Background
The development of microarray technologies has created
unparalleled opportunities to study the mechanism of
disease, monitor disease expression and evaluate effective
therapies. Because tens of thousands of genes are investi-
gated simultaneously with a technology that has not yet
been perfected, assessing uncertainty in the decision proc-
ess relies on statistical modelling and theory. One key
function of any statistical procedure is to control the rate

of erroneous decisions or, in the microarray case, rate of
false discovery of responsible genes.

The above concern can be illustrated as a multiple com-
parisons problem. Suppose we are interested in testing g
parameters (µ1,..., µg) = µ. For each individual parameter
µj, the null hypothesis is H0j : µj = 0 and the alternative
hypothesis is H1j : µj ≠ 0. This µj can be thought as the dif-
ference in mean expressions of the jth gene under two dif-
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ferent conditions in a microarray experiment. A
conventional method to test each hypothesis is to take a
sample and then calculate its p-value from a proper statis-
tical test. If the calculated p-value is less than a threshold
determined by a testing significance level, then H0j is
rejected. However, when many hypotheses are simultane-

ously performed, a multiple comparisons procedure
(MCP) has to be used to control the error rate [1].

The traditional MCP controls the probability of making
any error in multiple selections, i.e., controls the family-
wise error rate (FWER). It has been shown, however, that

A simulation study to estimate FDR (in y-axis) for various numbers of hypotheses Tested (x-axis), proportion of true null hypotheses (left labels), and various configurations of true alternative hypotheses (top labels)Figure 1
A simulation study to estimate FDR (in y-axis) for various numbers of hypotheses Tested (x-axis), proportion of true null 
hypotheses (left labels), and various configurations of true alternative hypotheses (top labels). All the examined methods, BH 
procedure (- - -); aBH procedure (......); Fisher's combining function (-- --); Liptak's combining function (-- . --); proportion of 
null known (----), satisfied the required FDR ≤ 0.05.
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this type of procedure is extremely conservative when the
number of hypotheses is large. Alternatively, Benjamini
and Hochberg [2] proposed the measure of false discovery
rate (FDR) for which the expected proportion of false dis-
coveries is controlled. This procedure is based on the idea
that one can tolerate more false discoveries if the number
of tests is large. For example, 5 false discoveries out of 10
selections is probably too many while 5 false discoveries
out of 100 selections should be acceptable. This is partic-
ularly useful in microarray analysis since a very large
number of genes usually show differential expressions.
Therefore, controlling the FDR can greatly increase the
power of discovery.

Benjamini and Hochberg [3] proved that Simes' proce-
dure [4] can be used to control expected FDR at α (0 <α <
1) when tests of true null hypotheses are either independ-
ent or positively dependent. More specifically, let p(1) ≤
p(2) ≤ ..., ≤ p(g) be the ordered p-values and J + 1 be the
smallest integer satisfying

If J ≥ 1, then rejecting H(0j), j = 1,..., J ensures the expected
FDR at α. We call this method the BH procedure.

Suppose the number of true nulls is g0, or the proportion

is π0 = g0/g. Benjamini and Hochberg [3] proved that the

expected FDR of BH procedure is less than or equal to

α. When g0 is small compared to g, using the original

α in (1) loses of power because it can be replaced by the

larger value α/π0 and still control the FDP at α. Here, the

power of a selection procedure is defined as the propor-
tion of the alternative hypotheses that are correctly identi-

fied. Obviously, if we knew π0 in advance, we could

replace α in (1) by α/π0 to increase power. Since π0 is

unknown, the key question here is how to estimate the
number of true null hypotheses g0.

In an earlier published paper, Benjamini and Hochberg
[5] proposed an adaptive procedure (aBH) which, by simu-
lation, showed a higher power than BH procedure. The
idea of the aBH procedure is to estimate g0 based on the
fact that the p-value under the alternative hypothesis is
stochastically smaller than that under the null, which is
uniformly distributed on (0, 1). On a quantile plot of p-
values (p(j) versus j), the slope passing through (j, p(j)) and
(g + 1,1) increases just as j increases if the P(j)s are corre-
sponding to the subset of true alternative hypotheses. The
first time the slope decreases indicates a change point.

Using this stopping rule in conjunction with the Lowest
SLope (LSL) estimator, (1 - p(j))/(g + 1 - j), Benjamini and
Hochberg proposed their aBH method to estimate g0 as
follows:

Alg. 1 aBH method in g0 estimation
1. If there is no hypothesis rejected by the BH procedure,
then stop and declare no discovery.

2. Calculate m(j) = (1 - p(j))/(g + 1 - j), ∀j = 1,..., g.

3. Let J* be the largest value such that m(J*) <m(J* - 1).
Define b as the smallest integer larger than 1/m(J*).

4. The number of true null hypotheses is estimated as 

= min(b, g).

Recently, Storey and Tibshirani [6] observed and demon-
strated in their Figure 1 that the density histogram of p-
values based on p1,..., pg from a microarray experiment
looked flat in the region of (0.5, 1). Based on the fact that
the null p-values of genes are uniformly distributed, most
of genes in the region of (0.5, 1) should be from the null.
Therefore, they used a smoothing method to estimate g0
based on the flat region of the observed p-values. How-
ever, the implicit requirements of their method are: 1) g
should be large, and 2) the proportion of true null
hypotheses should also be large, such as 0.5, so that g0 can
be estimated accurately. The method developed in this
paper tries to bypass these two requirements so that a
broad range of multiple testing problems can be applied.
It is conceivable that when the number of relevant genes
are known for certain target disease, a chip with a small
number of genes will be widely used for diagnosis. The
FDR methods, including both the BH and the aBH ver-
sions, have now been widely accepted for microarray anal-
yses. They have been implemented in the R program [7],
which can be incorporated into the Bioconductor package
[8]. Several microarray analysis computer programs, such
as SAM (Significance Analysis of Microarrays) [9] and
GeneSpring [10] also use the FDR criterion to identify dif-
ferentially expressed genes. Yang et al. [11] have used the
FDR criterion to determine the sample size in microarray
experiments.

Methods
Without loss of generality, we describe the method in a
one-sample testing problem. Its extension to commonly
used paired-t test, two-sample t test, or nonparametric
rank tests in microarray analysis is very straightforward.
Let Yi = (Yi1,..., Yig)', i = 1,..., n be g-variate vector samples
from populations with means µ = (µ1,..., µg)'. Define Y(j) =
(Y1j,..., ynj), ,j = 1,..., g as a row vector for the jth compo-
nent. The null hypothesis of the jth component is H0j : µj
= 0 and the alternative hypothesis is H1j : µj ≠ 0. Let the p-
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value for rejecting the null H0j be pj derived from a prop-
erly chosen test statistic.

Once the p-values are derived, we first summarize the
information content of p-values using a differentiable
real-valued decreasing function h, i.e., h(p1,..., pg) is

decreasing to all its arguments. We call h the combining

function and its value, η = h(p1,..., pg), the global statistic.

Next, define η(0) to be the observed global statistic of η
derived directly from the observed data. Note that a small
value of pj indicates H0j is less likely to be true. Since h is a

decreasing function of its argument pj, a large value of η(0)

indicates a subset of the null hypotheses is likely to be true

alternatives. To determine whether η(0) is large enough to

make such a claim, we need to know the distribution of η
when all the nulls are true. The distribution of η depends
on the distribution of its arguments, the correlation
between its arguments, and the combining function h. In
a microarray experiment, there seems no way to model or
estimate so many correlations (see, for example, Chapter
6 of Pesarin [12]). Hence, a reasonable approach which
can tackle the correlation within each experimental unit is
to determine the critical value by a permutation test. More

specifically, we calculate all B = 2n values of η based on

(ω1Y1,..., ωnYn), where ωi = ± 1 (The multivariate two-sam-

ple permutation method can be found in Pesarin [12]).

Hence, we have a set of reference values 

from the B permutations, and can now define the p-value

of the global η(0)-statistic as

where I(x) is the indicator function that takes value 1 if the
statement x is true and 0 if it is not. To determine whether
the global null hypothesis of all µ(j), j = 1,..., g, is zero is to
evaluate if the global p-value, p(0), is less than or equal to
a significance level. However, this level is part of the esti-
mation process. It will be determined by the data (see later
Alg. 2).

When the global null hypothesis is rejected, it indicates
that not all null hypotheses H0js are true. Immediate ques-
tion is, which subset of hypotheses is the true alternative.
To determine whether to reject the hypothesis H(0j) is a
multiple testing problem. We can, however, determine the
size of true alternatives using the following iterated proc-
ess. We regard the gene with the smallest p-value as the
major contributor for the rejection and claim that the null

hypothesis is not true with this gene. When this gene is
removed from the data set, we continue the same process
with the rest g - 1 genes and the p(0) computed by (2) is
now denoted by p(1). The whole process is then repeated
to produce a sequence of pseudo-global p-values, p(s), s =
1,..., g - 1. We call the later step global p-value pseudo
because it is only based on the subset of the original data.
The detail of how to generate pseudo-global p-values is
given in the Algorithm section. First, we will use these
pseudo-global p-values to estimate the number of true
null genes g0.

We observe that, intuitively, p(0) ≤ p(1) ≤ ... ≤ p(g-1), and this
monotone increasing property will be proved in (J.1) of
the Justification section. In addition , we will prove in
(J.2) of the Justification section that if r pseudo-global p-
values are less than a given value β(0 <β < 1), the estima-
tor of the number of null genes is

and this estimator ensures that E [ ] ≥ g0. (The conserv-

ativeness of this estimate under other conditions using
other techniques has also been mentioned by Storey and
Tibshirani [13] and Efron et al. [14].) Since the inequality

E [ ] ≥ g0 holds for any value of β, the best choice of β is

the one which makes  closest to g0. By defining ∆ = β/

(1 - β)2 and ρ(β) = r - ∆, we observe that ρ(β) is an increas-

ing function and then a decreasing function of β for the

following reasons. When β is small, ∆ increases slowly.

However, r is an increasing function in β and r is always

greater than 1. Therefore, ρ(β) is an increasing function

for small value of β. On the other hand, when β → 1, ∆
reaches ∞. Since r is finite, ρ(β) becomes a decreasing

function in this range. Since (3) is equivalent to  = g -

ρ(β), the optimal value of β should be determined as

and the method of estimating g0 is equivalent to finding
the optimal β value.

The estimation of g0 can thus be summarized as

Alg. 2 global-p method in g0 estimation

1. List rβ as the integer such that p(s-1) ≤ β ∀ s = 1,..., rβ, and

 > β for a large number of βs for 0 <β < 1.
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2. Find β such that ρ(β) = rβ - β/(1 - β)2 is maximized (see
Figure 5). Let this β be β*.

3. Let rβ* be the integer such that p(s-1) ≤ β* ∀ s = 1,..., rβ*,

and  > β*

4. Let  = min[g - rβ* + β* /(1 - β*)2, g].

We called this global-p method and denoted it by .

Alg. 3 Differentially expressed gene selection with given 
FDR

With g0 estimated, to control the FDR at α level for identi-

fying differentially expressed genes in microarray data

analysis with the conservative estimate , we simply test

each sub-hypothesis based on (1) with the new α ≡ α/ ,

i.e., rejects all H(j), j = 1,..., J, if p(j) ≤ j ×  and p(J+1) > (J

+ 1) × . We also need to address the choices for the

combining function h. In this paper, we consider only two
commonly used ones. 1) Fisher's sum of logarithm

and 2) Liptak's sum of inverse standard Gaussian distribu-
tion functions

More discussion on the choices of combining functions
can be found in Birnbaum [15] and Folks [16]. The com-
puter program for the proposed method, global-p, has
been implemented in R script and is publicly available
[17].

Results
Simulation
Two simulation studies were conducted. First, when the
number of hypotheses are small and second, when the
total number of hypotheses is extremely large. For small
number of hypotheses, we used the following configura-
tions: numbers of hypotheses are 16, 32, 64, and 128 with
sample size n = 10 and the proportions of g0/g being 0,
0.25, 0.5 and 0.75. The true expressions under the alterna-
tive hypotheses are assumed to be variance 1 Gaussian
random variables with non-zero mean values µj = dj. In
one set of experiments, all djs are set as 0.2 or 0.4; in the
other set the djs are divided into 4 equal size blocks with
values 0.2, 0.4, 0.6 or 0.8 in each block. The number of
permutations is B = 1,000 and the number of simulations
is 20,000. The FDR is set at α = 0.05. Four procedures are
used for testing: BH, aBH, our global-p test one with
Fisher's combining function, and one with Liptak's com-
bining function. For the purpose of comparison, we also
plug in the true value of g0 into the aBH method. This is
the ideal situation to reach the highest power.

p
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ĝ0

η = ( ) = − ( )
=
∑h p p pg j
j

g

1
1

2…, log

η = ( ) = −( )−

=
∑h p p pg j
j

g

1
1

1

1, , .… Φ

Table 1: False discovery rate when all null hypotheses are true.

g BH aBH Fisher Liptak

16 0.047 0.047 0.048 0.048
32 0.049 0.049 0.049 0.050
64 0.049 0.049 0.049 0.049
128 0.048 0.048 0.049 0.049

The plot of function ρ(β) in a real data analysis to determine the arg max ρ(β) for the tumor dataFigure 5
The plot of function ρ(β) in a real data analysis to determine 
the arg max ρ(β) for the tumor data.
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Table 1 lists the simulated expected FDR when all null
hypotheses are true. Figures 1 and 2 show the estimated
FDR and power under various gene expression composi-
tions.

Based on this simulation results, all the four methods
have their expected FDR below the nominal FDR α = 0.05.
Both combining functions in our proposed method have
a higher power than the aBH procedure in most situa-
tions, while there is little difference between them. The

improvement over the aBH methods is substantial when
the proportion of the true null hypotheses is small.

Since most microarray data consist of tens of thousands of
genes simultaneously and many of their expressions are
correlated, our second simulation tried to reflect these
facts. Storey and Tibshirani [13] proposed a "clumpy"
dependence model in which genes are partitioned into
blocks. The gene expressions are assumed independent
between blocks but dependent within the same block.

The same simulation study with estimated average powers, using the same legends as Figure 1Figure 2
The same simulation study with estimated average powers, using the same legends as Figure 1. The powers of the new method 
are clearly higher than the existing two, especially when the null proportion is small.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

16 32 64 128

0.0

0.2

0.4

0.6

0.8

1.0

16 32 64 128 16 32 64 128

g

75
%

 N
ul

l
50

%
 N

ul
l

25
%

 N
ul

l
 0

%
 N

ul
l

S
im

ul
at

ed
 P

ow
er

d = 0.2 d = 0.4 Mixed d
Page 6 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:15 http://www.biomedcentral.com/1471-2105/7/15
Following the clumpy model, 10 test and 10 control sam-
ples were generated from normal random variables with
mean 0 and standard deviation 1 where each sample con-
tained 10,000 genes. For test samples, genes with expres-
sion difference were added by 3 to represent the
expression differences. The number of differentially
expressed genes g0 were 100, 2,000, 5,000, 8,000 which
corresponded to the proportion of nulls π0 at 0.99, 0.8,
0.5, 0.2. To simulate intra-block dependency, we gener-
ated one vector of normal random variables with mean 0
and standard deviation 0.2 in each block of size 50 and
add it to every gene in that block. This process creates cor-
relations between genes. Since the true expression differ-
ences for non-null genes are moderate large in this
simulation, we expect that any good method should accu-
rately estimate π0.

In a recent article, Broberg [18] did a comparative review

of various newly developed methods for estimating π0. To

make a comparison, we presented the means and stand-

ard errors of estimates of π0 for all the methods describe in

Broberg's paper in addition to our proposed method ( )

over 1000 simulations. The details of π0estimation meth-

ods (BUM, SPLOSH, QVALUE, Boostrap LSE, SEP, LSL,
mgf, PRE) can be found in Broberg's paper and the pro-
grams for these methods can be found in the add-on pack-
ages of the freely available R software [19]. The simulation
results are shown in Table 2.

As expected, all of them performed very well for large π0.
If both the mean (bias) and standard error (stability) over
the whole range of π0 are considered, LSL and Global-p
stand out and LSL is better in stability. However, as we will
see from the next study, LSL seems to be over-conservative
in real data analysis. The means of both combining func-
tions of our proposed method performed well but Liptak's
function has a higher standard errors. Therefore, Fisher's
function will be used for the real data analysis. During the
simulation, we also noticed that current implementation
of SPLOSH, SEP, mgf, and PRE methods in R programs
failed to work when the number of hypotheses was small.

Real data analysis
We use a publically available experimental data set from
the Stanford microarray database [20] first to compare the
differences between BH, aBH and our method with
Fisher's combining function. The purpose of this experi-
ment was to identify genes that have different expressions
between prostate tumor tissue and matched normal tis-
sue. It consists of a total of 82 microarrays: 41 arrays were
from primary prostate tumors and the other half were
from matched normal prostate tissues. Each array con-
tains 32,152 different human genes. We chose this data

set because of the large number of replicates. With this
amount of replicates, we had a better idea of the ground
truth.

To compare performances of various methods, we split
the whole data set into two groups: a test data set and a
confirmation data set. Eleven pairs of tumor and normal
arrays were chosen for the test data set and the remaining
arrays were used for the confirmation. The number of
eleven test pairs were taken from a systematic sampling to
avoid bias. Patients 1, 5, 9,..., 41 in the original order from
the database were chosen as the test set. Expression infor-
mation is missing if it is labelled as failed, contaminated,
or flagged. Genes were removed from our study if more
than half of their expressions were missing in the original
data set. A total of 24,865 genes was used to identify dif-
ferences in expressions using BH, aBH and our proposed
procedures at 0.01 expected FDR level. Since the experi-
ment was designed with paired tumor-normal arrays, the
paired t-test was used to derive the p-value of each gene in
the test data set. The BH procedure identified 1,254 genes,
the aBH procedure identified 1,523 genes, and our pro-
posed method identified 2,119 genes. Our test is appar-
ently more powerful if it can maintain the required FDR
0.01. Since we did not have the biological information,
another approach was to estimate FDR based on our rejec-
tion set. Specifically, suppose the rejection set contains the

p-values that are less than ξ and the estimated proportion

of null hypotheses is . An intuitive estimate for FDR is

[21,22]

where . Based on the

confirm data set, our proposed method reported an esti-

mator of π0,  = 0.5326. Using equation (4), the esti-

mated FDRs for BH, aBH and our method were 0.0054,
0.0067, 0.0099, respectively.

If we further reject more sub-hypotheses beyond the
number provided by our method, the FDR will exceed the
assigned level. For example, if we reject the next 500 null
sub-hypotheses that have the smallest p-values among
those not previously rejected, the estimated FDR is 0.0137
which is larger than the pre-assigned 0.01 level.

Moreover, we calculated the standard difference (paired t-
statistic) of expressions using the confirmation data set.
The confirmation data set contains 30 pairs of arrays so

℘

π̂0

FDRn m( )
[ ]

,ξ π ξ
ξ

=
≤

( )0 4
Pr P

Prm[ ] ( ) /P I p gij
g≤ = ≤=∑ξ ξ1

π̂0
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that the statistic is a good estimate for the unknown stand-
ard difference. Figure 3 shows histograms of absolute
standard differences based on genes identified by the BH
procedure, by the aBH procedure, by our method, and the
extra 500 genes beyond our method. From the histo-
grams, several hundred differentially expressed genes that
were not identified by BH or aBH in the test arrays were
identified by our method and most of them have standard
expression differences greater than 2. However, the next
group of 500 genes beyond our method may contain too
many false discoveries to make the FDR acceptable.

Next, we use this data set to compare different estimates
of proportion of null genes, π0. The whole data set was
partitioned into four sub-data sets. We labelled the arrays
from 1 to 41 based on the original order in their database.
Sub-data set 1 contained 11 arrays with labels 1, 5, 9,...,
41; sub-data set 2 contains 10 arrays with labels 2,6,..., 38;
sub-data set 3 contains 10 arrays with labels 3,7,..., 39;
sub-data set 4 contained the remaining arrays. Although
we did not know the true value of π0 in real data analysis,
we used the four sub-data sets to compare the variation of
different estimation methods. In addition, we used the
whole data set to check if the estimates are reliable. For
global-p method, we also plot the function of ρ(β) in Fig-
ure 5 using the whole data set. The maximum of ρ(β)
occurs at β = 0.91.

The estimates  were listed in Table 3. All  estimates

in the subsets were larger than the ones in the whole data
set. This is expected because genes with small expressional

differences are more likely to be classified as null genes in

a small sample. From the π0 estimates from the whole data

set, we may say the LSL gave a large π0 value, PRE gave a

small value and all the others gave similar estimates. We
used LSL, PRE and Global-p to draw the p-value density
histogram using the whole data set in Figure 4. The upper
panel is the overall view and the lower panel is the closer
view. The green dash-dot line is the height using LSL esti-
mate; the red dash line PRE estimate; the blue dot line glo-
bal-p estimate. The LSL method, which is also shown in
Broberg's study, is too conservative producing the largest

value. The PRE method underestimated π0. If we used 

by PRE method to improve FDR procedure, it is likely to
have a higher FDR than the nominal level. We think our

π0 estimate is reliable because it is close but higher than

the height of observed p-values in the region of (0.6, 1) if
we assume genes with expressional differences have rare
chance to have large observed p-values.

Conclusion
Benjamini and Hochberg's FDR procedure [2] opens an
useful approach for multiple comparisons in microarray
analysis. Due to the complexity in microarray experi-
ments, it seems unlikely that one method can dominate
all the other methods in all the cases. In this paper, we
have demonstrated a new method that is intuitive appear-
ing because:

π̂0 π̂0

π̂0

Table 2: The means (first row) and standard errors (second row) of estimates  based on various methods when π0 = 

0.2,0.5,0.8,0.99.

True π0 0.200 0.5000 0.8000 0.9900

BUM 0.1124 0.3962 0.7288 1.0000
0.0021 0.0024 0.0021 0.0000

SPLOSH 0.8770 0.9030 0.9343 0.9594
0.0737 0.0592 0.0482 0.0271

LSL 0.2011 0.5015 0.8016 0.9904
0.0005 0.0007 0.0006 0.0003

Bootstrap LSE 0.1938 0.4905 0.7863 0.9787
0.0079 0.0135 0.0184 0.0159

QVALUE 0.1975 0.4979 0.7980 0.9871
0.0107 0.0176 0.0242 0.0154

SEP 0.9982 0.4978 0.7982 0.9883
0.0004 0.0078 0.0089 0.0090

mgf - 0.4944 0.7973 0.9905
- 0.0044 0.0055 0.0062

PRE - 0.1712 0.6568 0.9815
- 0.0084 0.0107 0.0066

Global-p 0.2005 0.5002 0.8002 0.9899
(Fisher) 0.0014 0.0012 0.0018 0.0019
Global-p 0.1998 0.4992 0.7978 0.9884
(Liptak) 0.0017 0.0038 0.0037 0.0027

π̂0
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The histograms of the absolute standard difference estimates (x-axis) in the confirmation data set for the selected genes from the three procedures based on the test data set for the prostate tumor dataFigure 3
The histograms of the absolute standard difference estimates (x-axis) in the confirmation data set for the selected genes from 
the three procedures based on the test data set for the prostate tumor data. The top is the selected gene histogram by the BH 
procedure; the second is that by the aBH procdure; and the third is the one by our method. The similarity of the three histo-
grams means that the additional 596 genes picked by our method should maintain the same FDR (0.01) as the other two. The 
bottom panel contains the next 500 genes beyond our proposed method. The left shift of this histogram means that the addi-
tional genes may contain too many false discoveries.
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1. It uses permutation test which can take care the com-
plex correlation structures in gene expressions.

2. Its global test based on sequentially eliminated signifi-
cant genes should provide a good stopping rule because
all the remaining genes are always considered together.

With the support of simulation and real data studies, the
new method should be a viable alternative to find the dif-
ferentially expressed genes in microarray experiments.

Algorithm
We illustrate the algorithm for calculating pseudo-global

p-values based on marginal p-values, p1,..., . Please

note that the procedure described here is the same regard-

less of g0. We consider h(p1, ..., ) in the summation

form:

where  is a differentiable decreasing function in which

 exists and (p) → ∞ as p → 0. Note that

equation (5) totally meets the requirement that h should
be a differentiable real-valued decreasing function. The
realization of  can be, for instance, (p) = -2log(p) if we use

Fisher's sum of logarithm or (p) = Φ-1 (1 - p) if we use
Liptak's sum of inverse standard Gaussian distribution
function. Recall that pj is the p-value obtained from jth row

vector (Y1j,..., Ynj) and the ordered marginal p-values are

p(1) ≤ p(2)≤ .... ≤ . The p-values for individual genes are

denoted by subscripts while the pseudo-global p-values in
(2) in are denoted by superscripts. Parentheses are used to
reveal the order property.

In one-sample testing problem, we permute data B times,
where each time we assign wi = ± 1 with equal probability
to (w1Y1,..., wnYn). For each permuted data, we use pb(j) to
be the p-value from the bth permuted data for the gene
that produced p(j), j = 1,..., g0, b = 1,..., B.

We summarize p(i) and pb(i) using the following table.

Note that the first column is p-values of genes from the
original data while the remaining columns are from the
permuted data.

To simplify the notation, let (p(i)) = (i), (pb(i)) = b(i) and η is
just the sum of (·). Therefore, we can transform the table
(6) into the following table with the addition of the last
row where its value η is the sum of the (·) in its corre-
sponding column.

Once η(0) and η(1),..., η(B) are available, the global p-value,
by definition, is

The same process is directly used to calculate the pseudo-
global p-values after removing the genes which have the
smallest p-values. Actually, we can use the available data
illustrated in table (8). By induction, suppose p(1),..., p(s)
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The histogram of p-values in a real data analysisFigure 4
The histogram of p-values in a real data analysis. About half of 
the large p-values to the right look uniformly distributed.
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have been removed, the  values of the raw data and their
reference sets are

and the pseudo-global p-value after removing the s genes
is

Justification
Our justification is based on extreme cases to make the
proofs tractable. However, this requirement is not very
critical. Our simulation and real data analysis show that
even with moderate g0 value, the pseudo-global p-value,

p(s), starts to increase when our procedure has removed
most of the significant genes. Besides, it jumps up very fast

to reach the point that p(s) will be larger than threshold β
and stop removing genes. Let g be the total number of sub-
hypotheses considered. Given g, let d = (d1,..., dg) denote

the vector containing the true values of µj, j = 1,..., g for

each sub-hypothesis; and R(g, d) be the number of Y(j)

removed using procedure . Without loss of generality,

we assume d(1) ≤ ... ≤  < 0 and d(j) = 0 for j = g - g0 +

1,..., g. We have

and the equality holds when . The equality

affirms that the sub-sample Y(j) with extreme small dj < 0

is identified and removed from the component of η. Actu-
ally, when the gene expression difference is far away from
zero, it will be identified by any reasonable multiple test-
ing procedure. Hence, in this extreme case, we only focus

on  which is based on the remaining g0 sam-

ples that have null distributions. Our goal is reduced to

finding an upper bond of , so that the

expected value of  can be bounded (below) by g0.

J.1 Monotone in Pseudo-global p-values
The key feature of our algorithm is that the pseudo-global
p-values are monotone increasing. We can be more precise
by showing that

Romano (Section 2)[23] has proved that the distribution

of  can be approximated by Gaussian distribution

using the Central Limit theorem. Therefore, if we let the

mean and standard deviation of reference samples  (b

= 1,..., B) be µ(s) and σ(s), respectively, and use Z to denote
the standard Gaussian random variable with distribution

function Φ, then the pseudo-global p-value p(s) can be
expressed as
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Table 3: Estimates of  based on the prostate tumor data set from the Stanford microarray database. The first four rows are 

estimated based on the four partitions of the whole data set while the last row the is based on the data set. The means and standard 
errors (5th and 6th rows) are calculated based on the estimates of the four sub-data sets.

BUM SPLOSH LSL Bootstrap 
LSE

QVALUE SEP mgf PRE Global-p

Sub-data 1 0.4011 0.4844 0.8071 0.4802 0.4662 0.5792 0.5677 0.4536 0.5583
Sub-data 2 0.5211 0.5710 0.9106 0.5797 0.5679 0.5865 0.6866 0.5727 0.6722
Sub-data 3 0.5529 0.6104 0.9302 0.6235 0.6070 0.6232 0.7120 0.6097 0.7082
Sub-data 4 0.6056 0.6627 0.9628 0.6709 0.6618 0.6760 0.7529 0.6646 0.7493
Mean 0.5202 0.5821 0.9027 0.5886 0.5758 0.6162 0.6798 0.5751 0.6702
Sd 0.0867 0.0752 0.0672 0.0813 0.0826 0.0443 0.0796 0.0894 0.0821
Whole 0.3940 0.4706 0.6598 0.3949 0.3882 0.5979 0.4706 0.2803 0.4721

π̂0
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where C(s) = Φ-1(1 - p(s)) is p(s)th upper percentile of the
standard Gaussian distribution. Hence, the relation
between η(s) and C(s) is

η(s) = µ(s) + σ(s) C (s).

Similarly, for the µ(s+1) and σ(s+1) as the mean and standard

deviation of reference samples (b = 1,..., B), we

repeat the same approximation method to express p(s+1) as

Comparing equations (11) and (13), we observe that to
prove p(s) ≤ p(s+1) with probability 1 asymptotically when
p(s) is given is equivalent to prove that

with probability 1 asymptotically when C(s) is given.

As g0 → ∞, the sample deviations σ(s) and σ(s+1) are almost

identical so that C(s) → C(s). Next, using table (8)

again, we can express µ(s) - µ(s+1) as

The distribution of the reference set p1(s+1),..., pB(s+1) con-

verges to the uniform (0, 1) distribution since the distri-
bution of the permuted test statistics, which are
corresponding to these p-values, converges to a Normal
distribution using Theorem 2.1 of Romano's work. There-
fore, if we define uniform (0, 1) random variable as U,

 converges in probability to E[(U)] by the

Law of Large Number. Hence, to prove equation (14) we
only need to prove that

Pr[(p(s+1)) ≥ E[(U)]] → 1.  (15)

Assume, without loss of generality, that p1,...,  corre-

spond to the true null. To prove equation (15), we first

observe that, since p1,... ,  are independent uniform

random variables, P(s+1) is the (s + 1)/g0-th quantile of the

uniform (0, 1) distribution. By defining

 and using the distribution of sample

quantile [24], we have

Since the first derivative of  exists, we can use the delta
method to have

where  represents

the asymptotical standard error of (p(s+1)).

Finally, equation (15) can be proven as,
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which converges to 0 because E[(U)] is finite and

.

J.2 Determining the threshold β by (3)
First, we recall that, as p(0) is the global p-value based on
all null data, it is uniformly distributed. That is,

Pr[p(0) ≤ β] = β.

We have proved that the pseudo-global p-values, p(s), are
monotone increasing when s/g0 → 0. Therefore, there
exists m such that p(0) ≤ p(1) ≤ ... ≤ p(m). Furthermore, for all
s ≤ m,

Pr[p(s) ≤ β|p(j) ≤ β, j = 0, ..., s - 1] ≤ β.

The purpose here is to derive equation (3) for any β within
(0,1) using the above inequality. We start with the
number of genes removed by our procedure. Observe that

In addition,

where km = min(k, m + 1). Hence, we can find an upper

bound of the expected number of genes removed,

, which is

Let ∆ = ∆(β) = β/(1 - β)2. From equations (9) and (16), we
have

so that the number of true null estimate is

 = g - R(g, d) + ∆

and this estimate ensures that

References
1. Westfall PH, Young SS: Resampling-based multiple testing New York:

John Wiley & Sons; 1993. 
2. Benjamini Y, Hochberg Y: Controlling the false discovery rate: A

Practical and powerful approach to multiple testing.  JRSSB
1995, 57:289-300.

3. Benjamini Y, Hochberg Y: The control of the false discovery rate
in multiple testing under dependency.  Annals of Statistics
2001:1165-1188.

4. Simes RJ: An improved Bonferroni procedure for multiple
tests of significance.  Biometrika 1986, 73:.

5. Benjamini Y, Hochberg Y: On the adaptive control of the false
discovery rate in multiple testing with independent statis-
tics.  Journal of Education and Behavioral Statistics 2000, 25:60-83.

6. Storey JD, Tibshirani R: Statistical significance for genomewide
studies.  PNAS 2003, 100:9440-9445.

7. Reiner A, Yekutieli D, Benjamini Y: Identifying differentially
expressed genes using false discovery rate controlling proce-
dures.  Bioinformatics 2003, 19:368-375.

8. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S,
Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W,
lacus S, Irizarry R, Li FLC, Maechler M, Rossini AJ, Sawitzki G, Smith
C, Smyth G, Tierney L, Yang JYH, Zhang J: Bioconductor: Open
software development for computational biology and bioin-
formatics.  2004 [http://genomebiology.com/2004/5/10/R80].

9. Tusher VG, Tibshirani R, Chu G: Significance analysis of micro-
arrays applied to the ionizing radiation response.  PNAS 2001,
98:5116-5121.

10. GeneSpring 7.1. Silicon Genetics   [http://www.silicongenet
ics.com]

11. Yang MCK, Yang JJ, Mclndoe RA, She JX: Microarray experimen-
tal design: power and samples size considerations.  Physiol
Genomics 2003, 16:24-28.

12. Pesarin F: Multivariate permutation tests with applications in Biostatistics
West Sussex, England: John Wiley & Sons; 2001. 

13. Storey JD, Tibshirani R: Estimating false discovery rates under
dependence, with applications to DNA microarrays.  Technical
report, Department of Statistics, Stanford University 2001.

14. Efron B, Storey JD, Tibshirani R: Microarrays, Empirical Bayes
Methods, and False Discovery Rates.  Technical Report 217,
Department of Statistics, Stanford University 2001.

15. Birnbaum A: Combining independent tests of significance.  JASA
1954, 49:559-574.

=( ) ( )/, ,ς ςs g s g s g+ +→ ∞ = + →1 1 00 0
1 0 as 

E R g

k R g k

k p p

k

g

k

g

℘

=

−

=

−

= =

= ≤ ≤

∑

∑

[ ( ,

[ ( , ) ]

,( ) ( )

0

0
0

1

1

1
0 1

0

0

0

0

)]

Pr

Pr α ββ β,

β

, ,

.

( )

( )

… p

p

k

k

− ≤


> 


1

Pr

Pr

Pr p

[ , , , , ]( ) ( ) ( ) ( )

( )

( ) (

p p p p

p

p

k k

s

0 1 1

0

≤ ≤ ≤ >

= ≤





≤

−β β β β

β

β

…

ll

s

k

k i

l s

p p i

)

( ) ( )

, ,

, ,

≤ = −

















> ≤ =

=

−

∏ β,

β β

0 1

0

1

1
…

…Pr ,,

, )

k

k m

km

−





≤

=

−

1

11ββ

β

min(

E R g℘[ ( , ]0 0)

E R g

k

m

k

k

g

m m

m

℘

=

−

+ +

≤

=
−

− − + −

+

∑

[ ( ,

( )
( ) ( ) /( )

(

0

1

1

2
1 2

0

1
1 1 1

0)]

β

β
β

β β β

gg m

m

m
0

1

2

2

1

− −

≈
−

( )

+)

( )

β
β
β

 as  is large. 16

E R g g g℘ − ∆ ≤ −[ ( , ) ]d 0

ĝ0

E g g℘ ≥[ ] .0 0
Page 13 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584122
http://genomebiology.com/2004/5/10/R80
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.silicongenetics.com
http://www.silicongenetics.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14532333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14532333


BMC Bioinformatics 2006, 7:15 http://www.biomedcentral.com/1471-2105/7/15
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

16. Folks JL: Combination of independent tests.  In Handbook of Sta-
tistics Volume 4. Edited by: Krishnaiah PR, Sen PK. New York: Elsevier
Science Publishers; 1984:113-121. 

17. Global-p website   [http://www.stat.ufl.edu/~jyang/global_p/glo
bal.p.R]

18. Broberg P: A comparative review of estimates of the propor-
tion unchanged genes and the false discovery rate.  BMC Bioin-
formatics 2005, 6(199):.

19. R Development Core Team: R: A language and environment for
statistical computing.  R Foundation for Statistical Computing, Vienna,
Austria 2005 [http://www.R-project.org]. ISBN 3-900051-07-0

20. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Fer-
rari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM,
Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene
expression profiling identifies clinically relevant subtypes of
prostate cancer.  PNAS 2004, 101:811-816.

21. Storey JD: A direct approach to false discovery rates.  JRSSB
2002, 64:479-498.

22. Genovese C, Wasserman L: A stochastic process approach to
false discovery control.  The Annals of Statistics 2004,
32:1035-1061.

23. Romano JH: On the behavior of randomization tests without
a group invariance assumption.  Journal of the American Statistical
Association 1990, 85:.

24. Serfling RJ: Approximation Theorems of Mathematical Statistics New
York: John Wiley & Sons; 1980. 
Page 14 of 14
(page number not for citation purposes)

http://www.stat.ufl.edu/~jyang/global_p/global.p.R
http://www.stat.ufl.edu/~jyang/global_p/global.p.R
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16086831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16086831
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14711987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14711987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14711987
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Alg. 1 aBH method in g0 estimation

	Methods
	Alg. 2 global-p method in g0 estimation
	Alg. 3 Differentially expressed gene selection with given FDR

	Results
	Simulation
	Real data analysis

	Conclusion
	Algorithm
	Justification
	J.1 Monotone in Pseudo-global p-values
	J.2 Determining the threshold b by (3)

	References

