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Abstract
Background: The relationship between disease susceptibility and genetic variation is complex, and
many different types of data are relevant. We describe a web resource and database that provides
and integrates as much information as possible on disease/gene relationships at the molecular level.

Description: The resource http://www.SNPs3D.org has three primary modules. One module
identifies which genes are candidates for involvement in a specified disease. A second module
provides information about the relationships between sets of candidate genes. The third module
analyzes the likely impact of non-synonymous SNPs on protein function. Disease/candidate gene
relationships and gene-gene relationships are derived from the literature using simple but effective
text profiling. SNP/protein function relationships are derived by two methods, one using principles
of protein structure and stability, the other based on sequence conservation. Entries for each gene
include a number of links to other data, such as expression profiles, pathway context, mouse
knockout information and papers. Gene-gene interactions are presented in an interactive graphical
interface, providing rapid access to the underlying information, as well as convenient navigation
through the network. Use of the resource is illustrated with aspects of the inflammatory response
and hypertension.

Conclusion: The combination of SNP impact analysis, a knowledge based network of gene
relationships and candidate genes, and access to a wide range of data and literature allow a user to
quickly assimilate available information, and so develop models of gene-pathway-disease
interaction.

Background
Much of our present knowledge of the relationship
between genotype and disease comes from statistical stud-
ies of the correlation between particular genetic variants
and the likelihood of a specific disease. Linkage analysis,
which tracks the transmission pattern of genetic markers
within a pedigree family, has been successful in identify-
ing over one thousand human monogenic disease genes
[1]. On the other hand, there has so far been less success

with common human diseases, such as hypertension,
Alzheimer's, asthma and cancer. Susceptibility to these is
affected by multiple genes, as well as environmental fac-
tors. The risk from any single genetic variant is low, so that
linkage analysis sample sizes are usually too small to pro-
vide statistically significant disease/genotype relation-
ships. Association studies, based on analysis of genetic
differences, particularly SNPs, between those with and
without a disease in a broader population, are more pow-
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erful for detecting such low signals. Approximately 10
million human SNPs have so far been identified [2]. Cur-
rently, association studies depend on choosing a subset of
these which includes those influencing the probability of
disease, or that are in linkage disequilibrium with those
that do so. A primary purpose of the SNPs3D resource [3]
is to provide a means of selecting candidate genes likely to
influence disease susceptibility, and to further select the
most relevant non-synonymous SNPs within those genes.

Rapid accumulation of new data on human SNPs, knowl-
edge of the complete human genome sequence, and
increasing information on biomarcomolecular interac-
tions is opening the way to a more mechanism based
understanding of the relationship between genotype and
disease. At present, the relevant information is still very
incomplete, and is scattered across many databases and
thousands of articles. A second primary purpose of the
resource is to collect and integrate as much as possible of
the molecular level data relevant to the mechanisms that
link genetic variation and disease.

To achieve these goals, the resource is organized into three
modules. One module generates lists of candidate genes
for any specified disease, based on an analysis of the rela-
tionship between the disease and genes, as reflected in the
literature. The second module provides a interactive
graphical gene-gene network, built from literature associ-
ations, known protein-protein interactions [4,5], and
existing pathways [6,7]. The third module provides infor-
mation on the relationship between non-synonymous
SNPs and protein function.

The identification of candidate genes and construction of
gene networks both make use of simple text mining tech-
niques. Concept profiles are constructed for each disease
and for each gene. Each concept (a disease or a gene) is
represented by an ordered list of words and terms most
closely associated with the concept. The set of words and
terms is complied from the contents of the approximately
80,000 PubMed abstracts [8] that have been manually
associated with one or more human genes in the NCBI
Entrez Gene database [9], using natural language process-
ing [10]. Pairs of concepts, such as two genes or a disease
and a gene, are linked by the overlap of their keyterm pro-
files. We call the resulting gene-gene network a Knowl-
edgeNet, since it is derived directly from knowledge in the
literature. Only two types of concept, gene and disease, are
discussed in this paper. However, the KnowledgeNet can
also be used in others ways, for example investigating the
relationship between a biological process (e.g. glycolysis)
and genes.

A variety of other computational methods are being devel-
oped to automatically extract information from the litera-

ture. These methods range from simple technologies
which process at the word level and require only a limited
linguistic context [11] to state-of-art technologies such as
natural language processing (NLP) that handle more com-
plex relations across sentences [12]. So far, these methods
have not been used extensively in generally available
pathway interfaces. A number of groups, including the
Ingenuity Pathway database [13] and the Protein Refer-
ence Database [14,15], are developing mammalian path-
way descriptions by means of manual curation of the
literature. Although these databases provide rather precise
data, the human-curation process makes development
slow. This problem is becoming more serious as the size
of the relevant literature increases. Protein interaction net-
works have also been built automatically [16-19], using
probability models to integrate data from high through-
put experiments such as yeast-2-hybrid [20,21] and TAP
pull-downs [22].

In SNPs3D, the likely functional impact of non-synony-
mous SNPs is assessed using two previously developed
methods [23-25]. One method makes use of protein struc-
ture to identify which amino acid substitutions signifi-
cantly destabilize the folded state. The results show that
up to three-quarters of monogenic disease single residue
mutants act in that way [24]. The second method identi-
fies deleterious substitutions through analysis of the
extent and nature of amino acid conservation at the
affected sequence position [25]. Access to details of both
analyzes is provided through the web interface. Links to
another publicly available non-synonymous SNP analysis
tool are also provided [26,27].

A number of other groups have also developed methods
for evaluating the molecular effects of non-synonymous
(ns) SNPs [28-36]. Some of these methods form the basis
of tools and related analysis that are available through
web servers. Facilities range from tools to visualize SNPs
in their three dimensional context, such as MutDB
[26,27,37], TopoSNP [38-40], SAAP [41,42], to detailed
analysis of the molecular effects of nsSNPs. For example,
SNPeffect [43] provides a comprehensive analysis of nsS-
NPs at the protein level [33] including stability analysis
using FOLD-X [44], and other functional analysis;
PolyPhen [45] models SNP effects with both structure and
sequence information [30]; SIFT [46] provides sequence
analysis of nsSNPs [28].

SNPs3D aims at integrating all of the available data rele-
vant for assessing the likely role of particular genes and
SNPs in a disease. The emphasis is on providing the users
access to as much of the underlying information as possi-
ble, so that they may make informed judgments. To this
end, in addition to SNP impact analysis, links are pro-
vided to relevant abstracts, the GAD [47,48], OMIM
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[49,50] and HGMD [1,51] disease databases, GO annota-
tion [52,53], expression profile data [54], and mouse
knockout results [55]. Data are updated regularly. Explo-
ration of gene networks and access is to all information is
facilitated by a Java based graphical interface.

Construction and content
Query interface
Each of the three modules (SNP analysis, gene-gene net-
work, and disease candidate gene lists and networks) is
accessed via a separate simple search window, on the site
front page.

The candidate gene search window will accept any word
or phrase as an entry, and compiles a concept profile, as
described below. For SNP analysis and gene-gene net-
works requests, a hierarchal query string processing proce-
dure is used, providing a wide choice of input name types,
including dbSNP IDs, Entrez Gene IDs, RefSEQ IDs, NBCI
Gene Symbols, and common protein names, using the
following procedure:

1. A query string is first inspected to determine if its com-
position is consistent with a dbSNP ID, Entrez Gene ID or
Refseq ID. If one of these name types is identified, the
query is searched against the corresponding list of possi-
bilities, and if a match is found, appropriate results are
returned.

2. If the type of ID cannot be identified, the query string is
first treated as a NCBI gene symbol, and searched against
that set. If an exact match is found, results are returned.

3. If no exact match to a gene symbol is found, the string
is searched against all words in the NCBI Gene summaries
of each gene. Any hit adds to a list of high ranked possible
genes.

4. This hit list is supplemented by a search of the query
string against all the PubMed abstracts associated with
each gene in the NCBI Gene Database. The number of
times the query string is found in the abstracts for a gene
provides a ranking weight. Finally, the user is invited to
choose the appropriate gene from the ranked list of possi-
bilities.

5. If a search completely fails, the user is offered an alter-
native search window, with explicit query string catego-
ries.

Literature dataset
The abstracts of all the medline entries associated with
each gene in the NCBI Gene database [56] are the source
of words and terms. In the current version, there are,
80,249 Medline references linked to 19,228 human genes.

Word types are identified using SVMtagger [10]. Keyterms
are constructed from single nouns and adjectives, adjec-
tive/noun pairs, and continuous strings of words classi-
fied as adjectives or nouns. For example, the phrase 'blood
pressure' occurring in an abstract would result in three
keyterms: 'blood', 'pressure', and 'blood pressure'. Terms
occurring only once are removed. There are currently a
total of 266,337 keyterms.

The number of occurrences of each keyterm 'KW' in all the
abstracts ('Total_count(KW)' is retained, as well as the
number of occurrences of each keyterm in the abstracts
associated with each gene 'G', 'Count(G, KW)', and the
fraction of all occurrences of each keyterm that are associ-
ated with each gene is calculated as:

F1(G, KW) = Count(G, KW)/Total_Count(KW)

Construction of the gene-gene relationship matrix
The interaction strength L(i, j) between every pair of genes
i and j is calculated as:

L(i, j) = ∑KW F1(Gi, KW) + ∑KW F1(Gi, KW)

where the sum is over all keyterms common to the two
genes, excluding any found in more than 300 genes. More
studied genes have more associated abstracts in the NCBI
Gene database, so that this expression upweights interac-
tions involving those. Comparison with a more egalitar-
ian gene-gene weighting, based on a dot product sum
similar to that used for the disease/gene linkage, suggests
that an emphasis on the hub-like genes is useful for
including links to relevant but more weakly coupled
genes.

Because of memory constraints, the interactions are stored
as a sparse matrix, retaining a maximum of 200 interact-
ing genes per gene. A few well studied genes, such as P53,
have more than 200 genes linked with significant scores
(greater than the mean element value of the sparse
matrix). However, in almost all cases, these elements will
be included in the list of associations for other genes.

Generation of a candidate gene list for a disease
Given a disease name, a list of candidate genes is gener-
ated as follows:

A. The subset of abstracts relevant to the disease is identi-
fied:

1. Any abstract containing the full disease name, for exam-
ple, 'breast cancer' is selected.

2. If this procedure results in less than 20 abstracts, and
the disease name consists of more than one word, a fur-
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ther search of abstracts is made for the combination of
words, for example 'breast' AND 'cancer'.

3. If less than a total of ten abstracts are selected, the proc-
ess is aborted, returning a message of 'Not enough
abstracts to build a profile'.

B: A keyterm profile is generated for the disease, using the
selected abstracts. All Keyterms are ranked by the fraction
of disease abstracts that contain them:

Rank(KW) = Count_abstracts(D, KW)/
[Total_abstracts(KW) +50]

where 'Count_abstracts(D, KW)' is the number of
abstracts for disease 'D' containing the keyterm 'KW', and
'Total_abstracts(KW)' is the total number of abstracts con-
taining the keyterm. A pseudo count of 50 is added to

reduce noise. The top ranking 40 keyterms are selected,
providing Rank(KW) is at least 0.1.

C: The overlap of the disease keyterms with those of each
gene is calculated:

1. The number of times each selected keyterm 'KW' occurs
in the abstracts associated with the disease 'D', 'Count(D,
KW)', is determined, and the relative frequency is calcu-
lated as :

F2(D, KW) = Count(D, KW)/Total_Count(KW)

2. The strength of association of the disease 'D' with a gene
'G' is calculated as the dot product of the relative frequen-
cies of the disease keyterms with the relative frequencies
of those same keyterms in that gene:

SD(D, G) = ∑KW F1(G, KW).F2(D, KW)

Database SchemaFigure 1
Database Schema. The Blue blocks represent individual modules, which may be single or multiple MySql tables.
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where the sum is only over the up to 40 keywords selected
as the keyterm set of disease 'D'. The association strength
is deliberately biased towards the keyterms most strongly
associated with the disease, as opposed to associated with
particular genes.

D: Finally, all genes with a non-zero score are returned as
candidates.

Database setup
The database is implemented in MySQL [57]. As shown in
figure 1, the central table is 'Gene', an up-to-date list of
human genes from the NCBI Entrez Gene database. The
Gene table is linked to other master tables: The SNP
model table contains our stability and profile analysis of
SNPs. There is a table of keyterms for each gene, and a
table of PubMed abstract IDs for each gene. The Knowl-
edgeNet matrix table contains the pairwise gene-gene
interaction strengths, and there is also a disease/candidate
gene matrix. Some other tables linked to the Gene table
are: the Transcript table (RefSeq mRNAs); the Protein
table (RefSeq proteins); the phenotype and disease-tables
(NCBI OMIM and human gene mutation database
(HGMD)); Mouse knockout table (Bioscience mouse
knockout); pathway (KEGG), protein-protein interactions
(BIND); and protein function (GO).

Web interface
SNPs3D is served using Apache software running on a
Linux PC and with web pages derived from an early open
source version of PHP-NUKE [58].

KnowledgeNet graphical interface
The interactive graphical interface for displaying gene-
gene relationships is based on open source Java code [59].
Genes form nodes in a graph and gene-gene relationships
are edges. Clicking links and symbols leads to more
detailed information. Symbol shape; font style; symbol,
edge and font color as well as hover-over windows are
used to provide as much information as possible. Gene
symbol shape conveys whether or not that gene is
involved in disease, gene symbol text color indicates
whether there are deleterious SNPs. Subsets of genes con-
taining one or more SNPs with population frequencies
above some threshold may be highlighted (identifying
those most likely to be involved in complex traits). A max-
imum of 300 genes are displayed in the graphical inter-
face. These are genes most strongly associated with a query
gene or a query disease. The threshold for displaying links
between genes is adjustable to show only those most
strongly linked, or all possible connections. Links may
also be based on KEGG pathway connections or direct
protein-protein interaction information, extracted from
BIND [4]. Left clicking on a gene provides immediate
access to all the gene specific information, including SNP

analysis using the stability [24] and profile methods [25]
and the NCBI Gene summary, as well as pathways, dbSNP
entries and homologs.

Content for the graphical display can be generated using
the list of genes associated with a reference gene or a dis-
ease (the candidate genes, with the strongest linked gene
as initial center), or a specified list of genes. All gene lists
may be edited. One important feature is the ability to
redraw the graph, using a selected node as the new center,
allowing the user to smoothly navigate through adjacent
regions of the knowledgeNet matrix. A pull down menu
provides a list of all displayed genes, and any gene may be
highlighted in the network via this list. Right clicking on a
node provides facilities for highlighting genes which share
certain properties with the reference gene, such as KEGG
pathway, associated papers, or sequence homology. Left
clicking in a gene brings up its SNP analysis.

Utility
Analysis of SNPs in each Human gene
A primary function of the SNPs3D resource is to provide
a way of identifying those non-synonymous SNPs that are
likely to have a deleterious impact on molecular function
in vivo, so these may be included in association studies. An
analysis of the likely functional impact of all human non-
synonymous single base variants in the HGMD (as of 02/
09/2002, 9,625 variants in 696 genes) [1] and dbSNP
(Build 124, 29,485 SNPs in 11,303 genes) databases
[2,60] is provided, using the previously developed meth-
ods [24,25]. Links to another available analysis [26,27]
are also included. The analysis is organized by gene. The
structure/stability method ([24]) requires knowledge of
structure. Availability of experimental structures or suffi-
ciently accurate structure models limits coverage to about
37% of monogenic disease variants in HGMD and 10% of
variants in dbSNP. Greater availability of sequence infor-
mation compared to structure allows a much higher frac-
tion of variants to be analyzed (92% and 57% HGMD and
dbSNP respectively) with the sequence profile method.

Both methods make use of a machine learning technique,
the support vector machine (SVM), to assign each SNP as
deleterious or non-deleterious to protein function. The
SVM is trained on monogenic disease data, so that the def-
inition of deleterious is 'sufficiently damaging to protein
function in vivo as to be consistent with a monogenic dis-
ease outcome'. Benchmarking has yielded false positive
and false negative rates of 15% and 26% for the stability
method and 10% and 20% for the sequence profile
method. The higher false negative rate for the stability
method reflects the fact that only stability effects on in vivo
function are included. Approximately 30% of the non-
synonymous SNPs in dbSNP are assigned as deleterious.
Very few of the dbSNP cases are known to be associated
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with monogenic disease, and so most the deleterious ones
are candidates for contributing to complex disease traits.
As illustrated later, in many cases, low impact on the phe-
notype is likely the result of network level buffering
against loss of function for individual proteins.

Details of the analysis of each SNP are provided on addi-
tional pages. For the profile model, a user can inspect the
multiple protein sequence alignment from which the
result is derived. For the structure/stability model, feature
values (for example, surface accessibility, electrostatic
interactions and hydrophobicity) are provided, as well as
an interactive molecular graphics interface (powered by
Jmol, [61]) displaying the affected residue in its three
dimensional structural context.

An example of deleterious SNP analysis
To illustrate the SNP analysis process, we consider SNPs in
the selectins, proteins involved in the early inflammatory
response, playing a role in the accumulation of blood leu-
kocytes at sites of inflammation. SNP analysis for relevant
genes may be accessed by typing a disease or process name
into the corresponding search window. Entering 'inflam-
mation' returns a ranked list of genes with abstracts con-
taining that term, hyperlinked to their SNP analysis pages.
Entering a more specific search term, such as 'selectin'
returns a list of relevant genes, including the members of
the selectin family SELE, SELP and SELL, as well as pro-
teins they interact with. Entering a specific gene name,
such as SELE, takes the user directly to the analysis of SNPs
in that protein. Figure 2 shows a composite of the screen
information for some inflammation related SNPs in
selectins E, P and L and VCAM1. Each of these SNPS is

Example interface page of candidate SNPs for inflammation related diseaseFigure 2
Example interface page of candidate SNPs for inflammation related disease. Two support vector machine (SVM) 
models, based on sequence profiles [25] and structural stability [24] are used to analyze SNPs in candidate genes for inflamma-
tion. SNPs are classified as deleterious (negative SVM score) or not to protein function in vivo. SNP population frequency 
information is extracted from the NCBI dbSNP database.
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classified as deleterious by the sequence profile method
(indicated by the negative SVM scores). The SNPs in SELE
(C130W) and SELP (G179R) are also analyzed by the
structure/stability model, and are found to be deleterious
by this criterion as well (a disulfide bridge is broken in
SELP, there is overpacking and backbone strain in SELP).
As discussed below, further insight into the relationship
between these SNPs and the inflammatory response is
provided by consideration of the inter-gene relationships.

Gene-gene relationships
Concept profile overlaps were used to score the relation-
ship between all pairs of human genes in the current NCBI
Entrez Gene database. Table 1 shows part of the resulting
gene-gene relationship matrix, involving hypertension
genes. Angiotensin-converting enzyme (ACE) and angi-
otensinogen (AGT) share 96 specific keyterms, such as
'sodium intake', 'renin-angiotensin-system' and 'blood
pressure'; generating a very strong (43.8) link between
them. Many of the shared keywords also have relatively
high weights. (That is, the frequency is high in abstracts

for these genes, compared with all abstracts). In contrast,
the link between ACE and arginine vasopressin (AVP) is
much weaker, with a score of 0.8, (still above the average
for non-zero relationships in the matrix, which is 0.5).
There are only two shared keyterms between these genes:
'polydipsia' and 'hypotension'. 'Hypotension' represents a
true concept overlap between these two genes, since both
are involved in the regulation of blood pressure. 'Polydip-
sia' is a symptom found in more than one disease. One of
these is Autosomal dominant familial neurohypophyseal
diabetes insipidus (ADNDI), some times caused by a mis-
sense mutation in AVP [62]. Mutations in ACE have also
been shown to be a risk factor in a different disease, schiz-
ophrenia, for which polydipsia is also symptom [63].
Thus linkage of ACE and AVP through this term is a not a
consequence of their joint role in blood pressure regula-
tion. These indirect linkages are a source of noise in the
matrix, but are generally rare.

Figure 3 shows that the distribution of scores between
gene pairs has an approximately power law distribution,
with many scores near the minimum of 0.001, and a few
high scores of up to 300. Pairs of genes which are in the
same KEGG pathway [6] tend to have a stronger link than
others, with median and mean scores of 0.5 and 2.5, while
for all genes the corresponding values of 0.2 and 0.5
respectively. When only those pairs of genes involved in
physical interactions included in the BIND database [64]
are considered, the median and mean are dramatically
higher, at 3.2 and 9.0 respectively. Note that it is not our
aim to reproduce either of these known gene-gene rela-
tionships, but to introduce a more general, literature
based measure.

Figure 4 shows the distributions of the number of gene
links, for monogenic disease (defined by inclusion in the
HGMD database [1] and all genes. Disease genes tend to
be linked to more genes than non-disease genes, reflecting
the fact that they are usually well studied, and have been
placed in a network context.

Using the gene-gene KnowledgeNet to investigate SNP-
phenotype relationships
The SNPs in figure 2 are classified as significantly deleteri-
ous to protein function, and are in genes involved in the
inflammatory response. However, none of these SNPs is
known to produce a disease phenotype. We next illustrate
how the KnowledgeNet can be used to investigate the
complex relationships between the effect of these SNPs on
protein function and the disease phenotype, through net-
work level buffering against defective protein compo-
nents. For simplicity, we consider one pair of genes with
deleterious SNPs, Selectin E and selectin P. The sidebar on
the SNP analysis page provides direct access to a wide
range of information relevant to this question, including

Table 1: Subsection of the KnowledgeNet gene-gene linkage 
matrix. All three genes are associated with blood pressure 
regulation. ACE and AGT are strongly linked, other links are 
near the average value of 0.5.

ACE AGT AVP ...

ACE 43.8 0.8 ...
AGT 43.8 0.4 ...
AVP 0.8 0.4 ...

... ... ...

Log-log plot of linkage scores in the gene-gene Knowl-edgeNetFigure 3
Log-log plot of linkage scores in the gene-gene 
KnowledgeNet. Scores follow an approximately power law 
distribution, with a few very high scoring relationships (up to 
a value of 300), and many relatively weak ones.
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OMIM, pathways, GO annotation, mouse knockout
results, and tissue specific expression data, and relevant
abstracts. Clicking 'Gene Graph' in the left sidebar creates
a Java window displaying the gene-gene relationships cen-
tered on SELE.

A large amount of information is accessible through the
Java interface. At the moment, we are specifically inter-
ested in possible buffering mechanisms that shield the
phenotype from these deleterious SNPs. One such buffer-
ing mechanism is overlapping protein function, and
many proteins with overlapping function are homolo-
gous [65]. Right clicking on the E-selectin node triggers a
popup menu, including an option for highlighting all
sequence homologs of that node in the graph. L-selectin
and P-selectin are seen to be homologous to E-selectin,
suggesting possible functional redundancy. The redun-
dancy of selectins E and P is supported by the information
obtained from the mouse knockout link in the same
menu, which reveals that single mouse knockouts of each
gene produce a mild phenotype, while the double knock-
out is severe [66]. Further support is provided by inspec-
tion of the expression profiles for the selectins, which
shows a similar tissue specific pattern for Selectin E and
selection P, with significant expression in multiple tissues,
while selectin L is found in only a few tissues. Thus, an
individual homozygous in either one of the deleterious
SNPs will likely have a subclinically affected inflamma-
tory response, because of redundancy of function. But an
individual with both may have an epistatic interaction

between them, and be seriously sick. Both are candidates
for inflammation related disease association studies.

Candidate gene lists for diseases
As discussed in the Introduction, the candidate gene
approach is still widely used in association studies. Since
knowledge of complex diseases is limited, a comprehen-
sive list of candidate genes and a method of ranking those
genes by their disease-relevance is important in designing
a good association study. The 'Disease Candidate Genes'
module is used to list and rank candidate genes by build-
ing a concept profile for the disease and comparing it with
the profiles for each human gene. The resulting ranked list
of candidate genes can be edited by the user, before fur-
ther analysis. The Java graphical interface provides access
to the resulting gene network, helping a user navigate
through the relationships and associated data.

We have pre-complied candidate genes lists for a set 76
diseases, taken from the NCBI on-line book, 'Genes and
Disease' [67]. A list for any additional disease may be gen-
erated by entering the disease name in the web interface.

Table 2 lists the 16 diseases associated with the most
genes, using an association threshold of 0.05. (Disease-
gene profile overlaps have scores ranging from 0 to 24.5
with a mean of 0.04). Figure 5 shows the distribution of
the number of genes using this threshold. Cancers tend to
have the largest number of candidate genes, with the high-
est value of 197 genes for lung cancer. Next ranking are
well studied common diseases such as asthma, hyperten-
sion, inflammation, obesity, Alzheimer's disease, epi-
lepsy, atherosclerosis and deafness. The number of genes

Table 2: Diseases with the largest number of significantly 
associated candidate genes. Cancers tend to have the largest 
number of candidates, followed by common complex trait 
diseases.

Disease Score >0.05

Lung Cancer 197
Prostate cancer 190
Gastric Cancer 142
Pancreatic Cancer 134
Breast Cancer 133
Diabetes Mellitus 130
Asthma 124
Retinoblastoma 116
hypertension 113
Bladder Cancer 109
Epilepsy 107
Inflammation Related 107
Atherosclerosis 99
Alzheimer Disease 99
Deafness 94
Cervical Cancer 93

Distribution of the number of links to each gene in the gene-gene KnowledgeNetFigure 4
Distribution of the number of links to each gene in 
the gene-gene KnowledgeNet. Blue bars show the distri-
bution for all genes with at least one link (15,799) and red, 
the distribution for 1669 linked HGMD monogenic disease 
genes. The tail is truncated – the highest linkage is 493, for 
TP53. Genes with no interactions above the threshold score 
of 0.5 are not included.
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associated with a particular disease primarily reflects the
complexity of phenotype, but may also partly reflect the
current state of knowledge. Not surprisingly, nominally
monogenic diseases tend to have the least number of can-
didate genes. However, these are often not monogenic in
this analysis. For example, Phenylketonuria (PKU) has 14
associated genes. As expected, in this case the primary dis-
ease gene (PAH – phenylalanine hydroxylase) has a very
high linkage to the disease, with a score of 23, while all
other genes have scores less than 0.5. The web resource
provides a ranked list of candidate genes for each disease.

In all, 2,582 genes are associated with one or more of the
76 pre-complied diseases, using a threshold score of 0.05.
TP53 is associated with the most diseases (23). The
number of diseases a gene is associated with increases
with the number articles associated with that gene.

KnowledgeNet analysis of candidate genes and SNPs
Once a candidate gene list is available, it is useful to be
able to efficiently access the underlying literature, and to

generate a list of deleterious SNPs in the genes of most
interest. As an example of this process, we consider one of
the pre-built disease candidate lists, for hypertension.
Clicking on the disease returns a list of the candidate
genes, ranked by confidence of disease relevance, based
on profile overlap with the disease. Table 3 shows the top
part of the list. Highest ranked are well known hyperten-
sion-related genes, for example, angiotensinogen (AGT)
and angiotensin I converting enzyme (ACE). Each gene in
the list is linked directly to local copies of the relevant
abstracts, with color highlighting of appropriate words, so
that a user may very rapidly assess the evidence for candi-
date status. There are also links to OMIM [49] and the NIA
genetic association database information[47], providing
sources of expert information on disease relevance.

Since hypertension is a complex trait, with susceptibility
related to SNPs in multiple genes as well as the interac-
tions between them, the ability to navigate the network of
candidate genes is an important facility of the resource.
Viewing the set of candidate genes in the Java graphical

Distribution of the number of candidate genes for a set of 76 diseasesFigure 5
Distribution of the number of candidate genes for a set of 76 diseases. The curve shows the distribution using a dis-
ease-gene linkage threshold of 0.05. Cancers and common human diseases tend to have many candidate genes, but monogenic 
diseases typically have more than one candidate as well.
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interface provides the mechanism for this. Figure 6 shows
a screen snapshot of the graphical interface for the hyper-
tension candidate gene network. Strongly associated
genes cluster in the display. In particular, in this case, the
four primary blood pressure regulation pathways form
distinct groups, indicated by the black ovals. Among
these, the renin-angiotensin pathway (A), controlling
absorption of sodium, is the most studied, and most of its
genes have been implicated in monogenic types of hyper-
tension (indicated by the oval gene symbols). The other
pathways all influence blood pressure through vascular
constriction via: (B), regulation by endothelin (EDN1);
(C), regulation of natruretic peptide (NPPA, NPPB,
NPPC); and (D), the bradykinin-killikrien pathway. Fig-
ure 7 shows a simplified version of the pathways and their
inter-relationships, derived from browsing the interface,
reviews [68,69], and on-line data [70]. The pathways are
highly interconnected. For example, both natruretic pep-
tide and bradykinin also act as antagonists of the rennin-
angiotensin pathway, and are able to relax vascular con-
traction and down-regulate blood pressure. Conversely,
ACE, which activates AGT in the renin-angiotensin path-
way, can inactivate bradykinin.

This gene/disease network for hypertension provides a
number of deleterious SNPs for association studies. A
sample of these is shown in Table 4. All are classified as
deleterious to protein function by the sequence profile
method and the structure/stability method. The first is
R333W in rennin, which results in the loss of salt bridge
and thus is likely to cause loss of function. Given rennin's
role an up-regulator of blood pressure, this SNP is a can-
didate for involvement in hypotension. The second SNP,
I444T, occurs in the hydrophobic core of angiotensin-
converting enzyme (ACE) and causes a large loss of buried
hydrophobic area. ACE is in the same pathway as rennin,
and has an established role in blood pressure related dis-
ease. Mutants of ACE have been associated with mono-

genic-type hypertension [71], and ACE knockout mice
show 'subnormal blood pressure, kidney obstruction and
widening and thickening of infrarenal arterial vessels'
[72]. The third SNP, H66R, is in chymase (CMA1), and
changes a key catalytic residue, as well a breaking a salt
bridge. The physiological function of chymase is still con-
troversial [73,74]. A SNP upstream of the transcription
initiation site of CMA1 has been reported to be associated
with hypertensive complications such as HDL cholesterol
(possibly related to its lipid metabolism function), but
not with blood pressure [75]. The fourth SNP, V193E, in
kallikrein (KLK1) results in a buried charge and loss of
hydrophobic burial, affecting bradykinin processing.

Discussion
There are three unique features of the SNPs3D resource.
First, it is designed specifically for the analysis of the rela-
tionship between SNPs and disease. Second, it constructs
gene networks based on conceptual relationships derived
from the literature, rather than experimental data. Third,
it integrates access to all available and relevant informa-
tion sources, wherever possible giving the user easy access
to the underlying data and literature, so that informed
judgments can be made.

We have chosen to construct a network of connections
between genes based on how strongly they are coupled in
the literature, rather than whether there is extractable
information supporting a physical interaction between
them. There are two advantages to this approach. First, rel-
evant connections between proteins may be non-physical.
For example, genes that are involved in the same complex
disease may not directly interact, or even be in the same
local pathway, but may never-the-less interact in terms of
affecting disease susceptibility. Second, the text mining
procedure will capture considerably more information
than is currently in any database, or that can be easily for-
malized in a simple cause and effect pathway description.

Table 3: Top ranking candidate genes for 'Hypertension'. The list was complied on the basis of the overlap of the disease concept 
profile with those of the individual genes. 'Candidate SNPs' shows the number SNPs classified as deleterious in each gene. The 'OMIM' 
column indicates which genes are associated with essential hypertension in that database. The 'GAD' column shows the number of 
votes for or against a role for each gene in hypertension in the Genetic Association Database [47].

Gene Symbol Candidate SNPs OMIM GAD

AGT 1 Y N3/Y19
ACE 6 N6/Y24
AGTR1 2 Y Y11
GNB3 2 Y N1/Y6
HSD11B2 1 Y1
CYP11B2 2 N1/Y2
BMPR2 0
ADD1 1 Y N5/Y4
REN 3 Y3
EDN1 0
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In this sense, the KnowledgeNet expands on existing path-
ways descriptions by linking genes with conceptual rela-
tionships.

The case studies illustrate how all this works in practice.
Analysis of non-synonymous SNPs in the selectins leads
to the finding of several that appear to be deleterious to
protein function, but which do not directly lead to a dis-
ease phenotype. Inspection of homologs in the Knowl-
edgeNet graphical interface suggests a role for functional
redundancy in conferring network level robustness, and
consulting mouse knockout and expression profile data
supports that conclusion. The result also strongly suggests
an epistatic relationship between the deleterious SNPs in
selectin E and selectin P: An individual homozygous in
either one will likely not display clinical symptoms, but

an individual homozygous in both will probably have a
significantly compromised inflammatory response. In the
hypertension example, a list of possible candidate genes is
generated. The KnowledgeNet interface allows a user to
browse the relationships between those genes, clustering
the main pathways, and providing access to analysis of the
relevant non-synonymous SNPs. As is often the case, the
roles of the some of the genes in disease susceptibility are
complicated, and the available information is some times
contradictory. For example, for chymase, there is consid-
erable uncertainty of function. Instant access to the rele-
vant literature allows the user to quickly appreciate the
subtleties of the current state of knowledge.

We now consider the strengths and weaknesses of the
approach in more detail.

Simplified view of the four primary candidate pathways involved in hypertensionFigure 7
Simplified view of the four primary candidate pathways involved in hypertension. A: renin-angiotensin pathway; B: 
regulation by endothelin (EDN1); C: regulation by natruretic peptide (NPPA, NPPB, NPPC); D: the bradykinin-killikrien path-
way.
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Concept profiles for genes are built from the relative fre-
quency of words and terms in PubMed abstracts. In turn,
overlap of the profiles are used to identify gene-gene rela-
tionships. In practice, the procedure provides intuitively
reasonably results, but there is no way of rigorously
benchmarking such knowledge generated networks. The
method occasionally errs on the side of over-inclusive-
ness. For example, it is not able to distinguish between
statements such as 'protein A is associated with disease B'
versus 'protein A is not associated with disease B'. As illus-
trated in the Results, it is also possible for a disease and
gene to be linked by irrelevant factors, such as symptoms
common to more than one syndrome. Similarly, gene-
gene relationships may sometimes be based on non-path-
way related factors. For example the 13 members of the

human kallikrein family are tightly coupled, because of
many articles that discuss them as a group. In fact, most of
the family members operate in quite different pathways.
In future, more sophisticated natural language processing
technology may be applied to reduce these effects. At
present, a concept overlap weighting scheme that empha-
sizes relationships to 'hub' proteins is used, and ensures
that proteins weakly linked to these are included. A
weighting scheme that takes into account the number of
papers published on a gene may further improve inclu-
sion of relevant weak links. The analysis is limited to
abstracts already annotated as relevant to a particular
gene. Extension to all pubmed abstracts (currently about
8.5 million) is desirable. In practice, the resource is very
effective at narrowing down the amount of literature a

Graphical Interface for the KnowledgeNet of candidate genes for hypertensionFigure 6
Graphical Interface for the KnowledgeNet of candidate genes for hypertension. The four larger ovals circle the 
clusters of genes in each of the primary blood pressure regulation pathways. Oval symbols are used for genes involved in 
monogenic disease, rectangular symbols for the rest. Red indicates that one or more population SNPs are classified as harmful 
at the molecular level. Italic red text indicates that one or more population SNPs with population frequency information are 
predicted to be deleterious. The length and color of the edges represent the strength of the link between pairs of genes. Red 
edges link genes sharing the same abstracts. Short edges link genes sharing a large number of biological keywords. Subsets of 
nodes can be highlighted by a number of criteria, such as membership of the same KEGG pathway, or homology, or SNP fre-
quency.
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user must consult in arriving at an informed position, our
main goal.

Concept profile overlaps are also used to provide lists of
candidate genes for involvement in susceptibility to par-
ticular diseases. There is no gold standard for candidate
genes for a disease, with different compilations using dif-
ferent criteria. Comparison of our hypertension list with a
hand compiled list for essential hypertension [76], shows
informative similarities and differences. That list contains
75 candidate genes rated as 'strong', 57 of which are also
in the SNPs3D hypertension set. Nine of the top ten rank-
ing SNPs3D genes are in the hand complied hypertension
list. The exception is BMPR2, which is involved in pulmo-
nary hypertension, rather than essential hypertension.
The 12th ranking gene in the SNPs3D list, ADRB2, is also
not in the hand complied list, but is clearly associated
with hypertension in PubMed abstracts. Conversely, some
of the additional genes in the hand complied list, such as
GALR1, are not linked in any way to hypertension in
PubMed, even with a more sophisticated profile based
search, and including all abstracts. Their selection may
reflect specialized insights on the part of the compliers.
Others, such APOC2 and APOC4, are also not associated
with hypertension in PubMed, but have a chromosome
location covered by a known hypertension marker.

SNPs3D candidate lists can be generated on demand, with
little delay, and so have the advantage of taking into
account all the current literature. On the other hand, there
is a great deal of relevant specialized knowledge in the sci-
entific community that is either not in the literature, or
very difficult to extract in a useful way. The Genetic Asso-
ciation Database (GAD) is an archive of human genetic
association studies of complex diseases and disorders [47]
that provides an alternative approach to compiling the rel-
evant information. Any user may submit information
about an association between a disease and a gene, creat-
ing a mechanism of capturing community knowledge. We
expect that in the long run, the most effective candidate
lists will be complied by a hybrid of the two approaches.

SNPs3D analysis is only provided for non-synonymous
SNPs. Other sorts of SNPs, particularly those affecting
transcription, splicing and perhaps RNA message structure
will also play a role in susceptibility to complex trait dis-
ease. Little data is available on the relative importance of
the different SNP types, although for monogenic disease,
the role is relatively small. For example, single base vari-
ant effects operating through transcription are quite rare,
accounting for 0.5% of cases [1]. Whatever the case, it is
clearly desirable to include other classes of SNP. It should
shortly be possible to extend coverage in this way, using
DNA sequence profiles based on the complete genome
sequences of higher eukaryotes.

Availability and requirements
SNPs3D is freely available at http://www.snps3d.org.
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