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Abstract

Background: Successful realization of a "systems biology" approach to analyzing cells is a grand
challenge for our understanding of life. However, current modeling approaches to cell simulation
are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of
computational cell biology.

Results: We developed the Genome-based Modeling (GEM) System for the purpose of
automatically prototyping simulation models of cell-wide metabolic pathways from genome
sequences and other public biological information. Models generated by the GEM System include
an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving
100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and
95.06% with iJR904 genome-scale model.

Conclusion: The GEM System prototypes qualitative models to reduce the labor-intensive tasks
required for systems biology research. Models of over 90 bacterial genomes are available at our
web site.

Background

Given the burgeoning wealth of knowledge in molecular
biology, including the ever more rapidly accumulating
quantitative high-throughput data, and with more than a
hundred complete genomes now at hand, the grand chal-
lenge of what we might call "the post-genome era" is to
obtain a system-level understanding of the dynamic
behavior of the mechanisms of life. However, the
dynamic behavior of biological systems, a result of the
diverse nonlinear interactions of multiple molecular com-
ponents possessing various properties, is complex and
unintuitive. An integrative systems biology approach is

therefore required to complement traditional reduction-
ism, and computer simulation has proven to be an inval-
uable tool for system-level analysis [1]. Simulation-based
research facilitates the understanding of the complex
underlying structure of a system, and detailed models can
be used to help generate testable predictions and hypoth-
eses for experiments.

Several simulation studies of large-scale biological sys-
tems have been reported, but most are achieved by man-
ual modeling of the cellular networks and simulation of
network models by the use of approaches such as bio-
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The system workflow. Starting from a genome sequence, all coding regions are matched to corresponding reaction stoichi-
ometry for qualitative modeling, and then the reactions are quantitatively modeled with kinetic equations to generate a cell-

wide simulation model.

chemical systems theory [2] and flux balance analysis [3].
Investigations of dynamic behavior thus far have been
limited in scale, focusing on minimized models [4] or
specific pathways [5]. This is mostly because dynamic
modeling for biosimulation requires a multitude of
parameters, and collection and organization of the infor-
mation required is extremely time-consuming, labor-
intensive, manually precise work. The modeling proce-
dure usually involves three major steps: (1) qualitative
modeling, where the network structure or the pathway
map including all the necessary inhibitors, activators,
reversibility, and feedback regulation is constructed from
established biological knowledge and hypotheses; (2)
quantitative modeling, where quantitative data such as
the metabolite and enzyme concentrations, accurate rate
equations, and kinetic parameters are incorporated so as

to formulate a mathematical system model; and (3) cell
programming, where the above information is translated
into a machine-readable modeling language such as the
Systems Biology Markup Language (SBML) [6] ready for
simulation software, with specifications for simulation
such as the type of integrators, integration step size, and
simulation procedures [7]. The manual modeling process
is the most serious bottleneck in systems biology, and an
intelligent environment with both sophisticated data and
knowledge bases is necessary for the next step in the evo-
lution of computational cell biology. For example, the
biochemical simulator GEPASI/COPASI [8] provides an
intuitive graphical user interface to aid the cell program-
ming process in modeling, yet the users are required to
obtain the qualitative and quantitative information man-
ually, and current biochemical simulation software suites
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do not provide the automatic qualitative and quantitative
modeling components.

Although quantitative modeling currently requires a thor-
ough bottom-up approach with expert knowledge and a
large amount of public kinetic information, a substantial
part of qualitative modeling can be automated by inte-
grating information from numerous databases. Although
not intended for generating simulation models, several
software tools for the reconstruction of the pathway data-
base from the genome exist, including metaSHARK [9],
IdentiCS [10], and the PathoLogic program in the BioCyc
Pathway Tools software suite [11]. However, PathoLogic,
for example, heavily relies on text-based annotation of the
genome, and sometimes requires another pipeline such as
the GeneQuiz system for annotation beforehand [12].
Since all three software tools contain no stoichiometric
information and lack the cell programming step, they all
require considerable time and effort in order to use the
results for simulation. In contrast, a system dedicated to
the prototyping of pathway simulation models can be
highly optimized for speed and ease of use.

Here we describe a novel database-driven intelligent soft-
ware system named the Genome-based Modeling (GEM)
System, which automatically generates a cell-wide meta-
bolic pathway simulation model suitable as a draft model
to build upon for computer-based studies. The model is
based on complete genome sequence data, and the soft-
ware provides an environment that allows analysis of the
system-level behavior of the organism of interest.

Results

Approach

A traditional modeling approach scales up from a basic
model by adding new information by hand, but because
our aim is to provide a draft model to reduce the labor-
intensive qualitative modeling steps, we take an opposite,
top-down approach of automated modeling. A rough
image of the entire metabolic network is extracted from
genome data and modeled on the basis of genetic infor-
mation, and then more specific information is later added
from expert knowledge with minimal manual work.
Another merit to this approach is that the process starts
from the genome sequence. In whole-cell modeling, inte-
gration of different biological databases is a challenging
task, because the target field is broad and the scheme of
each database differs. Moreover, the names of genes and
proteins are often ambiguous and thus difficult to match.
However, most databases contain a link to the genome
sequence regardless of the subject, so by modeling from
the genome as the starting point, it becomes possible to
link a large amount of biological information by an auto-
mated method.

http://www.biomedcentral.com/1471-2105/7/168

Qualitative modeling

The GEM System takes the complete genome database,
both annotated and unannotated data, as input, and auto-
matically goes through several steps to produce a simula-
tion model of the organism in a flat-file format that can be
readily converted to standard SBML suitable for simula-
tion with various simulation software systems (Figure 1)
[7,13]. When an unannotated genome is given, the system
predicts genes with Glimmer [14], which produces a high
false-positive rate and a low false-negative rate. Alterna-
tively, users may use existing sophisticated pipelines such
as GenDB [15], GeneQuiz [16], and EnsEMBL [17] to
identify the coding regions and for the functional annota-
tion to be used in the following steps.

The second step matches the genes to the product protein
through a combined method of annotation reference,
homology search, and orthology search. The system first
checks for a direct external database link (db_xref) to
SWISS-PROT and TrEMBL [18] in the annotation fre-
quently provided in the EMBL complete genome database
[19] to find the EC number of the protein product of a
gene. If annotation is not available, the system performs a
BLASTP search [20] against the SWISS-PROT database
with a default cutoff value of e-25, which is also configura-
ble, and the SWISS-PROT entry with the best e-value is
used as its homolog. Homology searching is a powerful
technique for conserved proteins, but sometimes is insuf-
ficient in functional genomics [21]. If there is no hit above
the cutoff e-value, an orthology search of the amino acid
sequence of the gene by using the COGnitor program pro-
vided with the COGs database [22] is then performed
with a cut-off value at 3 clades. This step can alternatively
be carried out by direct reference to the annotated COG
entry given in the PTT database distributed in the Gen-
Bank genome flat-file [23]. The obtained COG entry is
matched to the corresponding EC number by reference to
the KEGG Orthology database [24].

When the SWISS-PROT and TrEMBL entries match with
the annotation and the homology search does not contain
an EC number, there is an additional search in the
ortholog entries in the same WIT Cluster [25] category.
The WIT Cluster provides a list of orthologous genes iden-
tified under strict criteria; therefore, the genes in the same
WIT Cluster are expected to have identical functions.
Because the GEM System keeps track of the enzymes by
the EC number, when the SWISS-PROT and TrEMBL
entries are not annotated with an EC number, the system
looks through all orthologous genes in the same WIT
Cluster to find entries annotated with an EC number, and
uses those for annotation. When multiple entries with EC
numbers are found, the entry with the lowest e-value is
used. Currently, the GEM System cannot account for any
enzymes that are not EC-encoded, and unspecific or
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Table I: Stoichiometric matrix derived from the example
procedure.

1 -1 -1 00 0 0 O
-11 1 000 0 O
1 -1 -1 000 0 O
-11 1 000 0 O
o o0 0 11 -1 -1 -1

incomplete codes are treated the same as complete codes.
This is a limitation of the system, but since the KEGG data-
base that the system uses to check the pathway is also
mostly based on EC numbers and treats unspecific or
incomplete codes similarly, our system follows this
approach.

The GEM System holds information on enzymes extracted
from the major enzyme and pathway databases [18,24-
27] and curates it for consistency of nomenclature in the
form of an internalized database, and the EC numbers
obtained are matched to the corresponding stoichiomet-
ric enzyme reaction equation. Here each gene is assumed
to have a one-to-one enzyme relationship, so the system
cannot distinguish between isozymes and heteropoly-
meric enzymes. To resolve this problem and to recover
false negative matches, the stoichiometric reaction list
undergoes a pathway check that compares the extracted
list with the general reference pathway of the KEGG and
MetaCyc databases [28]. For the problem of many-to-
many relationships between reactions, firstly the multiple
rows with the same stoichiometry (the reactions are
equivalent in each instance) are collapsed to a single row.
This procedure is equivalent to resolving the problem of
heteropolymeric enzymes and ignoring the presence of
isozymes. With this new stoichiometric matrix, where all
rows represent unique reactions, each reaction is searched
in the reference pathways, and the row is duplicated when
the reaction exists in multiple pathways, to recover the
necessary isozymes. Then for the pathway connectivity
check, when fewer than "Y" steps of a gap exist between
more than "X" connected steps upstream and downstream
of the pathway, the gap is filled from the information in
the pathway databases. X and Y are configurable, but are
set to 3 and 1, respectively, by default. For example, when
there is a continuous pathway containing 7 enzymes such
as A-B-C-D-E-F-G exist, and when the consecutive sets of
three enzymes A-B-C and E-F-G are identified by func-
tional annotation, the gap enzyme D is filled in. All 7
enzymes in this example must be consecutive reactions,
but they are not required to be in linear order or to belong
in the same pathway. Gap filling in pathway reconstruc-

http://www.biomedcentral.com/1471-2105/7/168

tion is a challenging task, and the filled gap would be bet-
ter to be reconfirmed by sequence alignment. Although
only the most straightforward method is currently imple-
mented, the filled gap is clearly marked as such in the
model, therefore enabling the users to easily take out
uncertain reactions. This gap-filling process is useful for
flux-based analysis where pathway connectivity is essen-
tial, but since the data is uncertain, these reactions are not
included for the following validations. A graphical user
interface allows the configuration of options and optimal
execution of the system.

To summarize the procedures described so far, let us fol-
low the workflow taking fumarate hydratase (4.2.1.2) and
glutamate synthase (1.4.1.13) in E. coli as examples.
Firstly, the coding regions are identified by Glimmer
unless an annotated complete genome is available, and
the nucleotide sequences are translated into amino acid
sequences. If database reference to SWISS-PROT is availa-
ble in annotation, this reference is used to identify the
gene and the EC number of enzyme coded by the gene,
and if the reference is not available, BLAST similarity
search matches the amino acid sequence to the corre-
sponding SWISS-PROT entry. In this case, gene located on
the complementary strand of position 1684755 to
1686401 is identified to be FUMA_ECOLI that is 4.2.1.2
in EC number with complete identify (e-value of zero),
and likewise, FUMB_ECOLI (e-value of zero) is also iden-
tified to be 4.2.1.2. Similarly, two genes GLTB_ECOLI (e-
value of zero) and GLTD_ECOLI (e-value of 6.5e-282) are
identified to be 1.4.1.13. Even when the homology search
fails, orthology search identifies fumA and fumB genes to
be both COG1838 (Tartrate dehydratase beta subunit/
Fumarate hydratase class I, C-terminal domain), and the
majority of genes belonging to the orthologous cluster is
identified to be 4.2.1.2 in WIT Cluster. Likewise, gltB is
identified to be COG0069 (Glutamate synthase domain
2) and gitD to be COG0493 (NADPH-dependent gluta-
mate synthase beta chain and related oxidoreductases)
and subsequently to be 1.4.1.13 with WIT Cluster. FumA
is an aerobic isozyme and FumB is an anaerobic isozyme,
whereas GItB and GItD are subunits of glutamate syn-
thase. This is correctly identified by pathway check,
because 4.2.1.2 occurs both in aerobic citrate cycle and in
anaerobic reductive carboxylate cycle pathways, but
1.4.1.13 only occurs in Glutamate metabolism pathway
(1.4.1.13 actually also exists in nitrogen metabolism path-
way in the GEM model, but this is from another isozyme,
gltF). Reaction for 4.2.1.2 is a reversible reaction of (S)-
malate = fumerate + H20O, and that of 1.4.1.13 is an irre-
versible reaction of 2 L-glutamate + NADP = L-glutamate
+ 2-oxoglutarate + NADPH + H. Taking account of the
existence of isozymes (here we igonore gitF for conven-
ience), the stoichiometric matrix is derived as follows
(Table 1):
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Table 2: Generated bacterial pathway models. Bacterial models generated with GEM System from the complete genomes containing
more than 500 enzymes is listed here (complete list of 90 models is available at our web site [29]). Here the KEGG coverage is
calculated as the percentage of correctly extracted enzyme in the corresponding organism specific pathways in the KEGG database.

species genes metabolites reactions enzymes  KEGG coverage
Bacillus anthracis Ames 5311 1007 776 675 423/ 457(92.56%)
Bordetella bronchiseptica RB50 4994 1038 788 669 429/ 460(93.26%)
Bacillus halodurans C-125 4066 1056 812 693 422/ 435(97.01%)
Bradyrhizobium japonicum USDAI 10 8317 1257 995 863 521/ 555(93.87%)
Bordetella parapertussis 12822 4185 1011 763 644 404/ 433(93.30%)
Bordetella pertussis Tohama | 3447 957 717 602 394/ 422(93.36%)
Bacillus subtilis 168 4106 1060 818 699 464/ 476(97.48%)
Bacteroides thetaiotaomicron VPI-5482 4778 912 696 583 361/ 379(95.25%)
Caulobacter crescentus CBI5 3737 1068 807 689 405/ 420(96.43%)
Corynebacterium efficiens YS-314 2950 944 674 574 352/ 383(91.91%)
Chromobacterium violaceum ATCC 12472 4407 1047 834 729 484/ 523(92.54%)
Escherichia coli CFTO73 5379 1120 906 780 525/ 554(94.77%)
Escherichia coli 0157:H7 EDL933 5349 1197 972 842 545/ 566(96.29%)
Escherichia coli K-12 MG1655 4289 1195 968 835 579/ 579(100.00%)
Escherichia coli O157:H7 Sakai 5361 1206 972 842 548/ 568(96.48%)
Fusobacterium nucleatum ATCC 25586 2067 804 608 514 302/ 326(92.64%)
Gloeobacter violaceus PCC742 | 4430 945 689 587 347/ 375(92.53%)
Haemophilus influenzae Rd KW20 1709 907 664 551 358/ 359(99.72%)
Lactococcus lactis subsp. lactis IL1403 2266 925 683 567 312/ 328(95.12%)
Mycobacterium bovis subsp. bovis AF2122/97 3920 943 690 592 414/ 456(90.79%)
Mycobacterium leprae TN 1605 851 605 501 285/ 315(90.48%)
Mycobacterium tuberculosis CDCI551 4187 1064 780 678 403/ 424(95.05%)
Mycobacterium tuberculosis H37Rv 3869 1070 806 684 405/ 431(93.97%)
Nitrosomonas europaea ATCC 19718 2461 832 621 514 334/ 360(92.78%)
Neisseria meningitidis Z2491 (serogroup A) 2065 895 663 562 334/ 346(96.53%)
Neisseria meningitidis MC58 (serogroup B) 2025 867 635 532 329/ 339(97.05%)
Oceanobacillus iheyensis HTE83 | 3496 967 731 617 398/ 435(91.49%)
Pseudomonas aeruginosa PAO | 5565 1218 944 826 499/ 517(96.52%)
Photorhabdus luminescens 4683 1026 785 672 458/ 501(91.42%)
Pasteurella multocida PM70 2014 913 671 561 372/ 391(95.14%)
Pseudomonas putida KT2440 5350 1087 840 722 456/ 492(92.68%)
Pseudomonas syringae pv. tomato DC3000 5471 1077 841 719 446/ 483(92.34%)
Rhodopirellula baltica (Pirellula sp. strain 1) 7325 971 748 639 412/ 432(95.37%)
Staphylococcus aureus MW2 2632 866 634 541 343/ 360(95.28%)
Staphylococcus epidermidis ATCC 12228 2419 843 612 514 328/ 350(93.71%)
Shigella flexneri 301 (serotype 2a) 4180 1084 858 736 493/ 532(92.67%)
Shigella flexneri 2457T (serotype 2a) 4068 1044 817 701 486/ 533(91.18%)
Salmonella typhi Ty2 4323 1100 887 764 527/ 563(93.61%)
Synechococcus sp. WH 8102 2517 804 575 508 347/ 375(92.53%)
Thermosynechococcus elongatus BP-1 2475 851 628 512 318/ 350(90.86%)
Thermotoga maritima MSB8 1846 862 622 515 292/ 305(95.74%)
Xanthomonas axonopodis pv. citri 306 4312 1054 804 679 424/ 451(94.01%)
Xanthomonas campestris pv. ATCC 33913 4181 1051 809 685 437/ 462(94.59%)
Yersinia pestis KIM 4090 1075 846 723 472/498(94.78%)

where the first four rows represent two sets of reversible
reaction of 4.2.1.2 and the fifth row represents the irre-
versible reaction of 1.4.1.13, and the columns represent
(S)-malate, fumerate, H20, L-glutamate, NADP, 2-oxogl-
utarate, NADPH, and H, respectively. For gap-filling, the
reaction connecting 2-Hydroxy-ethyl-ThPP and Acetalde-
hyde, namely 4.1.1.1 is suggested from the connectivity of
upstream reactions (4.2.1.11, 2.7.1.40, and 1.2.4.1) and
downstream reactions (1.2.1.3, 6.2.1.1, and 2.3.1.12) in
the glycolysis pathway.

Validation of the qualitative modeling step

Stoichiometric simulation models of all available com-
plete annotated bacterial genomes have been generated by
using the GEM System with the default parameters. Com-
plete genome flatfiles were obtained from the EMBL data-
base, and corresponding PTT files were used for COG
annotation. Using these inputs, the BLAST searches were
limited to the genes that did not contain direct external
database link (db_xref) to SWISS-PROT or TrEMBL, and
COG searches were replaced with data integration of PTT
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Table 3: Validation of E. coli model with KEGG and SWISS-PROT. Generated pathway model of E. coli was validated with E. coli
specific entries of KEGG PATHWAY and SWISS-PROT database for every pathway. GEM System maintained high accuracy for
proteins that are not EC coded. Three genes that are not identified actually correctly identified the gene, but in different organisms or
strains. Similar table is available for all other models at the web database [29].

Pathway EC coverage Gene coverage Genes without EC Unidentified genes
00010:Glycolysis/ 26/26 (100%) 43/44 (97%) [ GPMA_ECOLI
Gluconeogenesis

0005 I:Fructose and 26/26 (100%) 53/53 (100%) 3
mannose

00052:Galactose 17/17 (100%) 28/28 (100%) 2
metabolism

0006 | :Fatty acid 717 (100%) 11711 (100%) |
biosynthesis (path 1)

00100:Biosynthesis of 10/10 (100%) 9/10 (90%) 0 ISPH_ECOLI
steroids

00130:Ubiquinone 12/12 (100%) 32/32 (100%) |
biosynthesis

00190:Oxidative 8/8 (100%) 41/41 (100%) |
phosphorylation

0051 1:N-Glycan 2/2 (100%) 5/5 (100%) |
degradation

00550:Peptidoglycan 12/12 (100%) 16/17 (94%) 0 UPK_ECOLI
biosynthesis

00620:Pyruvate 33/33 (100%) 45/45 (100%) |
metabolism

00640:Propanoate 18/18 (100%) 24/24 (100%) |
metabolism

00750:Vitamin B6 9/9 (100%) 11711 (100%) |
metabolism

00760:Nicotinate and 16/16 (100%) 16/16 (100%) |
nicotina

02010:ABC transporters 4/4 (100%) 190/190 (100%) 186
prokaryotic

02020:Two-component 11711 (100%) 85/85 (100%) 38
system

02030:Bacterial chemotaxis 3/3 (100%) 20/20 (100%) 17
02040:Flagellar assembly 171 (100%) 38/38 (100%) 37
02060:Phosphotransferase 2/2 (100%) 53/53 (100%) 13
sys

03010:Ribosome 0/0 (%) 55/55 (100%) 55
03030:DNA polymerase 171 (100%) 13/13 (100%) |
03060:Protein export 2/2 (100%) 17/17 (100%) 15
03070:Type lll secretion I/1 (100%) 10/10 (100%) 9
system

03090:Type Il secretion 2/2 (100%) 25/25 (100%) 23
system

file with EMBL data. In this way, functional annotation
process was optimized and therefore the calculation speed
was remarkably fast, finishing the entire process in a few
hours on a dual-processor PC server (Pentium 4 Xeon 2.8
GHz, 4 GB RAM). Statistics describing the scale of compu-
ter-based cell models with over 500 enzymes are shown in
Table 2 (the complete list of 90 models is available at our
web site [29]). Here the KEGG coverage is calculated as
the percentage of correctly extracted enzymes in the corre-
sponding organism-specific pathways in the KEGG data-
base. The model organism E. coli K12 MG1655 yielded the
best numbers, with 968 reactions of 835 enzymes and
1195 metabolites in the computer-based model with an

accuracy of 100% KEGG coverage, in other words, with-
out any false negatives. Organisms that are not well
understood are limited by this database driven approach,
but even the model with lowest coverage, in this case
Mpycobacterium leprae, achieved over 90% coverage.

Accuracy comparison with E. coli specific entries of KEGG
PATHWAY and SWISS-PROT data for pathways with uni-
dentified genes or genes that have no EC number assigned
are shown in Table 3. Since the overall KEGG coverage is
100% in E. coli, the EC coverage is obviously 100% for all
pathways. However, there are several reactions that can-
not be EC coded in some metabolic pathways, and a large
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Table 4: Check for all 54 enzymes not found in KEGG or SWISS-PROT. All of the 54 enzymes that were not found in E. coli specific
entries of KEGG PATHWAY or SWISS-PROT database were manually checked with EcoCyc and iJR904. Although there were 6
probable mis-annotations by the GEM System, most enzymes were correctly identified in EcoCyc. This is mostly due to the
inconsistencies of EC numbers among databases.

GEM gene name EcoCyc KEGG(ECOLI) Swissprot(ECOLI) iJR904 description

1.10.2.-  cyoA-D, appB-C 1.10.2.- 1.10.3.- 1.10.3.- no EC inconsistency of EC (incomplete EC)

1.143.-  ubiH 1.14.3.- 1.14.13.- 1.14.13.- N.A. inconsistency of EC (incomplete EC)

I1.16.1.-  ndh 1.16.1.- 1.6.99.3 1.6.99.3 N.A. inconsistency of EC (incomplete EC)

1.17.4.-  nrdA-B, E-F 1.17.4.-, 1.17.4.1 1.17.4.1 1.17.4.1 N.A. inconsistency of EC (incomplete EC)

1.18.99.1 hyfA-F, H no EC l--.m l-m.m N.A. possible misannotation by GEM System (EC
not applicable)

1.2.1.19  feaB 1.2.1.39 1.2.1.39 1.2.1.39 1.2.1.39 missannotation by GEM System

1.2.1.21  aldA 1.2.1.21 1.2.1.21, 12,122 1.2.1.21, 1.2.1.22 1.2.1.21 KEGG PATHWAY mainly uses 1.2.1.22

12.1.24 feaB 1.2.1.39 1.2.1.39 1.2.1.39 1.2.1.39 missannotation by GEM System

1.3.-.- frdD 1.3.5.- 1.3.99.1 N.A. 1.3.99.1 inconsistency of EC (incomplete EC)

1.3.1.10  fabl 1.3.1.9, 1.3.1.10 1.3.1.9 1.3.1.9 N.A. 1.3.1.10 specifically functions as 1.3.1.9 in
E.coli

1.43.- nadB 1.43.- 1.43.16 1.4.3.16 N.A. inconsistency of EC (incomplete EC)

1.53.2 solA 1.5.3.2 1.5.3.1 1.53.- N.A. inconsistency of EC

1.6.4.2 gor 1.8.1.7 1.8.1.7 1.8.1.7 N.A. inconsistency of EC (1.6.4.2 is changed to
1.8.1.7)

1.6.4.5 trxB 1.6.4.5 1.8.1.9 1.8.1.9 1.6.4.5 inconsistency of EC (1.6.4.5 is changed to
1.8.1.9)

1.6.6.- nirB 1.7.1.4 1.7.1.4 1.7.1.4 no EC inconsistency of EC (1.6.6.4 is changed to
1.7.1.4)

1.6.6.8 guaC 1.6.6.8 1.7.1.7 1.7.1.7 1.6.6.8 inconsistency of EC (1.6.6.8 is changed to
1.7.1.7)

1.6.8.1 cysl-) 1.68.1,1.8.1.2 1.8.1.2 1.8.1.2 N.A. inconsistency of EC

2.3.1.38 fabH 23.1.-,,23.1.38 2.3.1.41 2.3.1.41 2.3.1.38 inconsistency of EC

2.3.1.40 aas 2.3.1.40, 6.2.1.20 2.3.1.40,6.2.1.20 2.3.1.40, 6.2.1.20 6.2.1.20 inconsistency of EC

242.15 deoD 242.-,242.15,242.1 242.1 24.2.1 24.2.1 inconsistency of EC

2.5.1.1 ispA 2.5.1.1,25.1.10 2.5.1.10 25.1.10 2.5.1.1,2.5.1.10 inconsistency of EC

2.6.-.- serC 2.6.-.-,2.6.1.52 2.6.1.52 2.6.1.52 2.6.1.52 inconsistency of EC (incomplete EC)

26.1.29  ygG 2.6.1.29 2.6.1.13 26.1.13 26.1.13 inconsistency of EC

3.1.3.6 cpdB 3.1.3.6 3.14.16 3.14.16 N.A. inconsistency of EC

3.1.38 agp 3.1.38,3.1.3.10 3.1.3.10 3.1.3.10 3.1.3.10 inconsistency of EC

35.1.44  cheB 3515 3.1.1.-, 3.1.1.61,3.5.1.44  3.1.1.61 3.1.1.61 N.A. inconsistency of EC

354.- tadA 354.- N.A. 3.54.- N.A. not available in KEGG PATHWAY
(incomplete EC)

3.6.1.34 atpA-G 3.6.1.34 3.6.3.14 3.6.3.14 3.6.3.14 inconsistency of EC (3.6.1.34 is changed to
3.6.3.14)

4.1.1.3 eda 4.1.1.3,4.1.2.14,4.1.3.16 4.1.2.14,4.13.16 4.1.2.14,4.1.3.16 4.1.2.14 inconsistency of EC

4.1.2.15 aroF-H 4.1.2.15 2.5.1.54 2.5.1.54 4.1.2.15 inconsistency of EC (4.1.2.15 is changed to
2.5.1.54)

4.1.2.16  kdsA 4.1.2.16 2.5.1.55 2.5.1.55 4.1.2.16 inconsistency of EC (4.1.2.16 is changed to
2.5.1.55)

4.1.240 ydjl N.A. N.A. N.A. N.A. possible misannotation by GEM System by
sequence similarity to

4.1.3.12  leuA 4.1.3.12 2.33.13 233.13 4.1.3.12 inconsistency of EC (4.1.3.12 is changed to
233.13)

4.1.3.18 ilvB, G-I, M-N 22.1.6,4.1.1.71 22.1.6 22.1.6 4.1.3.18 inconsistency of EC (4.1.3.18 is changed to
2.2.1.6)

4.1327 trpD 242.18,4.1.3.27 242.18,4.1.327 242.18,4.1.3.27 4.1.3.27 KEGG PATHWAY mainly uses 2.4.2.18

4.1.3.31  prpC 2.3.3.1,4.1.331 2335 2335 4.1.3.31 inconsistency of EC (4.1.3.31 is changed to
233.1)

4.1.3.9 menD 233.11,4.1.1.71 2.5.1.64 2.5.1.64,4.1.1.71 4.1.1.71 inconsistency of EC (4.1.3.9 is changed to
233.11)

4.2.1.13  tdcG, yhaP-Q, sdhY 4.2.1.13 43.1.17 43.1.17 no EC inconsistency of EC (4.2.1.13 is changed to
4.3.1.17)

4.2.1.14 sdaA-B 43.1.17,43.1.19 43.1.17 43.1.17 no EC possible misannotation by GEM System
(4.2.1.14 is changed to 4

4.2.1.16  tdcB, ilvA 43.1.19 4.3.1.19 43.1.19 no EC inconsistency of EC (4.2.1.16 is changed to
4.3.1.19)

42.99.11 mgsA 4233 4233 4233 4233 inconsistency of EC (4.2.99.11 is changed to
42.3.3)

42992 thrC 4.2.99.2 4.23.1 4.23.1 4.23.1 inconsistency of EC (4.2.99.2 is changed to
4.2.3.1)

42998 cysK,M 2.5.1.47 2.5.1.47 2.5.147 4.2.99.8 inconsistency of EC (4.2.99.8 is changed to
2.5.1.47)

42999 metB 2.5.1.48 2.5.1.48 2.5.1.48 4.2.99.9 inconsistency of EC (4.2.99.9 is changed to
2.5.1.48)

43.1.8 hemC 2.5.1.61 2.5.1.61 2.5.1.61 43.1.8 inconsistency of EC (4.3.1.8 is changed to
2.5.1.61)
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Table 4: Check for all 54 enzymes not found in KEGG or SWISS-PROT. All of the 54 enzymes that were not found in E. coli specific
entries of KEGG PATHWAY or SWISS-PROT database were manually checked with EcoCyc and iJR904. Although there were 6
probable mis-annotations by the GEM System, most enzymes were correctly identified in EcoCyc. This is mostly due to the

inconsistencies of EC numbers among databases. (Continued)

4399.1 cynS 4.3.99.1 4.2.1.104

4.6.1.3 aroB 4.6.13 4234

4.6.1.4 aroC 4.6.1.4 423.5

4.99.1.-  cysG 4.99.1.4,1.3.1.76, 2.1.1.107 4.99.1.4,1.3.1.76,
2.1.1.107

53.1.10 nagB 3.5.99.6 3.5.99.6

53.1.3 fucl 5.3.1.3,5.3.1.25 5.3.1.3,53.1.-

6.3.1.5 yhiG N.A. N.A.

6.3.2.15 murF 6.3.2.15 6.3.2.10

6.34.1 guaA 6.34.1,6.3.5.2 6.34.1,6.3.5.2

42.1.104 no EC inconsistency of EC (4.3.99.1 is changed to
4.2.1.104)

4234 N.A. inconsistency of EC (4.6.1.3 is changed to
4.2.3.4)

4235 4235 inconsistency of EC (4.6.1.4 is changed to
4.2.3.5)

4.99.1.4, 1.3.1.76, 2.1.1.107 inconsistency of EC (incomplete EC)

2.1.1.107

left3.5.99.6 3.5.99.6 inconsistency of EC (5.3.1.10 is changed
t03.5.99.6)

5.3.1.25 5.3.1.25 inconsistency of EC

N.A. N.A. possible misannotation by GEM System by
sequence similarity to nadE gene

6.3.2.10 6.3.2.15 inconsistency of EC (6.3.2.15 is changed to
6.3.2.10)

6.3.5.2 6.3.52 KEGG PATHWAY mainly uses 6.3.5.2

fraction of reactions for pathways other than metabolism.
Although the reactions that are not EC coded is not
included in the stoichiometric model since they are
beyond the purpose of this work to create metabolic path-
way models, GEM System correctly identified all genes
except for 3 cases in comparison with SWISS-PROT
entries, so that the information can easily be incorporated
for future applications. Three misidentified genes were
actually correctly identified but the homology search
identified them in different organisms or strains, namely,
GPMA_ECOLI was identified to be GPMA_SHIFL (same
gene in Shigella flexneri), ISPH_ECOLI and UPK_ECOLI
were identified to be ISPH_ECO57 and UPPP_ECO57
(same gene in O157 strain of E. coli).

The E. coli model was further compared with the genome-
scale metabolic flux model of Reed et al. (iJR904) [30] and
the EcoCyc database [31]. EC numbers are directly com-
pared, and all of the 54 enzymes that are not included in
the E. coli specific entries of KEGG or SWISS-PROT are
manually checked through EcoCyc and iJR904 as shown
in Table 4. There were 6 possible mis-annotations by the
GEM System, but the majority of the enzymes were mis-
identified due to the inconsistencies of the EC notation
among databases. After correction of obsolete or deleted
EC numbers, iJR904 contained 388 out of 425 EC num-
bers in common (91.29% accuracy), and EcoCyc had 651
out of 701 EC numbers in common (92.38% accuracy).
16 enzymes that were assigned different EC numbers
between the SWISS-PROT database and the iJR904 model,
although the genes were correctly identified, so our model
has overall 95.06% accuracy compared with the iJR904
model. Five enzymes out of the 21 false negatives in com-
parison with iJR904 and 38 out of the 49 false negatives
in comparison with EcoCyc have no corresponding genes
as of now. This fact emphasizes the importance of manual
refinement, but since this process is required for less than
5% of the model in E. coli, our automatic modeling sys-

tem should keep the manual effort to a minimum. Obvi-
ously E. coli is the most well studied organism, and the
manual procedure required for other organisms would be
greater than 5%. However, most of the other models also
yielded over 500 reactions at 90% or more KEGG cover-
age, and since the models are provided with pathway-wise
accuracy table similar to Table 3 at GEM System web-site
[29] the user can easily identify which pathway is incom-
plete and thus requires manual checking.

The number of EC numbers extracted from the iJR904
model, 425, may seem small compared with the total
number of reactions, 931. However, iJR904 contains 184
transporters that cannot be EC-coded, and it contains
many enzymes without EC numbers that are EC-coded in
KEGG database. Moreover, since many enzymes have
multiple reactions, the total number of EC-coded reac-
tions in iJR904 is 519. It is worth noting that iJR904
selects the pathways to include in the model, whereas the
GEM System takes a greedy approach where every possible
enzyme that is predicted to exist in a genome is included,
regardless of the types of pathway the enzyme belongs to,
leading to greater number of enzymes than in the iJR904
model. To summarize, the generated model has very high
coverage (91~100%) compared to KEGG, EcoCyc, and
iJR904, and the overall accuracy is also high, with false-
positives of 6 entries (0.72%) and possible false-negatives
of less than 43 entries (5.14%).

Database of generated models

Our web site [29] makes publicly available all genome-
scale models with enzyme or metabolite lists with reac-
tions, gene lists with matched product and BLAST e-val-
ues, stoichiometric matrices for static simulation and
metabolic flux analysis, interactive pathway maps gener-
ated with a Java applet for visualizing protein-protein
interactions [32], and a tool to view the extracted enzymes
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mapped on the KEGG pathway database by using KEGG
APL

Discussion

We have developed the GEM System, automated software
for the rapid construction of draft simulation models of
cell-wide metabolic pathways from genome sequence
information by integration of public biological databases.
Automatic generation of the models is currently limited to
metabolism in bacteria, and depends on the availability of
EC numbers in public databases, but we have shown that
qualitative models of the metabolic pathways of bacteria
can be generated with low false positives and negatives, as
validated by the comparison with KEGG, EcoCyc, and
Reed et al.'s model. Although the generated models are
draft models and thus still require expert curation to
ensure the accuracy of simulations, manual involvement
is minimized.

There are, however, several limitations of this approach.
Firstly, although EC numbers are generally effective for
enzyme data representation for well known pathways, cer-
tain number of reactions have no EC number assigned,
and therefore majority of the transporters are identified as
genes but not included as reactions in GEM System, mak-
ing a large fraction of the model different from iJR904.
Secondly, some EC numbers are incomplete and therefore
ambiguous, and some become quickly obsolete, being
assigned to new EC numbers. This resulted in more than
40 inconsistent enzyme assignments in GEM System.
Thirdly, since the GEM System identifies enzymes and the
corresponding reactions based on the genome informa-
tion, it cannot identify reactions that are experimentally
observed but with no corresponding gene found. To over-
come these problems, more general nomenclature for
enzymes should be used in addition to the EC numbers
and integrate necessary information that have no link to
the gene sequences.

The system generates a stoichiometric simulation model
in SBML format, which is readily applicable to flux-based
analyses on a number of simulation platforms. The stoi-
chiometric models can be used for metabolic flux analyses
by supplying experimental data for exchange fluxes as
reported elsewhere [33,34]. One potential application of
GEM System using this stoichiometric matrix is for
dynamic large-scale simulation of metabolic pathways
with hybrid dynamic/static simulation method [35].
Using this method, quasi-dynamic simulation is achieved
by subdividing the model into multiple "static modules”
connected by "dynamic modules", and by calculating the
flux distribution of static modules using the stoichiometry
and boundary flux of the dynamic module that is mod-
eled with traditional enzyme kinetics methods. In this
way, necessary kinetic equations and parameters are sig-

http://www.biomedcentral.com/1471-2105/7/168

nificantly reduced while maintaining simulation accu-
racy. Most reactions with high elasticities can be included
in the static module, for which the stoichiometric matrix
generated by the GEM System is directly applicable.

The GEM System can generate models automatically from
public databases, but can also utilize private databases if
such experimental data becomes available. Mining of
high-throughput data by bioinformatics may facilitate the
quantitative modeling step; for example, it should be pos-
sible to take advantage of recent progress in "metabo-
lomics". Once genome-wide metabolome data becomes
available via high-throughput techniques such as the cap-
illary electrophoresis - electrospray ionization - mass
spectrometry (CE-ESI-MS) method, metabolome data can
be used to add unknown pathways, to supply the initial
values of the metabolites, and to optimize kinetic param-
eters. Parameter fitting of time-series metabolite concen-
tration data to general dynamic equations such as
Generalized Mass Action is a possible substitution for
accurate kinetic modeling, at least in the given time frame
of the data set used for parameter optimization.

Our next step is to model the gene expression layer,
including transcription, translation, and degradation
processes. The GEM System is a powerful platform for this
purpose, in no small part because the genome-based
approach enables a link to databases of different fields
based on the nucleotide sequences already described.
Because the GEM System has been based on a generic bio-
informatics workbench, that is, the G-language Genome
Analysis Environment [36], the system can directly access
genome sequences and perform computational genome
data-mining. Required parameters or information such as
the structure of a promoter can be directly obtained from
the genome sequence as the simulation takes place. In this
respect, GEM System can be extended to be applicable for
the modeling of eukaryotes, by identifying protein subcel-
lular localizations from database reference and with pre-
dictable methods [37,38]. Although the parameters in the
functional annotation process should be revised to cope
with the information availability and the existence of a
multitude of duplicate gene paralogs, by selecting tissue
specific gene expression pattern with expressed sequence
tags (EST) or microarray data, the general approach of the
GEM System should also be applicable for tissue specific
cellular models of higher eukaryotes. In sum, the rapid
accumulation of biological information now allows the
realization of integrative systems biology, but at the same
time makes manual modeling unrealistic; therefore, a
genome-based automatic modeling procedure is a crucial
step forward for the grand challenge to construct life in a
computer.
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Conclusion

The GEM System facilitates systems biology research by
prototyping a metabolic pathway simulation model from
a genome. Given a complete genome, all modeling proce-
dures are automated with configurable options, generat-
ing stoichiometric models in SBML format that are readily
usable by cell simulators. In comparison with the KEGG
organism-specific databases, the qualitative modeling
step has high accuracy, with few false positives and nega-
tives. More than 90 models generated from complete bac-
terial genomes are available for download online, with
visualized pathway maps and gene lists.
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