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Abstract
Background: Non-negative matrix factorisation (NMF), a machine learning algorithm, has been
applied to the analysis of microarray data. A key feature of NMF is the ability to identify patterns
that together explain the data as a linear combination of expression signatures. Microarray data
generally includes individual estimates of uncertainty for each gene in each condition, however
NMF does not exploit this information. Previous work has shown that such uncertainties can be
extremely valuable for pattern recognition.

Results: We have created a new algorithm, least squares non-negative matrix factorization, LS-
NMF, which integrates uncertainty measurements of gene expression data into NMF updating
rules. While the LS-NMF algorithm maintains the advantages of original NMF algorithm, such as
easy implementation and a guaranteed locally optimal solution, the performance in terms of linking
functionally related genes has been improved. LS-NMF exceeds NMF significantly in terms of
identifying functionally related genes as determined from annotations in the MIPS database.

Conclusion: Uncertainty measurements on gene expression data provide valuable information for
data analysis, and use of this information in the LS-NMF algorithm significantly improves the power
of the NMF technique.

Background
Because of their ability to link genes that behave similarly
across conditions in a gene expression study, pattern rec-
ognition and clustering are widely used for data analysis
of microarray data (see [1] for a review). Numerous meth-
ods have been adopted to cluster genes or samples includ-
ing hierarchical clustering [2], maximum likelihood
clustering [3], the cluster affinity search technique [4],
quality threshold clustering [5], and fuzzy K-means clus-
tering [6], among others. Some methods specifically aim
to identify subsets of behaviors within the data, where
genes behave similarly only over a subset of samples. Such
methods include two-way clustering [7] and biclustering

[8]. Other methods allow genes to belong to multiple pat-
terns, reflecting biological roles where genes function in
multiple cellular processes. Such methods include Baye-
sian Decomposition [9,10], principal component analysis
[11], independent component analysis [12], and nonneg-
ative matrix factorization [13-15].

By creation of a constrained model (e.g., a model with
only positive points), non-negative matrix factorization
(NMF) shares with Bayesian Decomposition (BD) the
potential to more accurately identify sets of genes that
together provide function. Both aim to recover two matri-
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ces, A and P, that reproduce the data within the uncer-
tainty as in

D = M + ε = A·P + ε.  (1)

In the case of NMF, this constraint is positivity in the A
and P matrices, while in BD the constraint is provided
through relationships between model points in the form
of convolution functions during matrix reconstruction
[16]. For microarray data, the matrix D provides the esti-
mates of transcriptional levels, such that each column cor-
responds to the estimate for a single condition, with each
matrix element in a column corresponding to the estimate
for a single gene (or probe set) in that condition. A row of
D corresponds to the processed intensity for a single gene
across all conditions. If D has dimension of I × J, then A
has dimensions I × K, and P has dimensions K × J, where
K is the dimensionality (i.e., rank). There is no accepted

method yet to choose K a priori, however many possible K
can be tested in order to find an optimal value [17].

The overall simulation in the original NMF algorithm
aims to minimize the difference between M and D in
Equation 1, with every element in D given the same
weight in evaluating the difference between the two matri-
ces. However, most microarray measurements are repli-
cated and, in addition, statistical techniques have been
developed to estimate uncertainty measurements for all
data points in D [18-21]. This uncertainty information is
extremely valuable for identifying the best model [10],
and it has been used in microarray analysis in other con-
texts as well [22]. Inclusion of this information in fitting
the A and P matrices should improve the NMF algorithm
by allowing it to more precisely fit the reconstructed M to
the data, D. Such approaches have also been used success-
fully within supervised methods, such as LS-SVM [23].

Results
Data sets
We applied the least squares nonnegative matrix factoriza-
tion (LS-NMF) algorithm to two publicly available micro-
array datasets, one with no individual estimates of
uncertainties for each data point and one with such infor-
mation. The first set is yeast cell cycle data from cultures
synchronized with a temperature sensitive cdc28-mutant
[24], which has a single Affymetrix GeneChip measure-
ment at each time point. The second set is the yeast dele-
tion mutant compendium from Rosetta Inpharmatics
[25], which comprises microarray measurements of
mRNA levels from yeast cultures containing either clones
of S. cerevisiae with gene deletions or chemical treatments.
Both data sets were preprocessed as described in Methods
to create the estimates of mRNA levels for the data matrix,
D.

Algorithm performance
Data fitting
To measure the ability of LS-NMF to fit the data, we meas-
ured the χ2 fit (as in Equation 6) between the model of the
data provided by M and the data in D, as in Equation 1.
The original NMF algorithm used the root mean square
distance (RMSD) between these two matrices as a measure
of fit, however this is incapable of taking into account the
uncertainty information used by LS-NMF. Essentially,
NMF ignores variations in the precision of the measure-
ments. The χ2 measure provides a standard approach to
determining the fit between a model of a data set and the
data set itself. Figure 1 shows the difference between the D
and M matrices using LS-NMF and NMF for dimensional-
ities of K = 3 - 20 on the Rosetta data set. Figure 1 demon-
strates that the χ2 error value decreased with increasing
dimensionality for LS-NMF, but not for the NMF simula-
tion. At all dimensions, LS-NMF consistently fits the data

Fits to the DataFigure 1
Fits to the Data. The comparison of LS-NMF and NMF for 
fitting data is shown for the Rosetta Compendium. NMF is 
based on root mean squared deviation (RMSD) fitting, and as 
the number of dimensions increases, the fit improves with 
potential overfitting possible. The χ2 measurement provides 
the standard measure of fit to the data and shows how the 
LS-NMF method fits data much better once individual uncer-
tainty measurements are considered.
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better, which is expected as NMF does not optimize M for
the known variance. More interestingly, in the LS-NMF
simulation, the RMSD error appears to be independent of
the dimensionality, while NMF does depend on the
dimensionality. This results from the LS-NMF simulation
fitting the more reliable data points tightly, while allow-
ing the data points with high variance to be fit more
loosely. This can be seen in Figure 2, where points with
the highest variance (bottom 25%) do not improve in
RMSD in LS-NMF, while they continue to show improve-
ment in χ2. The χ2 measure takes into account the variance
providing a better measure of fit in cases of varying vari-
ance.

Computational complexity
While incorporating uncertainty measurements into NMF
update rules (as described in Methods) makes sense for
fitting microarray data, if the modification adds too much
computational complexity, it will not be useful practi-
cally. We have measured the additional computational
cost when applied to the Rosetta data set, and we have
found that it is a constant offset compared to the cost of
the original NMF implementation, regardless of complex-
ity. This indicates that LS-NMF has the same convergence

speed as NMF after a higher set-up cost, so that LS-NMF
can be used with a minimal loss of efficiency compared
with the original NMF algorithm in most practical appli-
cations.

Biological insights
ROC analysis of metagenes
After normalization as described in the Methods, the con-
tribution of each gene to a metagene is represented by a
scaled Z-score, with a positive Z-score indicating that the
gene is likely to be associated with that metagene, and a
negative Z-score indicating that the gene is unlikely to be
associated with the metagene. Metagenes were introduced
to summarize behavior shared by many genes within an
experiment that together provided the ability to classify
samples [26,27]. This was similar to the concept of an
eigengene from singular value decomposition [11], but
with regression models using classification data driving
the determination of mixing of the genes in a metagene.
Metagenes have been discussed in relation to NMF analy-
sis of microarray data previously [15], where they summa-
rize behavior across conditions and assign fractions of the
overall expression pattern for each gene to these behav-
iors.

Figure 3 shows that metagenes can recover known gene
coregulation in the well studied yeast cell cycle data set
[24]. The ROC test for the cell cycle data set relies on
known sets of coregulated genes [28] and is described in
Methods. Figure 3a shows the areas under the ROC curve
against the number of metagenes (dimensions) for both
NMF and LS-NMF. Because the cell cycle data set does not
have uncertainty estimates, we use a uniform multiplica-
tive uncertainty estimate in LS-NMF (see Equations 6–8).
As expected, LS-NMF does not outperform NMF here, as
there is no uncertainty information. The differences
between the curves merely reflects random differences in
changes generated by slightly different update rules. To
verify that LS-NMF behaves like NMF in the limit, we
assigned unit uncertainty to all data points, which should
reduce LS-NMF to NMF, as Equations 7–8 reduce to Equa-
tions 2–3. We analyzed the cell cycle data using six dimen-
sions in agreement with our earlier work [9] and
compared the performance of LS-NMF and NMF to
shrinkage-based hierarchical clustering [28]. As can be
seen in Figure 3b, both NMF and LS-NMF clearly perform
much better at the recovery of known biological coregula-
tion groups (note that the curves for NMF and LS-NMF lie
on top of each other). We used the Rosetta compendium
[25] to explore the ability of LS-NMF to gain power from
uncertainty data, with the gold standard supplied by genes
that together provide a metabolic pathway (see Table 1).
Figure 3c shows the performance of NMF and LS-NMF
across different values of dimensionality K in terms of
area under the ROC curve, as well as results for K-means

Misfit in MFigure 2
Misfit in M. The error between portions of the M and D 
matrices is shown as the dimensionality increases for the 
Rosetta data as fit by LS-NMF. The bottom 25% of the genes 
in terms of precision (i.e., highest variance) are shown 
together with the top 25%. Since LS-NMF relies on the vari-
ance, the algorithm fits the reliable data with improving accu-
racy, while ignoring poor data in terms of RMSD as the 
dimensionality increases.
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clustering applied to scaled data and for NMF applied to
scaled data. The scaled data set was generated by dividing
each data point in D by its associated uncertainty as in the
original publication [25]. For all dimensionalities, LS-
NMF improves the recovery of coregulated genes by 15%
over NMF and K-means. Scaling the data has an effect sim-
ilar to LS-NMF (see update equations below), however
this leads to problems in interpretation of the metagenes,
since the amplitude of a gene in a metagene will be
reduced to near zero for a gene with strongly scaled data
(see Equation 1).

Prediction of functional relationships
The other way to evaluate the performance of NMF and
LS-NMF is by testing their ability to predict functional
relationships between genes. In the reduced Rosetta data
set, 215 conditions are measurements of mRNA levels in
deletion mutants of S. cerevisiae growing in rich media
compared with mRNA levels of wildtype S. cerevisiae in
similar conditions. Mutants showing similar changes in
gene expression might be expected to have deletions of
functionally related genes, allowing predictions of func-
tional relationships between genes based on links
between deletion mutants. These predictions were scored
against available database information. In order to dem-
onstrate the gain from including uncertainty measure-
ments, predictions based on P matrices in Equation 1
from NMF, LS-NMF, and NMF on data scaled by the
uncertainty estimates were compared at different dimen-
sions. The dimensions chosen match previous work using
estimation by Bayesian Decomposition and ClutrFree
[17], where 15 dimensions were estimated to cover the
data, and NMF [13], where 50 dimensions were esti-
mated. In addition, correlations in the original data space
(D) were also calculated as a baseline providing estimates
of the ability of the data to predict functional relation-
ships independent of any dimensionality reduction.

Predictions of functional relationships were made using
pairwise Pearson correlations between experiments meas-
ured in each of the seven spaces (the original data space,
and the 15 and 50 dimensional spaces with NMF, LS-
NMF, and NMF on scaled data). In all spaces, only the 215
deletion mutant conditions were used for analysis. Predic-
tions were checked against the MIPS database (see Meth-
ods), and the results are shown in Figure 4. For each of the
methods, Figure 4 shows the percentage of predictions
validated by MIPS as a function of the number of predic-
tions made, which increases as the threshold for correla-
tion is lowered. In general, the methods should exhibit
the highest validation for their strongest predictions (i.e.,
highest thresholds, far left in Figure 4), but predictions
based on the 15-dimensional NMF did not show such a
trend, while 50-dimensional NMF and all LS-NMF did
behave as expected. NMF applied to the scaled data and

LS-NMF performed similarly at 50 dimensions, but LS-
NMF performed better at 15 dimensions. Both produced
better results than NMF applied to unsealed data and the
unreduced original data. The better consistency of LS-
NMF across changes in dimension may indicate that
including uncertainty information into NMF updating
rules improves the robustness of the algorithm. Note that
for all methods except NMF applied to unsealed data, the
methods perform at roughly the same level when only the
most reliable predictions are considered (left side of fig-
ures).

Discussion
In the last several years, many analytical approaches have
been used to identify groups of genes related by their sim-
ilar expression profiles across different conditions, includ-
ing time series, tumor samples, or different tissues. Since
evolution has led to the borrowing of genes for use in
multiple biological functions, the ability of NMF to esti-
mate an expression profile as a linear combination of
metagenes gains power by matching biological behavior.
This power is demonstrated by the analysis of the yeast
cell cycle data, where the ROC analysis shows that NMF is
more powerful than hierarchical clustering at recovering
coexpression groups. Nevertheless, as shown by the 63
replicated controls in the Rosetta compendium, the
mRNA levels of individual genes are not equally well con-
trolled in biological systems, leading to potentially large
differences in the variance of mRNA levels between differ-
ent genes. The constantly improving quality of microar-
rays and the ability to replicate conditions, either through
repeated experimentation in model systems or through
the capture of multiple related samples, provides esti-
mates of this gene and condition specific variance. By
using this valuable information in NMF update rules, the
least squares non-negative matrix factorization (LS-NMF)
algorithm improves the ability of this approach to recover
biological knowledge as demonstrated by the analysis of
the Rosetta compendium. Here, unlike in the yeast cell
cycle data, individual uncertainty estimates are available
at each data point. The value of this information is dem-
onstrated in Figure 3c, where LS-NMF outperformed NMF
in ROC analysis, and in Figure 4, where at both dimen-
sionalities LS-NMF greatly increased the number of suc-
cessfully recovered functional relationships.

LS-NMF may also be more stable than NMF in interpret-
ing biological functions of genes based on the metagenes
when the dimensionality is poorly estimated. In Figure 4,
analysis at 15 and 50 dimensions give similar results in
gene function prediction for LS-NMF, but not for NMF,
where analysis at 15 dimensions failed to give meaningful
results. This may result from the lack of uncertainty infor-
mation in NMF, which makes each data point equally
important in feedback to the update rules. A higher
Page 4 of 10
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dimensionality could then yield a better factorization,
while dimensionalities under some threshold would be
highly influenced by the noise from mRNA levels with
high variance. In LS-NMF, data points with low vairance
will always influence the update rules more strongly.

LS-NMF gains its power from inclusion of uncertainty
information. Such information can also be added by scal-
ing the data by the uncertainty estimate, as was done in
the original Rosetta study [25]. As can be seen in Figures 3
and 4, this gives similar though not identical results. How-
ever, the direct inclusion of uncertainty information pro-
vides both improved interpretation (15 dimensions in
Figure 4) and more flexibility. The direct use of uncer-
tainty information in LS-NMF allows extensions, such as
treatment of individual data points separately based on
additional information during updating (e.g., a priori bio-
logical knowledge linking genes), which scaling cannot
include. In addition, the approach allows for straightfor-
ward addition of methods such as simulated annealing
[29], which may be useful in escaping local maxima in the
probability distribution.

Conclusion
We have implemented a new algorithm, LS-NMF, based
on NMF, to analyze microarray data. The incorporation of
uncertainty information into the analysis of mRNA tran-
script levels significantly improves the recovery of biolog-
ical information in the form of functional links between
genes. In cases where there is no variance information
available, LS-NMF reduces back to NMF. LS-NMF will pro-
vide the community with a powerful new tool for analysis
of high-throughput data. The implementation is straight-
forward, so analysis of new data types with similar vari-
ance estimates should be possible, such as mass
spectrometry data. The source code and documentation is

available from http://bioinformatics.fccc.edu/ by follow-
ing the Open-Source link.

Methods
The LS-NMF algorithm
LS-NMF, like NMF, operates on preprocessed data from a
set of expression array experiments. The data comprises
estimates of mRNA transcript levels (single channel) or
ratios (two channel) represented as a single matrix D.
Each row of D contains the mRNA estimates for each gene
in all conditions (e.g., distinct tissues, experiments, time-
points), and each column corresponds to the estimates of
mRNA levels for all genes in a single condition. For a data-
set comprising I genes with expression measured in J con-
ditions, the dimensionality of matrix D would be I × J. The
goal of the NMF simulation is to find a small number of
metagenes (the number of metagenes provides a dimen-
sionality estimate), each defined as a positive linear com-
bination of I genes. The mRNA level estimates across
conditions for each gene can be approximated then as a
positive linear combination of these metagenes. Mathe-
matically, this can be expressed as an approximate factor-
ization of matrix D into a pair of matrixes A and P as in
Equation 1. The mock data, M, is the approximation of D,
based on our estimates of A and P. The matrix ε provides
for the error in the measurements in D. For K metagenes
(i.e., K dimensions), matrix A is of size I × K with each of
the K columns defining a metagene. The value of element
Aik indicates how strongly gene i is associated with meta-
gene k. Matrix P is then of size K × J, with each row repre-
senting the relative mRNA levels of a metagene across the
conditions. The value of element Pkj givens the strength of
metagene k in condition j.

For NMF simulation, random matrices A and P are initial-
ized according to some scheme. For instance, they could
be populated from a uniform distribution U [0,1]. The

Table 1: Coregulation Groups for Rosetta ROC Analysis. This table provides groups of genes that are believed to be coregulated based 
on the metabolic pathways of S. cerevisiae as summarized in the KEGG database.

Coregulation Groups

Group KEGG Pathway Genes

1 glucose fermentation ADH5 ALD5 ADH4 ADH2 ADH1 ALD4
2 phenylalanine degradation ADH5 ARO10 ADH4 ARO9 ADH2 ADH1
3 sulfate assimilation pathway II MET10 MET3 ECM17 MET14 MET17 MET16
4 gluconeogenesis TDH2 PCK1 YMR323W ERR1 ERR2
5 serine-isocitrate lyase pathway CIT2 ACO1 YMR323W ERR1 ERR2
6 TCA cycle, aerobic respiration CIT2 KGD2 ACO1 IDH1 IDH2
7 tryptophan degradation ADH5 ARO10 ADH4 ADH2 ADH1
8 glycolysis TDH2 YMR323W ERR1 ERR2
9 histidine biosynthesis HIS7 HIS4 HIS5 HIS3
10 leucine biosynthesis LEU2 LEU1 BAT1 LEU4
11 tryptophan degradation via kynurenine BNA4 BNA1 BNA2 BNA5
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ROC Analysis of Yeast Cell Cycle and Rosetta Data SetsFigure 3
ROC Analysis of Yeast Cell Cycle and Rosetta Data Sets. ROC analysis for NMF and LS-NMF for the yeast cell cycle 
data is summarized in sections a and b, while section c shows the results for the Rosetta Compendium analysis, where variance 
estimates are available. In a, the total area under the ROC curves is shown for LS-NMF (solid line) and NMF (dashed line). In b, 
LS-NMF and NMF are compared to hierarchical clustering at a single dimensionality (the LS-NMF and NMF curves are superim-
posed as there is no difference). In c, the areas under the ROC curve for analysis of the Rosetta data are shown for LS-NMF 
(solid line), NMF (dash-dot line), K-means clustering (dashed line), and NMF on scaled data (C-NMF, dotted line). Here the var-
iance information allows far better results to be obtained, either by scaling or by use of LS-NMF. The advantages of the 
approach used in LS-NMF are discussed in the text.
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two matrices are then iteratively updated using the rules
[13,30],

which guarantees reaching a local maximum in Likeli-
hood and minimizes

In the original NMF algorithm, elements of A and P were
updated at a pace determined by the difference between M
and D. For a discussion of some approaches to updating
A and P, see [31]. Since no uncertainty information enters
the updating rules, every matrix element involved in the

updating is weighted equally. In order to take advantage
of uncertainty information, we minimize the χ2 error,

instead of the distance between D and M. The update rules
can easily incorporate this change with
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Comparisons of Metagenes and MIPS Functional ClassesFigure 4
Comparisons of Metagenes and MIPS Functional Classes. Evaluation of metagenes for LS-NMF, NMF, and NMF on 
scaled data, as well as expression profiles for unreduced data, was done by determining the ability of each approach to find 
functionally related genes based on the MIPS functional classification. In a, the fraction of correct classifications at level 2 in the 
MIPS ontology are shown in terms of increasing numbers of gene pairs (i.e., decreasing threshold for correlation). In b, the 
same information is shown for level 3 in the MIPS ontology. The performance of NMF can be improved by utilizing a divergence 
based update rule, however performance is still significantly below LS-NMF, with recovery ranging from 12 to 30 times greater 
with LS-NMF.
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where σij is the uncertainty measurement for Dij. This
requires the existence of a new matrix, U, that provides
estimates of the uncertainties for all data points. One
advantage of this approach is that missing data is easily
handled by assigning a value of 0 (for single channel) or
1.0 (for two channel, i.e. ratio) together with a large
uncertainty. This essentially allows the algorithm to
ignore these data points when fitting the model.

It is straightforward to follow the procedure described by
Lee and Seung [30] to verify that χ2 is nonincreasing under
the modified update rules.

Implementation of NMF and LS-NMF algorithms
The NMF algorithm was obtained from the Broad Institute
as a Matlab script [15]. We converted this to a C++ version
allowing modification, and we validated the C++ version
by making sure we obtained the same results as for the
Matlab version in a number of simulations. For LS-NMF,
Equations 7–9 were implemented within C++. The code
included modified update rules that take into account the
additional U matrix. The code is designed for use on
Beowulf clusters running Linux, and source code is avail-
able under the GNU Lesser Public License from the Fox
Chase Bioinformatics web site http://bioinformat
ics.fccc.edu/ by following the Open-Source Software link.

Since the update rules in NMF and LS-NMF only guaran-
tee a local minimum, the algorithms may or may not con-
verge to the same solution on each simulation, depending
on the properties of the probability distribution. To
address this limitation, any simulation must be repeated
multiple times (typically 20–100 individual runs) starting
with different initial A and P matrices [13,15]. After the
simulation, either the best [13] or average [15] factoriza-
tion is selected for further analysis. We repeated NMF and
LS-NMF simulations on both the cell cycle dataset and the
Rosetta dataset 20 times for each dimension, K, between 3
and 20. Each single simulation was run for 20,000 update
steps or until it converged based on a predefined χ2

threshold (or RMSD threshold for NMF). The factoriza-
tion with the lowest χ2 error (or RMSD error for NMF)
from the 20 repeated runs for each dimension was
selected for further analysis. The errors were calculated as

Data preprocessing
Two data sets were analyzed using LS-NMF and NMF, the
yeast cell cycle data set [24] and the Rosetta compendium

[25]. The cell cycle data set comprises measurements of
mRNA levels using Affymetrix GeneChips. Synchroniza-
tion was done using a temperature sensitive mutant of
cdc28, which is required for passage into the late G 1 stage
of the cell cycle. Cultures were grown following tempera-
ture change to activate cdc28, and mRNA was harvested at
10 minute intervals. The data was preprocessed by the
original authors to identify genes that had cell cycle peri-
odicity, resulting in a data set with 788 genes measured at
17 time points. The 10 minute intervals beginning with t
= 0 on release from cell cycle arrest ended at 160 minutes,
providing roughly two passes through the yeast cell cycle.

The Rosetta data comprises genome-wide measurements
of gene expression across 300 deletion mutants or chemi-
cal treatments using oligonucleotide microarrays. We
downloaded the data from Rosetta Inpharmatics, filtered
it to remove experiments where less than 2 genes under-
went 3-fold changes, and finally removed genes that did
not change by 3-fold across the remaining conditions,
resulting in 764 gene probes and 228 conditions. The
Rosetta error model, based on replicates and 63 control
replications of wildtype yeast, provided the estimation of
uncertainty for each data point [25]. As the data com-
prised log-ratios, data transformation was used to convert
these measurements to positive ratios and errors were
propagated from the log space to the ratio space.

Evaluating the algorithms
The most reliable criteria to evaluate algorithms applied
to microarray data is the ability to recover the knowledge
of biological relationships between genes, i.e., whether
the suggested metagenes summarize biological knowl-
edge. While there are few well-established benchmarks
available to test the validity of metagenes, we use two well
studied data sets and biological knowledge of coregula-
tion or functional relationships to evaluate performance.
For the first data set, the cell cycle data, the coregulation
groups are based on biological knowledge of the yeast cell
cycle and comprise 9 overlapping groups with 43 genes
[28]. For the second data set, the Rosetta compendium,
accuracy of the metagenes was estimated using ROC anal-
ysis based on KEGG metabolic pathways [32] and predic-
tions of gene relationships compared to MIPS functional
classification [33].

To identify membership of genes in each metagene, a
threshold must be set. To do this, each row of P was nor-
malized to sum to 1, and a correction factor was applied
to the corresponding column of A to leave M unchanged.
In order to find the metagenes in A, the Z-score was calcu-
lated for each element in each row by
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where µi is the average value for gene i in A, and σi is the
standard deviation. The same data transformation was
done also for P, but it was column-based to obtain behav-
ior across metagenes for each condition. Then we assigned
gene i as a member of metagene k, if Zikwas greater than a
threshold, T. By changing the threshold value for the Z-
score, we calculated an ROC curve using the procedure
outlined below. It is useful to note that each gene may be
assigned to multiple metagenes, which allows identifica-
tion of multiple regulation of genes.

1. Assign genes to metagenes based on the selected
threshold. Generate a Boolean connectivity matrix C with
dimension of I × K with Cik = 1, iff gene i was assign to
metagene k.

2. Assign metagenes to biologically verified coregula-
tion groups. Metagene k is assigned to represent coregu-

lation group Gm iff the metagene maximizes 

among all possible k, i.e. metagene k is the most enriched
metagene for genes in group Gm.

3. Keep a Boolean correlation matrix R with dimension
of K × M. The value M is set by the number of coregulation
groups, and Rkm = 1 iff metagene k was assigned to repre-
sent coregulation group Gm.

4. Calculate the sensitivity and specificity. The true pos-
itive, true negatives, false positives, and false negatives are
given by

yielding sensitivity and specificity given by

5. Plot the ROC curve. The ROC curve is generated by
plotting multiple esitmates of the Sens and 1 – Spec based

on different thresholds T. We used the trapezoidal rule to
approximate the area under ROC curve.

In order to identify TN, TP, FP, FN values for Equation 13,
a gold standard is required. For figures 3a and 3b, the cell
cycle coregulation groups identified previously from
known transcriptional response and transcription factor
binding analyses in the yeast cell cycle are used [28]. For
3c, these groups are not useful, since most of these genes
play a criticial role in the cell cycle and are not included in
the deletion mutant set (only 5 of 43 genes are included
as deletion mutants). For this data set, we instead created
coreguation groups from the KEGG metabolic pathways
[32]. These groups are based on the assumption that genes
encoding enzymes that together provide a metabolic path-
way are likely to be coexpressed. The 11 groups compris-
ing 63 genes are provided in Table 1.

The second way that we evaluated the performance of
NMF and LS-NMF was by predicting gene relationships as
done by Kim and Tidor [13]. We assumed that similarity
of gene expression profiles as measured by metagenes for
different deletion mutants indicated a functional relation-
ship between the deleted genes. We calculated predictions
in both the original, unreduced data space (from the D
matrix) and in the reduced dimensional spaces computed
by NMF, LS-NMF, and NMF applied to scaled data (from
the P matrix). The scaled data was produced by taking the
Rosetta data and dividing by the uncertainty estimates.
The Pearson correlation coefficient was calculated
between all conditions (i.e. deletion mutants), and the
absolute value of the correlation coefficient was used as a
score for the predicted relationship. The functional rela-
tionships between deletion mutants are used as predictors
of functional relationships for the deleted genes. From the
Rosetta dataset, Pearson correlation coefficients were cal-
culated for all possible pairs of 215 columns in P (i.e, all
possible deletion mutant combinations). The scores were
compared to a threshold for multiple thresholds, and suc-
cessful predictions of functional relationships were deter-
mined by comparison to the MIPS Funcat annotation
[33,34]. The Funcat annotations are hierarchical, compris-
ing high level (level 1, example 41 DEVELOPMENT) to
low level (level 4, example 41.01.03.03 mycelium devel-
opment) categorizations. In order to have sufficient data
for the analysis and to have sufficient fine resolution of
function, we focused on the second and third levels of
annotation (e.g., 41.01 fungal/microorganismic develop-
ment, 41.01.03 tissue pattern formation). Two genes
appearing in the same MIPS functional category were con-
sidered as functionally related. For all combinations of
two genes predicted as functionally related by the Pearson
correlation test of their deletion mutants, the total
number of successful predictions were determined. The
fraction of successful predictions were then plotted as the
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threshold was reduced and the number of predictions
increased. In cases where genes do not have a MIPS func-
tional assignment at the desired level or were classified as
"UNCLASSIFIED PROTEINS", the corresponding deletion
mutants were removed from the analysis. This left 168
genes at level 3, where MIPS has 441 different classifica-
tions, and 180 genes at level 2, where MIPS has 158 differ-
ent classifications.
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