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Abstract

Background: The number and the arrangement of subunits that form a protein are referred to as
quaternary structure. Quaternary structure is an important protein attribute that is closely related
to its function. Proteins with quaternary structure are called oligomeric proteins. Oligomeric
proteins are involved in various biological processes, such as metabolism, signal transduction, and
chromosome replication. Thus, it is highly desirable to develop some computational methods to
automatically classify the quaternary structure of proteins from their sequences.

Results: To explore this problem, we adopted an approach based on the functional domain
composition of proteins. Every protein was represented by a vector calculated from the domains
in the PFAM database. The nearest neighbor algorithm (NNA) was used for classifying the
quaternary structure of proteins from this information. The jackknife cross-validation test was
performed on the non-redundant protein dataset in which the sequence identity was less than 25%.
The overall success rate obtained is 75.17%. Additionally, to demonstrate the effectiveness of this
method, we predicted the proteins in an independent dataset and achieved an overall success rate
of 84.11%

Conclusion: Compared with the amino acid composition method and Blast, the results indicate
that the domain composition approach may be a more effective and promising high-throughput
method in dealing with this complicated problem in bioinformatics.

Background

The structure hierarchy of proteins is defined in terms of
four levels: primary, secondary, tertiary, and quaternary.
The term quaternary structure was first introduced by Ber-
nalin 1958 [1-3]. It refers to the non-covalent interactions
of protein subunits to form oligomers and the spatial
arrangement of the subunits.

Oligomeric proteins are very common in nature. They can
be divided further into two classes: homo-oligomers and
hetero-oligomers; the former are composed of identical
subunits while the latter are composed of non-identical
subunits. For example, the potassium channel is formed
by a homo-tetramer [4] , and the gamma-aminobytyric
acid type A (GABA,) receptor is formed by a hetero-pen-
tamer [5]. The subunit construction of proteins provides
the structural basis for their activities and functions in var-
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Table I: Comparison of overall success rates obtained by the domain composition method, the amino acid composition method, and
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Blast in the non-redundant training dataset with a sequence identity less than 25%

Quaternary % Accuracy
Structure
Category

Domain Amino Acid Blast

composition composition
method method
Number correct/ % Accuracy Number correct/ % Accuracy Number correct/ % Accuracy
total total total

Monomer 169/208 81.25 79/208 37.98 150/208 72.12
Homodimer 269/335 80.30 180/335 53.73 253/335 75.52
Homotrimer 29/40 72.50 12/40 30 27/40 67.50
Homotetramer 52/95 54.74 19/95 20 50/95 52.63
Homopentamer 11711 100.00 6/11 54.55 (RVAN 100.00
Homohexamer 7/23 30.43 1723 435 6/23 26.09
Homooctamer 2/5 40.00 0/5 0 2/5 40.00
Total 539/717 75.17 2971717 41.42 4991717 69.60

ious biological processes, which include metabolism, sig-
nal transduction and chromosome replication [3,6]. From
an evolutional point of view, the oligomeric proteins have
more advantages than the monomers [7,8]. It is easier for
multi-subunit proteins to repair their defects by simply
replacing the flawed subunit [9]. Moreover, in a number
of biological processes, the quaternary structure of pro-
teins is indispensable for their function [9]. Thus, the
study of the quaternary structure is an interesting field in
bioinformatics.

It is generally accepted that the amino acid sequence of
most proteins contains all the information needed to fold
the protein into its correct three-dimensional structure
[3,10-12]. The quaternary structure of proteins, which is
the association of tertiary structure subunits, depends on
the existence of complementary "patches" on their sur-
faces [12]. Therefore, the patches that are buried in the
interfaces formed by the subunits play a vital role in both
tertiary and quaternary structures. This suggests the possi-
bility to predict the quaternary structure from primary
sequences [12].

The actual quaternary structure features of proteins must
be determined by experiments, which are slow and expen-
sive. However, computational methods like machine
learning, can extract some valuable information such as
the number of subunits from protein amino acid
sequences. They may play a role in the study of this issue,
when the genome-sequencing project produces such large
amounts of sequence information. Some efforts have
been made in developing computational tools to predict
protein quaternary structure from its sequence. Among
them, the methods employed were the decision-tree

method with the feature extraction function (the simple
binning function) [12] , the support vector machine
(SVM) and the covariant discriminant algorithm with two
protein sequence descriptors [3], the pseudo amino acid
composition method [9] , and the function of degree of
disagreement (FDOD) method [13].

In this paper, the functional domain composition of pro-
teins was initially adopted to investigate the problem. In
some previous work, the functional domain information
has been used to predict protein-protein interaction
[14,15] , protein structure [16] and protein function
[17,18] etc. The promising results have indicated that the
domain composition of a protein is closely linked with its
function and interactions with other proteins. The quater-
nary structure is closely related to the interactions between
the subunits of an oligomer; thus, it's closely related to the
functional domains of a protein. Consequently, we chose
the functional domain composition as the feature to rep-
resent a protein. The present study is limited to homo-oli-
gomers. The jackknife cross-validation test was performed
on the protein dataset in which the sequence identity was
less than 25%. The overall success rate is 75.17%. In the
same dataset, the amino acid composition method and
Blast [19] achieved the accuracy of 41.42% and 69.60%
respectively. The results demonstrate that the functional
domain composition approach is a promising high-
throughput method in dealing with this complicated
problem in bioinformatics.

Results and discussion

The computations were carried out on a Dell OptiPlex
GX260 computer with an Intel Pentium4 2.40 GHz CPU.
It is well known that in statistical prediction, the single
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Table 2: Success prediction rates achieved by the domain composition method in the independent testing dataset

Quaternary Structure Category Number correct/total

% Accuracy

Monomer 2195/2516
Homodimer 4227/5061
Homotrimer 354/399
Homotetramer 1282/1544
Homopentamer 12/38
Homohexamer 224/277
Homooctamer 76/116
Total 8370/9951

87.24
83.52
88.72
83.03
31.58
80.87
65.52
84.11

independent dataset test, the self-consistency test, and the
jackknife test are the three methods often used in algo-
rithm assessment. Among them, the jackknife test is con-
sidered the most objective and rigorous way to do cross-
validation [20,21]. The success prediction rate in practical
application should be measured by the result of the jack-
knife test, rather than the sub-sampling test or the limited
independent dataset test [22,23]. Therefore, in this work,
the results acquired from the jackknife test were consid-
ered to be the success rates of the functional domain com-
position approach proposed here.

Table 1 shows the success rates obtained by the domain
composition method, the amino acid composition
method and Blast in the seven quaternary categories.
Every protein in the non-redundant training dataset was
predicted by the nearest neighbor algorithm. The overall
success rate achieved by the domain composition method
is 75.17%. The results indicate that domain composition
is a very effective feature of proteins for quaternary struc-
ture prediction. In order to demonstrate the effectiveness
of the domain composition method, a direct comparison
was made between the domain composition method and
the sequence amino acid composition method, which is
also a frequently used approach in protein sequence anal-
ysis [24-27]. The vectors calculated from the sequence
amino acid composition in the same dataset were used as
the input for NNA. As shown in Table 1, the domain com-
position method greatly outperformed the sequence
amino acid composition method. Moreover, we con-
ducted the jackknife test in the same dataset by Blast [19].
In Blast, we chose the category with the best hit of a query
protein as the predicted category of that protein. The cor-
responding overall rate obtained by Blast is 69.60%,
which is about 5.57% lower than the success rate obtained
by the domain composition approach (Table 1).

In addition to the jackknife test performed on the training
dataset, we predicted all the 9951 proteins in the inde-
pendent dataset with NNA as well. Each protein in the
independent dataset was assigned into the structural cate-
gory to which its nearest neighbor protein in the non-
redundant training dataset belongs. As shown in Table 2,

8370 proteins were correctly classified and the overall
accuracy is 84.11%.

Furthermore, we also tried to compare the results with
previous studies. Garian employed the decision tree and
binning function to build models for classifying homo-
dimers from other homo-oligomers, and obtained an
accuracy of 69.9% [12]. Zhang et al. used the same dataset
to classify homo-dimers by the SVMs and the covariant
discriminant algorithms. They obtained overall accuracies
ranging from 78.5% to 87.5% by the SVMs and from
58.9% to 79.7% by the covariant discriminant algorithms
[3]. Through a tentative comparison in the category of
homo-dimers, the results show that we achieved similar
or better levels of prediction in terms of accuracy.

Conclusion

The functional domain composition method is an effec-
tive method that has been widely used in protein function
prediction [17,28]. In this paper, it illustrates its power in
the multi-class prediction of the protein quaternary struc-
ture. If we suppose that the protein samples were distrib-
uted according to the sizes of categories [9] , then the rate
of correct prediction by the measured random assignment
would be (208/717)2 + (335/717)2 + (40/717)2 + (95/
717)2 + (11/717)2 + (23/717)2 + (5/717)2%~ 32.44%. Evi-
dently, the rates of correct prediction acquired by the func-
tional domain composition approach are much higher
than the random assignment, which suggests that the qua-
ternary structure of an oligomeric protein can be inferred
from its sequence and the function domain composition
is a potent feature for quaternary structure prediction.
Presently, the quaternary classifier constructed in this
paper is limited to homo-oligomers. With the accumula-
tion of experimental data, the future work of quaternary
structure prediction will take place in the area of investi-
gating classifiers for hetero-oligomers.

Methods

Data sets

We extracted the subunit comment for every entry in the
Swiss-Prot database (version 45.4) [29,30] and then used
"Monomer", "Homodimer", "Homotrimer", "Homote-
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tramer", "Homopentamer", "Homohexamer", "Homo-
heptamer", and "Homooctamer" as keywords to search
for the oligomeric proteins of each category. Thus, 16819
entries were retrieved. Because there was only one protein
in the "Homoheptamer" class, it was removed. Therefore,
there were 16818 proteins in the whole dataset. The pro-
tein sequences that contain irregular amino acid charac-
ters such as "x" and "z" or with a length over 6000aa or
less than 50aa were removed. Moreover, redundant
sequences in the whole datasets were removed by the CD-
HIT [31] and PISCES [32] program, with a threshold of
25%. Altogether, we came up with 1665 proteins in total.
However, in the dataset of 1665 proteins, 948 proteins
were not suitable for the functional domain composition
feature extraction method, because they either could not
get hits in the PFAM database [33] or belonged to different
classes with exactly the same domain composition. More-
over, some proteins were "orphan proteins", which means
none of the domains they contained were shared by other
proteins in the dataset. Consequently, the non-redundant
training dataset was composed of 717 proteins by further
removing those 948 proteins (Table 1). Additionally, in
order to test the effectiveness of the domain composition
method, we constructed an independent testing dataset.
All the proteins that contain the domains involved in the
training dataset but are not in it were extracted from the
whole dataset. Thus, we obtained the independent testing
dataset of 9951 proteins (Table 2). All the data are availa-
ble in the additional files.

Functional domain composition feature vector

The use of the functional domain composition to repre-
sent a protein was motivated by a series of previous stud-
ies of proteins [17,18,28]. Here, the functional domain is
defined in the PFAM database, which contains a large col-
lection of multiple sequence alignments and hidden
Markov model (HMM) profiles covering many common
protein domains and families [33]. The determination of
domain boundaries, family members and alignments is
performed semi-automatically based on expert knowl-
edge, sequence similarity, HMM-profiles and other pro-
tein family databases [34,35]. There are accession number
links to the PFAM database in the Swiss-Prot database
[30]. Therefore, we searched the PFAM domain annota-
tion in the Swiss-Prot database for these 717 proteins, and
recorded all types of domains they contained. The results
showed that they totally consisted of 540 types of
domains. Thus, the functional domain composition of a
protein can be defined as a 540D (dimensional) vector.

For a given protein, if it contains the 11th domain in the
recorded domain list, the 11th component of the protein
in the 540D functional domain space is assigned 1; other-
wise, 0 [16,28]. The protein can thus be explicitly formu-
lated as

http://www.biomedcentral.com/1471-2105/7/187

_ X .
X2
X = ) ,
Xj
| X540 |
1 hit,
where Xj= .
0 otherwise.

Consequently, using each of the 540 functional domains
as a base, a protein is represented by a 540D vector.

The Nearest Neighbor Algorithm

The Nearest Neighbor Algorithm (NNA) compares the
features of the unknown new samples with the features of
the samples that have already been classified, and then,
classifies the new samples into their class membership
[36,37]. The decision rule of NNA assigns the category of
the nearest one of a set of previously classified samples to
an unclassified sample. If the distributions and the catego-
ries of the samples are unknown, NNA is particularly use-
ful. NNA is easy to implement and has a low error
probability [17]. Thus, it is an attractive method to be
employed in the bioinformatics study [16,17,20,38].

Suppose that we are given n proteins (x;, x,, ..., x,), which
have been classified into m categories (c,, c,, ..., ¢,,). Then,
the category to which an unknown protein x belongs can
be predicted by the following NNA principle. First, the

generalized distance between x and x;(i = 1, 2, ..., n) is
defined as:
D(x,x;)=1-— Y (i=1,2,..,n),

I

where x - x; is the dot product of vectors x and x;. || x || and
|| x; || are their moduli.

When x =x;, D(x, x;) = 0. In brief, the generalized distance
is within the range of 0 and 1; i.e., D(x, x;) € [0,1].

Then, the nearest neighbor of x can be defined as x;,

where

n
D(x,x;,) = min D(x, x;).
i=1

According to the NNA rule, the query protein x is pre-
dicted as belonging to the category ¢; € {c;, ¢,..., ¢, } if its
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nearest neighbor x, belongs to the category ¢; e {c;, ¢,...,
Cn}-

The proteins in the training dataset and the independent
testing dataset were all defined in the 540D functional
domain composition, and then the NNA prediction was
carried out based on the proteins in the training dataset.
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