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Abstract
Background: Hidden Markov Models (HMMs) have been extensively used in computational
molecular biology, for modelling protein and nucleic acid sequences. In many applications, such as
transmembrane protein topology prediction, the incorporation of limited amount of information
regarding the topology, arising from biochemical experiments, has been proved a very useful
strategy that increased remarkably the performance of even the top-scoring methods. However,
no clear and formal explanation of the algorithms that retains the probabilistic interpretation of the
models has been presented so far in the literature.

Results: We present here, a simple method that allows incorporation of prior topological
information concerning the sequences at hand, while at the same time the HMMs retain their full
probabilistic interpretation in terms of conditional probabilities. We present modifications to the
standard Forward and Backward algorithms of HMMs and we also show explicitly, how reliable
predictions may arise by these modifications, using all the algorithms currently available for
decoding HMMs. A similar procedure may be used in the training procedure, aiming at optimizing
the labels of the HMM's classes, especially in cases such as transmembrane proteins where the
labels of the membrane-spanning segments are inherently misplaced. We present an application of
this approach developing a method to predict the transmembrane regions of alpha-helical
membrane proteins, trained on crystallographically solved data. We show that this method
compares well against already established algorithms presented in the literature, and it is extremely
useful in practical applications.

Conclusion: The algorithms presented here, are easily implemented in any kind of a Hidden
Markov Model, whereas the prediction method (HMM-TM) is freely available for academic users at
http://bioinformatics.biol.uoa.gr/HMM-TM, offering the most advanced decoding options currently
available.

Background
Hidden Markov Models (HMMs) are probabilistic models
[1], commonly used during the last years for applications
in bioinformatics [2]. These tasks include gene finding
[3], multiple alignments [4] and database searches [5],

prediction of signal peptides [6,7], prediction of protein
secondary structure [8], prediction of transmembrane
protein topology [9,10], as well as joint prediction of
transmembrane helices and signal peptides [11]. Espe-
cially in the case of transmembrane proteins, HMMs have
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been found to perform significantly better compared to
other sophisticated Machine-Learning techniques such as
Neural Networks (NNs) or Support Vector Machines
(SVMs). This is the case irrespective to which class of
transmembrane proteins we refer to, since it has been
shown that the best currently available predictors for
alpha-helical membrane proteins [12,13] as well as for
beta-barrel outer membrane proteins [14], are methods
based on HMMs.

Experimental techniques are routinely used to partially
uncover the transmembrane topology of membrane pro-
teins (in contrast to the more expensive and difficult
method of crystallography with which the detailed three-
dimensional structure is elucidated). Such methods
include the use of various reporter fusions [15,16], chem-
ical labelling [17], epitope tagging [18], antibodies [19]
and Cysteine scanning mutagenesis [20]. The gene fusion
approach seems to be the most effective method and the
reporters used, include alkaline phosphatase (PhoA),
beta-galactosidase (LacZ) [21], beta-lactamase (BlaM)
[22] as well as various fluorescent proteins [23]. With the
development of fast and reliable methods to utilise gene
fusion technology in order to determine the location of a
protein's C-terminus, it has been shown that incorporat-
ing topological information into the prediction methods
improves largely the performance of even the top-scoring
methods, making easy to screen newly sequenced
genomes [24,25]. This has been demonstrated, using
experimentally derived information regarding E. coli [26]
and S. cerevisiae [27] protein datasets. More recently, a glo-
bal topological analysis of the E. coli inner membrane pro-
teins was performed, providing reliable models for more
than 600 membrane proteins [28].

Among the top-scoring HMM predictors currently availa-
ble, HMMTOP [29] provides the user the option to incor-
porate such information. TMHMM is currently not
supporting such an option in its standard web-server, and
the users have to turn the TMHMMfix server [30] or to the
joint prediction of transmembrane helices and signal pep-
tides offered by Phobius [11]. Lately, Bernsel and von Hei-
jne [31], used a similar idea that consisted of treating the
occurrence (in a membrane protein) of soluble protein
domains with known localisation, as experimentally
determined topology. This way, they implemented a mod-
ified version of the HMM described by Viklund and Elof-
sson [13], in order to apply constrained predictions.
However, even in this work the algorithmic details were
not presented nor the prediction method became availa-
ble to the public.

Moreover, no effort has been made in the literature in
order to completely and accurately describe the mathe-
matical details of the algorithms that allow the arbitrary

incorporation of such prior knowledge, in a way that pre-
vents HMMs from loosing their probabilistic interpreta-
tion. The nature of HMMs, allows some brute
conditioning; for instance, setting transition probabilities
from a particular state to the end state to zero will allow
the fixation of the C-terminus in the desired topology.
Similarly, having knowledge of the presence of a signal
peptide, after removing it, one may force the HMM to con-
sider as allowed transitions from the begin state only
those with direction to the extracellular loop states of the
model. Unfortunately, the probabilistic interpretation of
these results will be lost. Thus, it would be useful to have
a method that enables us to arbitrarily fix any part of the
sequence in a specified topology, while at the same time
retaining the probabilistic interpretation of the algo-
rithms used for decoding the HMM.

In this work, we present some trivial modifications to the
standard algorithms used in HMMs, namely the Forward
and Backward algorithms [1,2]. These modifications are
very similar with those used on training HMMs with
labelled sequences [32], but here they are considered in
the context of models' decoding. We also show, that the
likelihoods derived when applying these modified algo-
rithms, can be expressed as posterior probabilities of the
prior experimental information given the sequences and
the model parameters, thus retaining this way the proba-
bilistic interpretation of the results. We also introduce
similar trivial modifications to all known algorithms used
for decoding an HMM. In particular, we present modified
versions of the standard Viterbi algorithm [2], which finds
the most probable path of states, of the 1-best algorithm
[33], which tries to find the optimal labelling of a
sequence, giving always a labelling with equal or greater
probability compared to the Viterbi decoding. Similar
modifications follow for the "a-posteriori" decoding
method [2], which in many applications, and under cer-
tain conditions, provides better prediction [34], as well as
to the newly developed Posterior-Viterbi method [35] and
the Optimal Accuracy Posterior Decoding method [36],
that both combine elements of Viterbi and Posterior
decoding.

Finally, we present an application of these algorithms,
training a HMM to predict the transmembrane segments
of alpha-helical membrane proteins. The model is trained
in a discriminative manner with the Conditional Maxi-
mum Likelihood (CML) criterion, using a dataset of pro-
teins with structures known at atomic resolution, and it is
shown (in cross-validation as well as in independent
tests) to compare well against the top-scoring algorithms
currently available. The method, HMM-TM, is freely avail-
able for academic users at http://bioinformat
ics.biol.uoa.gr/HMM-TM, where the user may choose any
of the four above mentioned algorithms for decoding, an
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option not currently available in any other prediction
method.

Results
In Table 1, we list the results obtained on the training set
with our method (using the Optimal Accuracy Posterior
Decoding), both on a self-consistency test and on a 9-fold
cross-validation procedure. In the same table, for the sake
of comparison, the results obtained on the same dataset
are listed also, using the other available HMM and HMM-
like predictors TMHMM [9], HMMTOP [29], MEMSAT
[37], Phobius [11], UMDHMMTMHP [38], and the newly
developed S-TMHMM, PRO-TMHMM and PRODIV-
TMHMM [13]. All methods are using single sequence
information except from PRO-TMHMM and PRODIV-
TMHMM that use evolutionary information derived from
multiple alignments. The recently published and very suc-
cessful method of Martelli et al [39], was not considered
in the current evaluation for several reasons. Firstly, the
particular method is currently not available to the public.
Secondly and more importantly, this method is based in
an Ensemble network combining the results of two inde-
pendent HMM modules with these of a Neural Network
predictor, using a dynamic programming algorithm that
filters the prediction in a last step. Thus, this method even
though uses HMMs it cannot be benefited directly by the
currently proposed methodology. Other popular and suc-
cessful methods such as PHDhtm [40,41] and TopPred
[42], were also not consider in this evaluation since on the
one hand our intention was to evaluate only the HMM
and HMM-like predictors that are amenable to incorpo-
rate the modifications presented here, and, on the other
hand, due to their lower accuracy in general [13], as also

as on the particular datasets [26]. For measures of accu-
racy, we chose the fraction of the correctly predicted resi-
dues (Q), the correlation coefficient (C), the segments
overlap (SOV), as well as the fraction of proteins with cor-
rectly predicted transmembrane segments and correctly
predicted topology [43,44].

The differences in Q, C, SOV and in the number correctly
predicted transmembrane segments among the methods
compared here were not statistically significant (p-
value>0.05 in all cases; see Materials and methods). Only
an overall difference in the number of correctly predicted
topologies could be detected (p-value = 0.008), which is
attributable to the large discrepancies between the high-
scoring methods (those using evolutionary information)
and the low-scoring ones (in this case TMHMM,
HMMTOP and MEMSAT). However, even this should be
questionable due to the presence in the set used for train-
ing PRO-TMHMM, PRODIV-TMHMM of proteins similar
to the ones we compare here.

Even though some of the proteins present in the training
set were also included in the sets used for training the
other predictors, HMM-TM as tested in the cross-valida-
tion test, performs better compared to methods that use
single sequences. The superiority is visible (although not
statistically significant) in almost all measured attributes,
but it is more evident in the number of correctly predicted
topologies. We have to assume that the combination of
the quality of the training dataset, the CML training
scheme and the label optimisation procedure that was
performed using the above-mentioned algorithms, is
responsible for this result, even though the training set is

Table 1: Results obtained from the various predictors, on a dataset of 72 transmembrane proteins [38]. Results obtained when the 
methods were not trained and tested on the same dataset, however some of the proteins in the dataset were present in the datasets 
used for training the other methods. The results of HMM-TM were obtained through a nine-fold cross validation procedure. The 
methods that allow the incorporation of experimental information are listed separately. The results of UMDHMMTMHP could not be 
obtained by cross-validation (since it was trained on the same dataset), and thus are listed separately in the text

Method Q C SOV Correctly 
predicted TM 
segments (%)

Correctly 
predicted 

Topologies (%)

Methods that allow the incorporation of experimental 
information
HMM-TM (cross-validation) 0.903 0.762 0.939 59/72 (81.9%) 55/72 (76.4%)
TMHMM 0.902 0.762 0.931 58/72 (80.6%) 49/72 (68.1%)
HMMTOP 0.890 0.735 0.932 58/72 (80.6%) 49/72 (68.1%)
Phobius † 0.911 0.785 0.954 65/72 (90.3%) 52/72 (72.2%)
Methods that do not allow the incorporation of 
experimental information
MEMSAT 0.905 0.767 0.954 63/72 (87.5%) 48/72 (66.7%)
S-TMHMM † 0.897 0.747 0.925 59/72 (81.9%) 52/72 (72.2%)
PRO-TMHMM* † 0.910 0.779 0.945 65/72 (90.3%) 63/72 (87.5%)
PRODIV-TMHMM* † 0.914 0.794 0.970 67/72 (93.1%) 64/72 (87.5%)

* The methods using evolutionary information are denoted with an asterisk.
† These predictors were trained on sets containing sequences similar to the ones included in the training set we used here
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the one of the smallest that has ever been used for alpha-
helical membrane proteins. HMM-TM, when trained and
tested on the whole dataset of 72 proteins clearly outper-
forms also, the algorithmically simpler HMM method
UMDHMMTMHP that is trained on the same dataset (SOV
= 0.978 and 0.933 respectively, correctly predicted topol-
ogies 94.4% and 84.7%, respectively). Compared against
the methods that utilise multiple alignments, HMM-TM
performs slightly worse, something already expected [13].
However the superiority of the two multiple alignment-
based methods is not in the extent previously believed,
considering also the presence of homologous sequences
in the set used to train these methods, and the non-signif-
icant result of the Kruskal-Wallis test. The Optimal Accu-
racy Posterior Decoding, the Posterior decoding with the
dynamic programming and the Posterior-Viterbi decod-
ing, perform equally well, and both are superior to the 1-
best and Viterbi algorithms, results which, at least for this
case, are in partial agreement with those reported in
[35,36].

When the performance of the methods was tested in the
independent test set of 26 proteins (see Materials and
methods section), similar results were obtained (Table 2).
All methods (perhaps with the exception of MEMSAT)
seem to perform equally well, and in all cases the perform-
ance of the topology prediction lies within the expected
range.

No statistically significant differences could be found con-
cerning Q, C, SOV and the number of correctly predicted
transmembrane segments among the different methods
(p > 0.05 in all cases). However, when comparing the

number of correctly predicted topologies, there was a mar-
ginally significant difference with a p-value of 0.052.
When excluding the three worst performing methods
(Phobius, MEMSAT and PRO-TMHMM), no overall dif-
ferences could be detected (p-value = 0.208). In the pair-
wise comparisons of HMM-TM against these three
methods (without however adjusting for multiple test-
ing), HMM-TM performs better than MEMSAT and Pho-
bius (p-value = 0.021) and marginally better than PRO-
TMHMM (p-value = 0.074). Overall, HMM-TM performs
slightly better than both TMHMM and HMMTOP, and it
is interesting that UMDHMMTMHP performs somewhat
better, even though in some cases it yields spurious pre-
dictions such as a transmembrane helix with 58 amino-
acids length (1KPL:A). Interestingly, the newly developed
methods (S-TMHMM, PRO-TMHMM and PRODIV-
TMHMM) do not seem to perform better, despite the pres-
ence in their training set of some sequences similar to
those under evaluation. Even though the independent test
set consists mostly of multi-spanning (21 out of 26), and
Prokaryotic proteins (22 out of the 26), its use is currently
the most appropriate solution since we wanted to inde-
pendently test the predictors in an, as much as larger as
possible dataset, consisting of proteins having no signifi-
cant similarity to the ones used for training each method.
We should emphasize, that in nearly all the publications
describing similar prediction methods, an independent
test set was not used [9,11,13,29,36]. Only Martelli et al
[39], used as an independent test set, proteins with topol-
ogy determined by low-resolution biochemical experi-
ments, and concluded that such datasets should not be
used either as training or test datasets. This last argument,
also applies in order to explain the fact that we were not

Table 2: Results of the independent test on a dataset of 26 transmembrane proteins with known three-dimensional structures. The 
proteins were chosen not to have significant sequence identity (<30%) with the proteins used to train the methods: HMM-TM, 
UMDHMMTMHP, TMHMM and HMMTOP. The methods that allow the incorporation of experimental information are listed 
separately

Method Q C SOV Correctly 
predicted TM 
segments (%)

Correctly 
predicted 

Topologies (%)

Methods that allow the incorporation of 
experimental information
HMM-TM 0.899 0.780 0.942 21/26 (80.77%) 21/26 (80.77%)
TMHMM 0.899 0.782 0.956 19/26 (73.08%) 17/26 (65.38%)
HMMTOP 0.881 0.744 0.925 19/26 (73.08%) 18/26 (69.23%)
Phobius † 0.894 0.773 0.907 15/26 (57.69%) 13/26 (50%)
Methods that do not allow the incorporation of 
experimental information
MEMSAT 0.890 0.762 0.928 16/26 (61.54%) 13/26 (50%)
UMDHMMTMHP 0.896 0.777 0.947 23/26 (88.46%) 22/26 (84.61%)
S-TMHMM † 0.899 0.781 0.957 21/26 (80.77%) 20/26 (76.92%)
PRO-TMHMM*† 0.870 0.718 0.916 16/26 (61.54%) 15/26 (57.69%)
PRODIV-TMHMM*† 0.897 0.778 0.946 19/26 (73.08%) 19/26 (73.08%)

* The methods using evolutionary information are denoted with an asterisk.
† These predictors were trained on sets containing sequences similar to the ones included in the test set.
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used such proteins to further enlarge the test set making it
thus more balanced.

Our prediction method was also tested on the 2 datasets
containing proteins from E. coli [26] and S. cerevisiae
[27](31 and 37 respectively). For reasons of brevity, the
detailed results are listed in [Additional File 1]. We
observe, that our method compares favourably to the
other available predictors. In the E. coli dataset, HMM-TM
predicts correctly the localization of the C-terminal part of
the sequence for 29 out of the 31 proteins (93.54%), out-
performed only by Phobius, which predicts correctly 30
out of the 31 proteins (96.77%). Compared against the
methods using evolutionary information (PRO-TMHMM,
PRODIV-TMHMM), our method performs similarly to the
PRODIV-TMHMM (which predicts 29 out of the 31 pro-
teins correctly), and better than PRO-TMHMM (28 out of
31). All the remaining methods (TMHMM, HMMTOP,
MEMSAT, UMDHMMTMHP and S-TMHMM) perform sig-
nificantly worse, yielding from 20 to 27 correct predic-
tions. In this dataset, the Kruskal-Wallis test yields an
overall p-value of 0.0019, suggesting that there are true
statistically detectable differences in the performance of
the various methods. In the pairwise comparisons HMM-
TM performs significantly better compared to UMDHM-
MTMHP (p-value = 0.0054, which remains significance after
adjusting for multiple comparisons) and against MEMSAT
(p-value = 0.011, which does not remain significant after
adjustment). The comparisons of HMM-TM against the
remaining methods yielded insignificant results. Exclud-
ing from the analysis these two last methods, no overall
differences could be found (p-value = 0.154). Further-
more, the two methods using evolutionary information
(PRO-TMHMM, PRODIV-TMHMM) do not perform sig-
nificantly better compared to the other four single-
sequence methods (HMM-TM, TMHMM, HMMTOP and
S-TMHMM), since the Kruskal-Wallis test yields an overall
p-value of 0.314. Concerning the number of the predicted
transmembrane helices, HMM-TM predicts closely to the
other available top-scoring predictors. For instance, it is in
agreement with the predictions obtained from TMHMM
for 30 out of the 34 proteins, with those obtained from
HMMTOP for 28 out of the 34, and for 29 out of the 34
proteins with those obtained from PRO-TMHMM and
PRODIV-TMHMM.

In the S. cerevisiae dataset, top-scoring methods were
found to be HMMTOP, MEMSAT, PRO-TMHMM and
PRODIV-TMHMM correctly predicting the localisation for
the C-terminus for 32 out of the 37 proteins (86.50%).
HMM-TM, predicts correctly 30 out of the 37 proteins
(81.1%), and TMHMM, S-TMHMM and UMDHMMTMHP

reached correct conclusions for 28 out of the 37 proteins
(75.7%). Phobius in this dataset performs significantly
worse, reaching an accuracy of only 70.27%. Similar

observations hold also for this set, concerning the number
of predicted transmembrane segments, and the general
agreement of our method with the others. In this dataset
however, there are not large discrepancies among the var-
ious methods resulting in an overall insignificant Kruskal-
Wallis test (p-value = 0.487).

In total (summing the 2 sets), the 2 methods using evolu-
tionary information (PRO-TMHMM and PRODIV-
TMHMM), were ranked first, with 88.23% and 89.71%
correct predictions respectively, followed by HMM-TM
(86.76%), HMMTOP (83.82%), Phobius (82.35%),
TMHMM (80.88%), MEMSAT (77.94%), S-TMHMM
(76.47%) and UMDHMMTMHP (70.59%). However, these
differences showed no overall statisticall significance (p-
value = 0.086).

Even though, the methods using evolutionary informa-
tion perform slightly (in some datasets) better than
HMM-TM, their superiority is not validated statistically
here and more importantly, they do not offer the option
to fix the topology of various sequence parts. Only
TMHMM, Phobius and HMMTOP offer such options, and
compared to them, HMM-TM seems to perform con-
stantly better in all the tests performed. Interestingly,
when the experimentally determined topology of the C-
terminus is incorporated into the predictions for the two
proteins on which the method failed (YDGG_ECOLI,
ZITB_ECOLI), the predicted number of transmembrane
segments changes (from 7 to 8 and from 7 to 6, respec-
tively) and shows a remarkable agreement with those pre-
dicted by the above-mentioned methods (figure 1). Using
the same reasoning for the proteins missed by HMMTOP
and TMHMM, we can reach similar conclusions. In the
independent dataset of 26 proteins, if we fix the location
of the C-terminus to its observed topology, all of the
methods that are capable of incorporating such informa-
tion (HMM-TM, TMHMM, HMMTOP and Phobius),
increase both the number of correctly predicted trans-
membrane segments and the number of correctly pre-
dicted topologies. In HMM-TM the number of correctly
predicted transmembrane segments is increased from 21
to 22, as well as the number of correctly predicted topolo-
gies (from 21 to 22). Similarly, in TMHMM number of
correctly predicted topologies becomes 19 (from 17),
while the number of correctly predicted transmembrane
segments remains 19; in HMMTOP we observe only a
slight increase of the correctly predicted topologies (19
from 18) and finally for Phobius we observe an increase
both in the correctly predicted topologies becomes (16
from 13) and in the correctly predicted transmembrane
segments (16 from 15). Similar results were presented ini-
tially in the work of Mellen, Krogh and von Heijne [24],
but here we could not validate them statistically due to the
small sample size. Thus, this observation should be fur-
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ther tested in a larger independent dataset of proteins with
experimentally determined topology. We have to mention
though, that there is a clear gain in correctly specifying the
topology using such algorithms, and in future works it
might be tempting to construct a predictor that uses both
evolutionary derived information and the option to fix
various sequence parts in the desired location.

The usefulness and the practical applicability of the pre-
diction method described here, combined with the option
of fixing the topology of various segments along the
sequence incorporating this way the experimental infor-
mation during the decoding phase, could be demon-
strated in the case of the multidrug efflux transporter AcrB
of E. coli. The structure has been resolved crystallographi-
cally [45], and it has been shown that the protein contains
12 transmembrane helices (AcrB is included in the blind
test set of 26 proteins used in this study). All the predic-
tion methods used here (with the exception of S-
TMHMM, PRO-TMHMM and PRODIV-TMHMM, which
in their training set used a close homologue, MexB) failed
to accurately predict the full topology of the protein. As
we can see (Figure 2, upper part), HMM-TM misses 2
transmembrane segments, while falsely predicts an addi-
tional segment that does not exist. However, using the
results obtained from cysteine-scanning mutagenesis
[46], and incorporating them in the predictions obtained

with HMM-TM (Figure 2, lower part), results in a highly
reliable prediction that is in excellent agreement with the
obtained crystallographically solved structure.

Lastly, even though this was not a primary intention of
our study, we evaluated the discrimination capabilities of
the methods on the set of 645 globular proteins with
known three-dimensional structures, a set used initially
for the same purpose in the evaluation of TMHMM [9].
The results were very conflicting reflecting the differences
in the training strategies of the various predictors as well
as the different primary intentions of their developers.
Thus, when the total number of proteins predicted to be
non transmembrane was evaluated, methods that were
designed to be applied only on transmembrane proteins
such as HMM-TM, HMMTOP, UMDHMMTMHP, MEMSAT
and PRODIV-TMHMM perform poorly, predicting falsely
15.5%, 8.37%, 24.18%, 99.84% and 76.89% of the glob-
ular proteins to possess at least one transmembrane seg-
ment, respectively. From the other hand, methods that
were trained initially in order to discriminate globular
proteins from transmembrane ones, such as TMHMM,
Phobius, S-TMHMM and PRO-TMHMM, perform consid-
erably better, predicting respectively only 0.62%, 1.1%,
1.7% and 0.62% of the globular proteins to be transmem-
brane. When we considered as a discrimination criterion
the total number of aminoacids predicted in transme-

Posterior probability plots and predicted transmembrane segments for a protein whose localisation of the C-terminal was missed by HMM-TM (YDGG_ECOLI)Figure 1
Posterior probability plots and predicted transmembrane segments for a protein whose localisation of the C-
terminal was missed by HMM-TM (YDGG_ECOLI). In the upper graph we can see the unconstrained prediction. In the 
lower part, we can see the conditional prediction, after incorporating the information concerning the experimentally verified 
localisation of the C-terminus. The red bars indicate the predicted transmembrane segments, and we observe that these 
change also, coming in agreement with the other predictors.
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brane segments, and taking as a cut-off length the value of
19 aminoacids, HMM-TM predicts falsely 5.73% of the
globular proteins, TMHMM 0.46%, HMMTOP 4.96%,
Phobius 0.9%, UMDHMMTMHP 11.32%, MEMSAT
14.42%, S-TMHMM 1.7%, PRO-TMHMM 0.62% and
PRODIV-TMHMM 76.89%. The differences in both cases
are highly significant (p-values<0.001), and it is evident
that PRODIV-TMHMM is highly unreliable for discrimi-
nation purposes, a fact noticed already in [13], followed
by MEMSAT and UMDHMMTMHP, whereas HMM-TM and
HMMTOP form a group of intermediate reliability just
before the highly reliable for this task methods, TMHMM,
Phobius, S-TMHMM and PRO-TMHMM.

Discussion
The primary intention of this work was to introduce the
modifications to the standard algorithms that will allow
incorporation of prior structural or topological informa-
tion during the decoding procedure; however, the predic-
tion method presented is quite accurate. One may argue,
that we should have trained a prediction method that uses
evolutionary information in order to achieve the best pos-
sible results [13]. However, this was not possible currently
for technical reasons. Furthermore, as we already stated,
the primary intention of the particular work was to
present the algorithmic details, and not to develop a pre-
diction method. Thus, the algorithmic modifications

could now be easily applied in any prediction method
based on a HMM.

From the reported results, it is obvious, that HMM-TM
performs comparably if not better than the already estab-
lished top-scoring HMM methods using single sequences
and compares well against the methods using multiple
alignments. As a matter of fact, using a rigorous statistical
methodology, we found that HMM-TM is not outper-
formed significantly in any of the tests presented here
(except for the test discrimination capabilities). On the
contrary, clearly outperforms some of the available meth-
ods in some of the performed tests. These conclusions, are
valid also for the per-residue and per-segment measures
reported in the set of 72 proteins, as well as for the blind
test on newly solved three-dimensional structures and on
proteins with experimentally verified location of the C-
terminus. However, there are cases in which a joint predic-
tion could give better results than each one of the individ-
ual methods. From the detailed results listed in
[Additional File 1], we observe that for only 2 out of the
68 proteins used (YNT4_YEAST, Q03193) all of the avail-
able algorithms fail to predict correctly the localisation of
the C-terminal. This yields another potential use for
HMM-TM besides acting as a standalone predictor: it
could be very useful as a part of a consensus prediction
method. Such consensus predictions, have been proven to

Posterior probability plots and predicted transmembrane segments for the multidrug efflux transporter AcrB, a protein with known 3-dimensional structure (PDB code: 1IWG)Figure 2
Posterior probability plots and predicted transmembrane segments for the multidrug efflux transporter AcrB, 
a protein with known 3-dimensional structure (PDB code: 1IWG). In the upper graph we can see the unconstrained pre-
diction. The red bars indicate the predicted transmembrane segments whereas the black bars, the observed segments. There 
are two missed transmembrane helices and a falsely predicted one. In the lower part, we can see the constrained prediction, 
after incorporating the experimental information derived from cysteine-scanning mutagenesis experiments [46]. Green arrows 
indicate the experimentally verified localisation of a residue in the cytoplasm, whereas blue ones indicate the experimentally 
verified localisation to the extracellular (periplasmic) space. We observe a remarkable agreement of the constrained prediction 
with the known structure.
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significantly improve the predictive performance com-
pared to individual methods, either referring to alpha-hel-
ical [47-49], beta-barrel membrane proteins [14] or to
general secondary structure prediction methods [50]. For
developing a successful consensus prediction method, it is
necessary to have high-scoring individual methods, pro-
ducing independent results, which indeed is the case here.

We should emphasize also at this point, that the algorith-
mic modifications that we introduce, by no way confer
bias to the prediction method. Thus, when the decoding
(prediction) is applied in an unconstrained manner, the
results obtained are not by any means are affected by the
existence of the modifications since they do not used at
all. However, when experimentally derived information
emerges, the algorithmic modifications force the predic-
tions to be in agreement with this prior information.
Thus, in such cases it is reasonable to observe better pre-
dictions obtained by such an algorithm (that uses the
prior information) compared to another algorithm (even
a superior one) that does not use this information. Ide-
ally, in future works these modifications should be
applied to a prediction method that uses evolutionary
information in order to obtain the best possible results.
Furthermore, the extent to which the prior knowledge
affects the rate of the correct predictions should be evalu-
ated in a larger dataset.

The algorithmic modifications presented in this paper
(see Materials and methods), are for the first time intro-
duced in such detail, allowing one to implement them in
a straightforward manner. Although these modifications
appear trivial, there is clearly a need to be described in
such a detail in order to further clarify some obscure
points in the literature. All the relevant works addressed
such an issue, in the past were either published as a short
applications note in Computational Biology journals, or
as regular papers in Molecular Biology journals, and in
both cases they did not spend more than a sentence or two
for describing the algorithms (with in some cases contra-
dicting notations). For instance, in the first published
work that mentions a constraint prediction [29], the
authors state (emphasis added from us): "This segment
information is incorporated into the Baum-Welch algo-
rithm by a conditional probability." In a later work [24], the
authors simply state that: "The basic TMHMM algorithm
allows one to fix the class-assignment for any position in
the sequence by setting the probability for a position to belong
to a certain class to 1.0 a priori." Finally, in a recently pub-
lished work [31], Bernsel and von Heijne state that: "The
IN/OUT-fixation of a certain residue is achieved by setting
the corresponding state probability in the HMM equal to 1.0,
...". Clearly, these statements do not constitute complete
and thoroughly described methodology that it is easily

applicable from someone willing to incorporate such
options to a prediction method.

Furthermore, here for the first time we apply algorithms
for constrained predictions applicable to all the currently
available decoding methods, and in all cases preserving
the probabilistic nature of the HMM. It is clear though,
that these modifications can also be used in any decoding
algorithm may appear in the future, or in any HMM
trained with various schemes (ML or CML), as well as in
methods using evolutionary information or not. Lastly,
we should also point that in this work we considered only
incorporating in the prediction the experimentally veri-
fied topology of various sequence segments. Other works
have been presented, dealing for instance with the incor-
poration of prior physicochemical knowledge concerning
the propensity of a helix to be transmembrane or not [51].
Clearly, such approaches even though useful in practical
applications, are irrelevant to the currently proposed
methodology and should be considered separately.

Conclusion
We have presented here, modified algorithms for incorpo-
rating prior topological information into HMMs. These
algorithms constitute trivial modifications to the well
known Forward and Backward algorithms involved in the
probability calculations on HMMs, as well as to the
already established algorithms for decoding such models
(Viterbi, 1-best, and the variants of posterior decoding).
We presented these algorithms without introducing fur-
ther computational complexity, while at the same time
retaining the probabilistic interpretation of the results.
These algorithms may also be useful in other applications
of HMMs, besides the transmembrane protein topology
prediction, since they could be applied in any circular
HMM, irrespective of the training procedure used. We
have shown that these algorithms could be used also with
more complex labelling schemes as well as with HMMs
using both discrete and continuous emission probabili-
ties. The same modifications may also be applied in opti-
mising the discriminative capability of the models,
especially in cases of misplaced labelling arising from
inherently mislabelled data. We have presented an appli-
cation in the prediction of transmembrane segments of
alpha-helical membrane proteins, and we developed a
method that compares well against, if not better than, the
already available top-scoring methods for the same task
either using single sequences or multiple alignments. We
also have to note, that the method presented here
undoubtedly seems to perform better compared to the
other HMM predictors that allow the incorporation of
experimentally derived information. We also confirmed
the results of previous studies, indicating that incorpora-
tion of prior topological knowledge will further improve
the performance of predictive algorithms, and provided
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evidence that using a consensus of the top-scoring meth-
ods, the predictive performance increases. Consensus of
individual methods has been proven a useful strategy for
obtaining better predictions, and thus, it could be bene-
fited from including even more high-scoring individual
methods. Finally, we set up a web-server, freely available
to academic users, where the above-mentioned predictive
method can be found (http://bioinformatics.biol.uoa.gr/
HMM-TM), offering the most advanced decoding options
currently available. The method developed here might be
useful to experimentalists who require reliable predic-
tions, in the light of experimentally derived information.

Methods
Hidden Markov models
Two states k, l of a Hidden Markov model are connected
by means of the transition probabilities αkl. Assuming a
protein sequence x of length L denoted as:

x = x1, x2, ...,xL,  (1)

where the xi's are the 20 amino acids, we usually denote
the "path" (i.e. the sequence of states) ending up to a par-
ticular position of the amino acid sequence (the sequence
of symbols), by π. Each state k is associated with an emis-
sion probability ek(xi), which is the probability of a partic-
ular symbol xi to be emitted by that state. Formally, we
also need two other special states, named begin (B) and
end state (E), which are essential for starting and ending
the process, respectively. These states however, do not
emit any symbol. The total probability of a sequence given
the model, is calculated by summing over all possible
paths using the Forward or the Backward algorithm:

The generalization from one to many sequences is trivial,
and we will consider only one training sequence x in the
following. When using labelled sequences for training,
each amino acid sequence x is accompanied by a sequence
of labels y for each position i in the sequence:

y = y1, y2, ...,yL  (3)

Krogh [32] proposed a simple modified version of the for-
ward and backward algorithms, in order to incorporate
information from labelled data. The likelihood to be max-
imized in such situations is the joint probability of the
sequences and the labelling given the model:

This way, the summation has to be done only over those
paths Πy that are in agreement with the labels y. Conse-

quently, one has to declare a new probability distribution,
the probability λk(c) of a state k having a label c. In most
of the biological applications, this probability is just a
delta-function, since a particular state is not allowed to
match more than one label.

where σc is the set of states sharing the same label (c).
Labelled sequences are used in the training phase (either
by Maximum Likelihood or by Conditional Maximum
Likelihood), since in the decoding phase in which we do
not know the path, the likelihood that is been calculated
is of the form of equation (2). An HMM could also be
trained using unlabelled sequences. However, having a
complex model comprising of a lot of states, even in the
decoding phase, we eventually have to cluster the states in
"classes" that each one represents some biological mean-
ingful entity. For instance, in the case of transmembrane
proteins, these labels (classes) would probably be mem-
brane (M), intracellular (I) and extracellular or outer (O),
irrespective of which method the model was trained with.
Thus, in the following, we will use the concept of labels in
the decoding phase, no matter what training technique
has been followed.

The algorithms that we present here are also very useful in
the training phase using labelled sequences, under certain
circumstances. For instance, in transmembrane protein
topology prediction, even if the observed labels come
from crystallographically solved structures, we cannot
locate precisely the boundaries of the lipid bilayer. Thus,
these inherently misplaced labels may bias the training,
towards poor discriminative capability. In some of the
most successful models for predicting the membrane-
spanning alpha helices [9,11,13], an optimisation proce-
dure was used, according to which the model was trained
initially, the labels were partially disregarded around the
ends of the transmembrane helices, and predictions con-
ditional on the remaining labels were performed, in order
to re-label the data until the final training procedure. The
authors of these methods did not explicitly provide details
on the algorithms they used, but the most obvious way for
such a procedure to be performed is by using some algo-
rithmic modifications such as those presented here.

Forward and Backward algorithms
The standard algorithm employed in the likelihood calcu-
lations in HMMs, is the Forward algorithm. It is a dynamic
programming algorithm that sums iteratively the proba-
bilities of all the possible paths through the sequence. The
algorithm as presented in [2] is:
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Forward algorithm

We will define the concept of the Information, ω that con-
sists of 1≤r≤L residues of the sequence x, of which we
know the experimentally determined topology, and thus
the (a priori) labelling ωi:

ω = ω1, ω2, ...,ωr  (7)

According to this terminology, the set of residues with a
priori known labels ωr, is a subset of the set I = {1,2, ...,L}
defined by the residues of the sequence. It is obvious that
the labels ωi, should belong to the same set of labels
defined in the model architecture. Finally, we have to
declare a delta function with values given by:

The trivial modification to the Forward algorithm consists
simply of setting the forward variable f equal to zero, for
each position i and state k that is not in agreement with
the prior experimental information (Figure 3). This is con-
ceptually similar with the training with labelled
sequences, where we allow only those paths Πy that are in
agreement with the labelling y, to contribute to the total
likelihood. Here, we allow only the paths Πω that are in
agreement with the prior information ω. Thus, the modi-
fied Forward algorithm is:

Modified Forward algorithm

We have to note here, that all algorithms presented here-
inafter will fail to produce results when the prior informa-
tion that is provided is inconsistent with the model at
hand. For example, in some models we may allow only
some states to have non-zero transitions from the begin
state. This is the case of beta-barrel outer membrane pro-
teins of which we know that the sequence must start by an
intracellular loop [10]. If we force the model to fix the N-
terminal location into extracellular space, the algorithms
will produce no valid results. Furthermore, if the prior
information consists of various segments, these should

also be self-consistent and in accordance with the model.
For instance, in transmembrane protein topology predic-
tion, we cannot fix the position of the residue i to be intra-
cellular and that of the i+1, to be extracellular, because
this will also violate the model's assumptions.

The counterpart of the Forward algorithm is the Backward
algorithm, which is presented below:

Backward algorithm

The total likelihood computed by the Backward algorithm
is exactly the same with the one computed by the Forward
algorithm so it will rarely be used, however, the algorithm
is essential for the posterior decoding, which we will con-
sider later. Using exactly the same notation, we can write
down the modified Backward algorithm:
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A representation of the matrix produced by the forward algorithm modified to incorporate some prior informationFigure 3
A representation of the matrix produced by the for-
ward algorithm modified to incorporate some prior 
information. We have a (hypothetical) model, which con-
sists of 12 states, with 3 labels I, M, O corresponding respec-
tively to states modelling the intracellular, transmembrane 
and extracellular parts of the sequence. The likelihood of 
sequence x (8 residues), is calculated incorporating the prior 
information that residues 3 and 4 are transmembrane, resi-
due 1 is extracellular and residue 8 is intracellular.
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Modified Backward algorithm

The likelihood computed by each one of the previous
algorithms, is the joint likelihood of the sequences and
the information given the model, which is always smaller
than or equal to the likelihood computed by the standard
algorithms:

By using the Bayes theorem we can calculate the posterior
probability of the information, given the sequences and
the model, as follows:

The last quantity informs us in to what extend our prior
beliefs about the protein's topology have been changed
when experimentally derived information emerges. If this
probability is large, the information does not change our
prior beliefs. However, when this probability is small
enough, the experimentally derived information has
changed a lot our prior beliefs (those based solely on the
model), and thus we expect the prediction accuracy to be
better.

Decoding algorithms
Here we consider similar modifications to the algorithms
used for decoding an HMM. The Viterbi algorithm is a
dynamic programming algorithm that, on contrary to the
Forward and Backward algorithms, finds the probability
of the most probable path of states and not the total prob-
ability of all paths. With a backtracking step, the algo-
rithm finally recovers the most probable path. The
algorithm is conceptually similar to the Forward algo-
rithm, where the consecutive summations are replaced by
maximisations:

Viterbi algorithm

Here, πmax is the most probable path of states and P(x,
πmax|θ) its probability, with P(x,πmax|θ)≤P(x|θ). In the
modification to the Viterbi algorithm, sketched below, we

use exactly the same constrains in order to force the algo-
rithm to consider only the paths compatible with the
information ω. In this case, the joint probability of the
best path and the information, is denoted P(x, πω|θ).

Modified Viterbi algorithm

The 1-best decoding [33], is a modification of the N-best
decoding method, proposed earlier for speech recognition
[52]. The algorithm is a heuristic that tries to find the most
probable path of labels ymax of a sequence instead of the
most probable path of states. For each position i in the
sequence, keeps track of all the possible active hypotheses
hi-1 that consist of all the possible sequence of labels up to
that point. Afterwards, for each state l, propagates these
hypotheses, appending each one of the possible labels yi,
and picks up the best, until the end of the sequence. In
contrast to the Viterbi algorithm, 1-best does not need a
Traceback procedure:

1-best algorithm

Although this algorithm is a heuristic and no guarantee
exists for finding the most probable labelling, the proba-
bility of the best reported labelling is always larger than,
or equal to, the probability of the best path, and always
smaller than, or equal to, the total probability of the
sequence, since a lot of allowed paths are contributing to
this, thus: P(x,πmax | θ)≤P(x,ymax | θ)≤P(x | θ). Obviously,
we just have to set once again the intermediate variable γ
equal to zero for the states k and residues i that are not in
agreement with the prior information ω. In Viterbi and 1-
best decoding, similar measures with that of Equation
(13) can be obtained.

Modified 1-best algorithm
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Posterior decoding
The posterior decoding method is based on calculating
the "a-posteriori" probability of a residue xi to be emitted
by a state k, having observed the whole sequence x. This
probability is calculated using the forward and backward
variables f, b:

In cases of states sharing the same labelling, we usually
sum for each position i along the sequence, the posterior
probabilities of the states with the same labelling c [2],
calculating thus the quantity called Posterior Label Proba-
bility (PLP) in [36]:

A naïve approach would be to consider as a path, the
sequence of labels that maximises this probability for
each position along the sequence. Such an approach for
the posterior decoding is capable of yielding paths incon-
sistent with the model, for instance, it could produce a
path according to which an intracellular loop (I) is fol-
lowed by a segment of residues predicted to be extracellu-
lar (O). However, when these posterior probabilities are
filtered properly, in many situations have been proved to
yield results with better prediction accuracy [34,53]. The
Dynamic programming solution to the problem of detect-
ing the optimal location and length of n transmembrane
segments in a sequence of m residues, is to divide the
problem in n smaller problems, thus dealing with each
transmembrane segment separately [37]. If we denote by
sil the sum of the posterior label probabilities of trans-
membrane segments, for a segment of length l at position

i of a sequence, then the overall score (i: 1, 2,...n; j:1,

2,...,m), will be calculated by a recursive relation:

where j is the total number of transmembrane segments,
lmin and lmax the minimum and maximum allowed lengths
for the transmembrane segments respectively, and A the
minimum allowed length of a turn.

With the use of the modified Forward and Backward algo-
rithms described above, we can similarly calculate the
posterior probability of a residue i to be emitted by a state
k, given the sequence x and the information ω, as follows:

And finally, we can calculate the PLP for the label c at posi-
tion i given the information:

Even though the PLPs obtained this way are consistent
with the prior knowledge, the dynamic programming
algorithm described in Equation (20), is not guaranteed to
yield a consistent result, and thus more refined solutions
should be pursued.

Posterior-Viterbi decoding
Recently, Fariselli and co-workers have provided a decod-
ing algorithm that combines elements of the Viterbi and
the posterior decoding [35]. The algorithm finds the path
πPV, such as

where Πp is the allowed paths through the model and P(πi
= k|x) is the posterior probability for the state k at position
i. To define the allowed paths, we need a delta function,
which takes value 1 if the transition αkl is an allowed one
and 0 otherwise. Thus:

Finally, the optimal allowed-posterior path πPV, is
denoted by:

The Posterior-Viterbi decoding algorithm performs essen-
tially a Viterbi-like decoding, using the Posterior probabil-
ities instead of the emissions, and the allowed paths given
by the above mentioned delta function instead of the tran-
sitions.

Posterior-Viterbi algorithm

Similar to the Viterbi algorithm, the modified Posterior-
Viterbi is as follows:
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Modified Posterior-Viterbi algorithm

where, instead of the standard posterior probabilities we
used those computed by the modified Forward and Back-
ward algorithms in Equation (10).

Optimal Accuracy Posterior Decoding
Finally, Kall and coworkers presented a very similar algo-
rithm, the Optimal Accuracy Posterior Decoder [36]. The
algorithm sums for each position in the sequence the pos-
terior label probabilities (PLPs), using Equation (19), and
by using the allowed transitions defined by Equation
(24), calculates in a Viterbi-like manner the optimal
sequence of labels that maximises the quantity:

Optimal Accuracy Posterior Decoder algorithm

As one can observe comparing Equations (25) and (28),
the main differences of this algorithm compared to the
Posterior-Viterbi is, i) the fact that uses the sums of the
posterior label probabilities instead of the posterior prob-
abilities, and ii) that instead of the product, it maximises
the sum of these probabilities. Consequently, it is straight-
forward once again to obtain constraint predictions utilis-
ing the prior information:

Modified Optimal Accuracy Posterior Decoder algorithm

Technical comments on the implementation and future 
improvements
There are various ways, with which the delta function
described in Equation (8) can be implemented. The most
obvious is to introduce a new matrix, similar to those used
in all the algorithms (forward, backward etc), in which we
store the values of the function. Another way (which in
many cases may be more preferable) is to perform the
appropriate tests for the agreement of labels with states
along the sequence, each time we visit a particular state.
Furthermore, with the general notation used in Equation

(8), the algorithms described here may also be used in sit-
uations where the label probability is not a delta function
but instead we allow one state to match more than one
labels, requiring thus a full probability distribution of the
form:

λk(c) = P(yi = c|πi = k)

In such situations, all the algorithms described here
remain unchanged.

Another useful note arises from the observation that in
some situations the localisation of a particular residue or
segment cannot be easily assigned to one of the model's
labels using certain experimental techniques. For
instance, using fusions of beta-lactamase (BlaM) in a
potential loop and observing negative activity of the fused
domain, we may interpret the results as indication for the
localisation into the cytoplasm. Unfortunately, the same
results could be observed if the particular residue was
localised in a transmembrane segment. Similar interpreta-
tions may also occur for other reporter fusions (GFP, LacZ
etc). In such situations, the above algorithms may also be
extended to incorporate this information, by simply
allowing the observation to consist of a set of possible
labels for each position along the sequence. For instance,
instead of stating that the localisation of residue i is cyto-
plasmic (I):

ωi = I

we may state that

ωi = {M,I} = OC

meaning that the localisation is not extracellular (OC).
Modifying now properly the delta function in Equation
(8), all the algorithms presented above remain
unchanged. We also have to note that the above-men-
tioned algorithms remain unchanged in cases where the
HMM uses continuous instead of discrete emission prob-
abilities, indicating the general applicability of our
approach. Finally, we have to mention also a further addi-
tion to the algorithms developed here. In particular, if we
replace the delta function in Equation (8) with a full prob-
ability distribution, all the algorithms presented above
remain unchanged and the probabilistic interpretation of
the model is retained. This situation may arise in cases
where we have multiple sources of information available,
and we have reasons for assigning different weights to
each one (for instance if we have reasons to believe that
one method is more reliable than another). Although this
might be a useful strategy, especially in cases of conflicting
or ambiguous experiments, we have not tried to investi-
gate this further.
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The model architecture and training procedure
In order to show the effectiveness of the modified algo-
rithms that we described so far, we developed a method to
predict the membrane-spanning segments of alpha-heli-
cal membrane proteins. The model that we used is cyclic,
consisting of 114 states, including begin (B) and end (E)
states, (Figure 4), and is conceptually similar to other
models described earlier for the same task [9,11,54], even
though somewhat simpler. The architecture has been cho-
sen so that it could fit as much as possible to the limita-
tions imposed by the known structures and the prior
biological knowledge. The model consists of three "sub-
models" corresponding to the three desired labels to pre-
dict, the TM (transmembrane) helix sub-model and the
inner and outer loops sub-models respectively. The TM
helix model incorporates states to model the architecture
of the transmembrane helices. Thus, there are states that
correspond to the core of the helix and the cap located at
the lipid bilayer interface. All states are connected with the
appropriate transition probabilities in order to be consist-
ent with the known structures, that is, to ensure appropri-
ate length distribution. The inner and outer loops are
modelled with a "ladder" architecture, at the top each is a
self transitioning state corresponding to residues too dis-
tant from the membrane; these cannot be modelled as
loops, hence that state is named "globular".

For training the model we used the Conditional Maxi-
mum Likelihood (CML) criterion for labelled data
[32,33], with the modified algorithms for faster and

robust training described in [55]. The training procedure
consisted of three steps. Briefly, a model was initially esti-
mated using the Baum-Welch algorithm for labelled
sequences [32]. Afterwards, the labels of the sequences
were deleted in a region flanking three residues in each
direction of the end of a membrane-spanning helix, and
predictions were performed using the modified Viterbi
algorithm presented above, and the model that was esti-
mated from step 1. The final model was estimated, using
the labels derived from step 2, with the modified gradient-
descent method for CML training [55]. Finally the decod-
ing is performed with the Optimal Accuracy Posterior
Decoder, as described in [36].

Datasets
The training set that we used contains 72 membrane pro-
teins with three dimensional structures determined at
atomic resolution and most of these structures are depos-
ited in the Protein Data Bank (PDB) [56]. The dataset is
the one used in the work of [38], except from one protein
(1PGE:A) that was not considered to be a typical mem-
brane protein (possesses transmembrane helices shorter
than 10 amino-acids). In all cases the sequence used, was
that obtained from Uniprot [57], after the removal of any
signal peptide, that could bias the training and testing
procedure [58]. The training dataset consists of 39 single
spanning and 33 multi-spanning membrane proteins, of
which 42 are of prokaryotic (including viruses) and 30 of
eukaryotic origin. Thus, the dataset is considered repre-
sentative and is of similar composition compared to the

A schematic representation of the model's architectureFigure 4
A schematic representation of the model's architecture. The model consists of three sub-models denoted by the 
labels: Cytoplasmic loop, Transmembrane Helix and Extracellular loop. Within each sub-model, states with the same shape, 
size and colour are sharing the same emission probabilities (parameter tying). Allowed transitions are indicated with arrows.
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training set used for most of the other top-scoring HMM
predictors [9,11,13,29,39]. However, it is significantly
smaller consisting of only 72 proteins, in contrast to the
other datasets used that consisted of nearly more than 150
transmembrane proteins. Only Zhou and Zhou [38],
which used effectively the same set, and Martelli et al [39],
which compiled a dataset of 59 transmembrane proteins,
used sets of comparable size. The striking feature of the
particular dataset is the fact that consists only of proteins
with crystallographically solved structure. Although it is
common in the relevant publications to use datasets of
mixed resolution, i.e. proteins with three-dimensional
structure mixed with proteins with topology determined
by low resolution biochemical experiments [9,11,29], the
results of Martelli et al [39], clearly showed that the low
resolution sets are less reliable and they should not be
used either as training or even as test sets.

In order to compare the accuracy of the developed
method and facilitate the unbiased comparison against
the other established methods, we compiled a dataset of
transmembrane proteins whose three-dimensional struc-
tures are available and deposited in PDB. We chose pro-
teins, which do not show significant similarity (<30%
identities in length of more than 80 residues), to any of
the proteins used for training either by the current method
(and by UMDHMMTMHP), by HMMTOP, or by TMHMM.
This dataset consists of 26 proteins (Table 3), with num-
bers of transmembrane segments ranging from 1–14, and
is considered to be an as representative as possible
(although small) set, on which the performance of the
various predictors could be evaluated in an unbiased
manner.

As a further blind test we also used a set of 34 E.coli inner
membrane proteins [26] and a set of 39 cytoplasmic

Table 3: The independent test set of 26 transmembrane proteins with known three-dimensional structures. We list the PDB code, the 
name of the protein and the number of the transmembrane segments

PDB code Name Number of transmembrane segments

1RC2:B AQUAPORIN Z 6
1J4N:A AQUAPORIN 1 6
1IWG:A MULTIDRUG EFFLUX TRANSPORTER ACRB 12
1NEK:C SUCCINATE DEHYDROGENASE 

CYTOCHROME B-556 SUBUNIT
3

1NEK:D SUCCINATE_DEHYDROGENASE 
HYDROPHOBIC MEMBRANE ANCHOR 
PROTEIN

3

1Q16:C RESPIRATORY NITRATE REDUCTASE 1 
GAMMA CHAIN

5

1RH5:B PREPROTEIN TRANSLOCASE SECE 
SUBUNIT

1

1RH5:C PREPROTEIN TRANSLOCASE SECBETA 
SUBUNIT

1

1IZL:A PHOTOSYSTEM II SUBUNIT PSBA 5
1IZL:C PHOTOSYSTEM II SUBUNIT PSBC 5
1YCE ROTOR OF F-TYPE NA+-ATPASE 2
2BL2 ROTOR OF V-TYPE NA+-ATPASE 4
1XQF:A PROBABLE AMMONIUM TRANSPORTER 11
1KPL:A H+/CL- EXCHANGE TRANSPORTER 14
1S5L:B PHOTOSYSTEM II CORE LIGHT 

HARVESTING PROTEIN
6

1S5L:C PHOTOSYSTEM II CP43 PROTEIN 6
1S5L:D PHOTOSYSTEM II REACTION CENTER D2 

PROTEIN
5

1S5L:E CYTOCHROME B559 ALPHA SUBUNIT 1
1FX8:A GLPF GLYCEROL FACILITATOR CHANNEL 6
1LNQ:A MTHK POTTASIUM CHANNEL, CA-GATED 2
1MXM:A MECHANOSENSITIVE CHANNEL PROTEIN 3
1Q90:M CYTOCHROME B6F COMPLEX SUBUNIT 

PETM
1

1VF5:C CYTOCHROME F 1
1K4C:C POTASSIUM CHANNEL KCSA 2
1ZCD:A NA(+)/H(+) ANTIPORTER 1 12
2A79:B POTASSIUM VOLTAGE-GATED CHANNEL 

SUBFAMILY A MEMBER 2
6
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membrane proteins of S. cerevisiae [27], with experimen-
tally verified localization of the C-terminus. This set con-
tains proteins of which the topology are not known, with
the exception of the C-terminal part, but the majority of
the web-predictors evaluated in the respective study agree
for the number of their transmembrane helices. For 3 pro-
teins of the E. coli and 2 of the S. cerevisiae set, the locali-
sation of the C-terminus could not be obtained, thus, for
these proteins only the number of predicted transmem-
brane segments are considered. The primary intention of
using this set was to evaluate the accuracy of the various
predictors in determining only partially the topology, as
well as in order to show that using the prior knowledge
about the topology the prediction accuracy increases.

For evaluating the ability of the methods to correctly dis-
criminate transmembrane proteins from globular ones,
i.e. to evaluate the rate of false positive predictions, we
used an additional non-redundant dataset of 645 globular
proteins with crystallographically solved structures, that
was initially used by the developers of TMHMM [9].

In all of the comparisons performed, the evaluation of the
statistical significance of the results was performed using
the Kruskal-Wallis non-parametric test for the equality of
distributions between several populations. This test is the
non-parametric analogue of the one-way Analysis of Vari-
ance (ANOVA), and was chosen as it best fits the nature of
the data we compare (non-normally distributed) as well
as the relative small sample size. Statistical significance
was declared for p-values < 0.05.
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