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Abstract

Background: New analysis methods are being developed to integrate data from transcriptome,
proteome, interactome, metabolome, and other investigative approaches. At the same time,
existing methods are being modified to serve the objectives of systems biology and permit the
interpretation of the huge datasets currently being generated by high-throughput methods.

Results: Transcriptomic and metabolic data from chemostat fermentors were collected with the
aim of investigating the relationship between these two data sets. The variation in transcriptome
data in response to three physiological or genetic perturbations (medium composition, growth
rate, and specific gene deletions) was investigated using linear modelling, and open reading-frames
(ORFs) whose expression changed significantly in response to these perturbations were identified.
Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of
the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection
to Latent Structures — PLS) using PLS toolbox in Matlab.

Conclusion: The experimental design allowed the analyses to discriminate between the effects
which the growth medium, dilution rate, and the deletion of specific genes had on the
transcriptome and metabolite profiles. Metabolite data were modelled as a function of the
transcriptome to determine their congruence. The genes that are involved in central carbon
metabolism of yeast cells were found to be the ORFs with the most significant contribution to the
model.

Background

After the completion of the genomic sequencing of organ-
isms, integrative post-genomic studies and the systems
biology approach have emerged with the aim of develop-
ing a more complete understanding of cell physiology.
Attempts at data integration for the model organism, Sac-
charomyces cerevisiae were reviewed recently [1]. Experi-
mental designs that involve (a) perturbations to elucidate

the response of the cell under various conditions, (b) col-
lection of high-throughput data at different functional
genomic levels and (c) the use of bioinformatics for inte-
grating data from all three levels of analysis (transcrip-
tome, proteome, and metabolome) constitute the three
major steps of a procedure common to all integrative
studies.
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It is possible to design systems biology experiments in a
hypothesis-driven manner, such that the designed pertur-
bations provide the information of interest. Alternatively,
question-driven discoveries may be made by observing
the effects of an intuitively chosen modification and mak-
ing use of the extracted information to generate new ideas
and hypotheses [2].

Transcriptome data from S. cerevisiae growing in chemo-
stats on a glucose medium under carbon, nitrogen, phos-
phorus or sulphur limitation allowed detection of the
genes that were affected by the different nutrient limita-
tions [3]. The genes that were co-regulated under glucose,
ethanol, ammonium or phosphate limitation were identi-
fied, and genes from the same pathway were shown to be
clustered together [4]. Responses to modifications in the
growth medium and/or the dilution rate allowed the
identification of genes that enable the cells to adapt to var-
ious growth conditions [5].

Perturbations can also be introduced by genetic, rather
than physiological, means - e.g. by gene deletions. Yeast
cells carrying gene deletions have been investigated for
various purposes: (a) functional analysis based on dis-
crimination of mutants via metabolic fingerprints [6] or
footprints [7], (b) selection of genes encoding organelle-
specific proteins [8], (c) building and testing of metabolic
pathways [9] and (d) identification of uncharacterized
genes and drug targets [10]. These studies have shown that
specific changes in the transcriptome or metabolome pro-
files may occur due to gene deletion. The changes are
expected to be more significant when a gene encoding a
regulator protein is deleted.

Hap4p was reported to have a function in the regulation
of respiration-related genes on the basis of transcriptome
data collected during batch growth of yeast cells on glu-
cose, followed by diauxic shift from the fermentation of
glucose to the respiratory metabolism of ethanol [11]. The
activation mechanism of the Hap2/3/4/5 protein complex
has been reviewed by Gancedo, 1998 [12]. The physiology
of haploid cells exhibiting HAP4 over-expression [13] and
the transcriptome profile of haploid hap4A deletion
mutants [14] have also been investigated. hap4A deletion
mutants were reported to be respiratory deficient [8] and
deletion of HAP4 causes down-regulation of respiration-
related genes. In contrast, such genes were expressed at
higher levels in HAP4-overexpressing strains growing
under aerobic conditions. Moreover, an increase in yeast's
respiratory capacity was observed due to over-expression
of HAP4 [13].

In the present study, three types of perturbations that were
expected to have an impact on yeast central metabolism,
were investigated in chemostat cultures. Changes in
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growth medium (C- and N-limitations), growth rate
(dilution rates) and gene deletions (hap4 and ho) were the
perturbations studied. Transcriptome profiles, biomass,
glucose and ethanol concentrations of samples from che-
mostats operating under steady-state conditions were ana-
lysed to show the applicability of the Partial Least Squares
(Projection to Latent Structures — PLS) method in the inte-
gration of transcriptome and metabolite data.

The PLS method linearly models a set of dependent
"response" data with respect to a set of independent
"cause" data while repressing both of the sets simultane-
ously. PLS was recently used to analyse transcriptome data
for classification of samples from human tumours [15]
and classification of patients for their survival time [16].
In another study, genes expressed periodically within the
cell cycle were determined using PLS [17]. Design of
experiments and PLS were used for establishing dose- and
time-dependent metabolic variations in animals treated
with toxic materials [18,19].

Results and discussion

Modelling expression levels of ORFs

Linear modelling was used as a filtering tool to eliminate
the ORFs with insignificant expression changes in
response to the perturbations in growth medium, dilution
rate and gene deletion. Mean-centred and scaled (unit var-
iation) expression levels of 6361 ORFs were modelled and
p-values were calculated to decide on the significance of
the effects of the factors on the expression of the ORFs. For
most of the ORFs, the constructed models did not predict
a variation more significant than the expected level of ran-
dom error, thus these ORFs were not included in further
analyses. A p-value of 0.05 was used as the threshold, in
order to include all ORFs that were affected significantly
by the three factors considered in this study.

324 out of 6361 models estimated that at least one of the
factors was affecting the expression of the modelled ORF.
The growth medium is the factor with most effect on the
expression of most of the ORFs (62.1%), followed by
dilution rate (26.2%); while gene deletion is the most
effective factor for only 11.7% of the ORFs.

Integration of metabolic and transcriptomic data

The biomass production rates obtained in chemostats
operating at steady state are presented in Figure 1, together
with glucose consumption and ethanol production rates.
The eight different conditions were selected on the basis
of a factorial experimental design (Tables 1 and 2). In the
hap4A/hap4A deletion mutant, the production rates of
both biomass and ethanol are higher under ammonium
limitation than under glucose limitation. In contrast, for
the standard strain (hoA/hoA), only the rate of ethanol
production is significantly higher under ammonium lim-
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Table I: 23 Factorial Experiment Design

Run Deletion Medium Rate  Sample Name

hoA Gla
- hap4A Gl
hoA NI
hap4A NI
hoA G2
hap4A G2
hoA N2
hap4A N2

O NOoONUT A WN —
+ 0 o+ 0+
' + +
+ + + + v

+
+

2|n the Figures, the symbol 'A' is omitted from the sample names.

itation as compared to glucose limitation. For both
strains, the rate of glucose consumption is elevated under
ammonium limitation.

PLS is unable to discriminate between the effects of the
different perturbations on the transcriptome; this is
because it fails to filter out those transcripts that show sig-
nificant changes from the vast majority of transcripts that
do not change at all (results not shown). Hence, in order
to model the metabolic variables as a function of the tran-
scriptome data, and to identify the ORFs that mediate the
effects of the perturbations, the partial least squares (PLS)
method was applied to the transcriptome of 324 ORFs (X)
and metabolic data (Y). Dimensions of the matrices X and
Y were 8 x 324 and 8 x 3, respectively, and both matrices
were mean-centred and scaled to variance 1 prior to PLS
regression. In Table 3, variations represented by the latent
variables (LVs) are given in percentages. About 90% of the
variance in both data sets is represented in the first three
LVs.

Cumulative prediction error sum of squares (PRESS) are
plotted to evaluate the prediction power and limitations
of the constructed model (Fig. 2). A 'leave-one-out' proce-
dure was used in PRESS calculations; i.e., in each step, one
of the samples was not included in the model and meta-
bolic profile of the left-out sample was predicted using the
model constructed, then the prediction error of that sam-
ple was calculated, and the procedure was repeated until
all samples had been left out once. The model improves
for all three response variables (i.e. biomass production,
glucose consumption and ethanol production rates) as
more latent variables are included (Fig. 2). The only
exception was the second LV, since the prediction error for

Table 2: Factors and Experimental Conditions
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biomass production rate increased when this LV was
included in the model. When the third and fourth LVs
were included, the cumulative PRESS decreased, indicat-
ing that the prediction power of the model was improved
- therefore, LV3 and LV4 were included in the following
interpretation. The observation of high biomass cumula-
tive PRESS values for all the LVs indicated a low prediction
power of the model for the biomass.

In order to see whether the distribution of the samples is
linear according to Eq. 5, the scores for the transcriptome
(t) and the metabolic data (u) on each LV were plotted
against each other (Fig. 3). The distributions of the scores
around the fitted lines for LVs 1, 2 and 4 are quite good,
thus the modelling capabilities of these LVs are satisfac-
tory (Fig. 3A, B and 3D, respectively), whereas the distri-
bution of scores on LV3 is quite scattered, indicating a
weakness of the prediction power of the model for the var-
iation of the metabolic data represented in LV3.

Scores of the transcriptome (t) and metabolic data (u) on
the first four LVs are plotted in Figure 4. The first two LVs
separate the samples taken from the different media and
deletion mutants (Figs. 4A and 4C). The highest variation
(56.0% of X and 73.7% of Y), which is represented by
LV1, is due to the medium factor and this is followed by
the variation in LV2 (13.6% of X and 13.1% of Y) which
is due to the gene deletion. In Fig 4A, scores of transcrip-
tome data from ammonium-limited samples are positive
on LV1 while scores of transcriptome data from glucose-
limited samples are negative. Scores of transcriptome data
from hoA/hoA samples are positive on LV2, while scores of
transcriptome data from hap4A/hap4A samples are nega-
tive on LV2. Similar discrimination applies for scores of
metabolome on LV1 (Fig 4C); however, scores of meta-
bolic variables from hoA/hoA and hap4A/hap4A mutants
can be discriminated on LV2 only if they are from glucose-
limited samples. Thus, the effect of gene deletion cannot
be modelled by the transcriptome data when the samples
are from ammonium-limited fermentors, probably
because metabolic variables are not significantly affected
by the gene deletions under ammonium-limited condi-
tions, although the transcriptome is significantly affected.

The variation generated by the change in dilution rate was
represented by LV3 in transcriptome data (25%, Fig. 4B).
Variation generated by the change in dilution rate was rep-

Factor Level (-) Level (+)

Deletion Homozygous diploid, hoA/hoA Homozygous diploid, hap4A/hap4A
Medium Glucose-limited Ammonium-limited

Dilution Rate 0.1 h-! 0.2 h-!
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Biomass and metabolic data. Biomass concentrations (gram dryweight per hour) were measured at steady state for both
the standard (hoA/hoA) and mutant (hap4A/hap4A) strains grown under glucose limitation at D = 0.1 h-! (GI) or D = 0.2 h-!
(G2), or under ammonium limitation at the same two D-values (NI, N2). A. Glucose consumption rate () and ethanol pro-

duction rate (Hl) gram per hour at steady state.

resented weakly by LV3 and LV4 in metabolic variables
(2.8 and 8.2%, Fig. 4D). Thus, the effect of dilution rate
on metabolic variables is not successfully modelled by the
transcriptome data.

Each of the latent variables that model the response of the
metabolic variables to perturbations using the transcrip-
tome data represents the variation in the data set in one of
the perturbations applied in the present analysis (except
for the variance generated by dilution rate perturbation,
which is represented by two latent variables for the meta-
bolic data). For instance, the projection of samples onto
LV1 represents the change that was generated in the sam-
ple by ammonium limitation when compared to glucose
limitation. The direction of each new variable (LV) in the
space is a linear combination of the original variables, i.e.
ORFs and metabolites. The direction of an LV is domi-
nated by the variables that respond more than the others
and the direction of their response. Thus, an LV can be
interpreted as a new composite variable that is the only

affected feature in the cell when a certain perturbation is
applied. As an exception, for the dilution rate change, two
latent variables are needed in order to discriminate the
metabolic samples from two different dilution rates.

In order to assess the contribution of biomass production,
glucose consumption and ethanol production rates to the
direction of the LVs, the loadings of response variables on
the first four LVs are plotted in Figs 5A and 5B. Changes in
glucose consumption and ethanol production rates in
response to medium and gene deletion factors were mod-
elled by the first two LVs and their trends were found to be
similar to each other (Fig. 5A). Their loadings on LV1 are
positive, and the transcriptome samples from ammonium
limitation also score positively on LV1 (Fig. 4A); thus the
model predicts an increase in the response variables under
ammonium limitation as compared to glucose limitation.
The response levels under ammonium limitation (Figs. 1A
and 1B) are indeed higher when compared to those of the
glucose-limited samples from the same mutant at an iden-
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Cumulative prediction error sum of squares (PRESS)
for biomassconcentration, glucose consumption and
ethanol production rates. These values were calculated
using a 'leave-one-out' procedure (see text).

tical dilution rate. The ethanol and glucose load nega-
tively on LV2, and they are expected to be affected
positively by hap4A/hap4A deletion, which is indeed the
case (Figs. 1B and 5A). The biomass has a positive score
on LV2 and it is expected to be affected positively in the
samples with positive scores on LV2, i.e. samples from
hoA/hoA, but this prediction does not hold for ammo-
nium-limited cases. However, it was previously explained
that metabolic samples from hoA/hoA and hap4A/hap4A
deletion mutants cannot be discriminated if the growth
condition is ammonium-limited, as the deletions have no
significant effect on the response variables if growth is N-
limited.

All response variables have positive loadings on LV3 and
LV4 (Fig. 5B), and therefore would be expected to have
higher values in samples with positive scores on LV3 and
LV4. Indeed, all response variables increased at the higher
dilution rate (Fig. 1B). However, this behaviour cannot be
predicted by the model as some of the scores of metabolic
samples from higher dilution rates are not positive on LV3
and LV4 (Fig. 4D).

Analysis of ORFs with significant contribution

Loadings of the ORFs on the latent variables were investi-
gated to unravel the relationship between the transcrip-
tome and response variables (Figs 5C-F). The ORFs with
positive loadings on an LV are up-regulated in samples
with positive scores on that LV while they are down-regu-
lated in samples with negative scores. On the other hand,
the ORFs with negative loadings on an LV are down-regu-
lated in samples with positive scores on that LV.

The variance in LV1 represents the differences due to the
medium factor. The genes with positive loadings on LV1,

http://www.biomedcentral.com/1471-2105/7/203

which are up-regulated under ammonium limitation
when compared to glucose limitation, are expected to be
the genes that mediate the increase in biomass produc-
tion, glucose consumption, and ethanol production rates.
Similarly, the genes with negative loadings on LV1 are
most likely to be the genes that are up-regulated under
glucose limitation causing the decrease in these response
variables. The ORFs with positive loadings on LV2 are up-
regulated in hoA/hoA deletion mutants, since samples
from such mutants have positive scores on LV2. These
ORFs are expected to mediate the changes in the rates of
biomass production, glucose consumption and ethanol
production in the hap4A/hap4A deletion mutants as com-
pared to hoA/hoA deletion mutants.

The ORFs with significant positive or negative loadings
(confidence interval 99.999%; Student's t < 1 x 10-%) on
LVs are listed in Table 4. In addition, the ORFs listed
under each LV group were analysed using SGD Gene
Ontology Mapper [20], and the corresponding five cellu-
lar processes with lowest p-values among each group of
OREFs are listed in Table 4.

The ORFs with significant positive loadings on the first
latent variable (LV1+) are involved in hexose transport,
these ORFs are up-regulated under ammonium limitation
in comparison to carbon limitation. Up-regulation of the
hexose transport pathway may be the first step of the
mechanism to increase biomass production, ethanol pro-
duction and glucose consumption rates under nitrogen
limitation. The ORFs that are down-regulated under
ammonium limitation as compared to glucose limitation
are the genes that are active in oxidative phosphorylation,
generation of precursor metabolites and energy (LV1-).
The high glucose concentration in the ammonium-lim-
ited culture should repress the expression of genes acting
on the respiratory pathways (oxidative phosphorylation).
Repression of respiration, in turn, would cause the fer-
mentation pathway to be activated and ethanol produc-
tion to be enhanced.

The genes that were down-regulated due to the hap4A/
hap4 A deletion when compared to standart strain hoA/hoA
mainly have roles in respiration and phosphate metabo-
lism (LV2+). Consequently, the hap4A/hap4A deletion
causes respiratory deficiency under the conditions stud-
ied, and fermentation is the only route for glucose metab-
olism. The higher glucose consumption and ethanol
production rates achieved provide further confirmation
that Hap4p plays a major role in the switch mechanism
from respiration to fermentation. The genes that were up-
regulated in response to the hap4A/hap4A deletion (LV2-)
were involved in regulation of carbohydrate biosynthesis,
indicating the propensity of the cells to convert excess car-
bon into storage molecules if the carbon source cannot be
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Table 3: Proportion of the variation explained by each latent variable
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LV % Variation (X) Cumulative % variation (X) % Variation (Y) Cumulative % variation (Y)
| 56.0 56.0 737 737

2 13.6 69.6 13.1 86.8

3 25.0 94.6 2.8 89.7

4 1.7 96.3 8.2 97.9

5 1.4 97.6 2.1 99.9

6 1.4 99.0 0.0 100.0

7 1.0 100.0 0.0 100.0

respired. While this theory explains the results from glu-
cose-limited case perfectly, the effect of hap4A/hap4A dele-
tion is not apparent in ammonia-limited conditions as the
high glucose levels in the N-limited medium repress respi-
ration, quite independently from the respiratory defi-

ciency caused by the hap4A/hap4A deletion. Thus the
metabolic variables behave similarly in hoA/hoA and
hap4A/hap4A mutants growing under ammonium limita-
tion, and the insignificant variation in these variables can-

not be estimated by the model, as discussed previously.
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Comparison of scores for transcriptome and metabolic data. Scores for the transcriptome (t) and the metabolic data
(u) on each LV are plotted against each other. A), B), C), D) represent this comparison for the first four latent variables,
respectively. In each case, the line shows the modelling capability of the transcriptome on the metabolic data.
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Scores of transcriptome and metabolic data on first four LVs. Scores for the transcriptome (t) and metabolic data (u)
on each LV are plotted. A), B) represent projections of the transcriptome samples on the first four latent variables, respec-
tively. C), D) represent projections of the metabolic samples on the first four latent variables, respectively.

The ORFs up-regulated at the higher dilution rate (LV3+)
are the genes that act in ribonucleotide metabolism. Up-
regulation of these ORFs mediates the increase in biomass
production rate, and the consequent increases in ethanol
production and glucose consumption rates. The GO terms
common among the ORFs down-regulated at the lower
dilution rate (LV3-) are related to reproduction mecha-
nisms. The significance of these terms is quite low (p ~10-
2); however, up-regulation of these mechanisms at the
lower growth rate is an interesting phenomenon that
remains to be explained.

The number of genes given in groups LV1- and LV2+
(Table 4) that are members of the GO terms "generation
of precursor metabolites and energy" and "oxidative

phosphorylation" have high significance (p < 1.0 E-12).
The unknown ORFs that appear in the same group as
these genes may also be members of the functional cate-
gories denoted by the over-represented GO terms.

Conclusion

The use of formal experimental design allowed the analy-
ses that we performed to discriminate between the effects
that the growth medium, dilution rate, and the deletion of
specific genes had on the transcriptome and metabolite
profiles. The PLS method was applied to metabolic and
transcriptomic data to gain insight into the changes in
metabolism due to three factors (growth medium, dilu-
tion rate and gene deletion). The method enabled extrac-
tion of the following information from these data sets:
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LV3 and LV4, respectively) are indicated by red (positive loadings) and blue (negative loadings) circles, and the systematic ORF

name provided.
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Table 4: ORFs and GO terms with highest contributions to the LVs

http://www.biomedcentral.com/1471-2105/7/203

Lv OREFs with significant loadings Biological Process GO Terms P-value
LVI+ HXTI, MNT4, HXT3, YER028C, YJL132W, YGLI57W, ALDI, hexose transport |.8E-04
ZRT2
monosaccharide transport 1.8E-04
carbohydrate transport 5.2E-04
transport 7.4E-02
establishment of localization 7.7E-02
LVI-  GSYI, MBRI, ISFI, GDBI, MAL33, QCRS8, GLGI, PIGI, generation of precursor metabolites and energy 1.1E-21
YDLI57C, CBP4, GPHI, HXKI, GACI, YPRI96W, YLR327C,
PRX1, QCRY, PCL7, MAL3 I, BAP2, INHI, MRKI, YOLO53W,
YKLI87C, YMRI103C, MTHI, MCRI, YGR243W, PRS2, ROMI,
COX8, COX4, YJR008W, YNL274C, HOR2, COX7, YPL099C,
ATPI18, QCRI0, CNMé67, ATP5, ACN9, COXI12, COX6
energy derivation by oxidation of organic compounds 4.4E-17
oxidative phosphorylation 2.0E-13
electron transport 1.7E-11
ATP synthesis coupled electron transport (sensu Eukaryota) 1.9E-10
LV2+ QCRS8, PRXI, QCRY, INHI, MCRI, COX8, COX4, COXI2, oxidative phosphorylation 2.7E-25
COXé6, COX7, ATPI8, QCRI10, ATP5, AMSI, HAP4, RPM2,
PHMS, FBP26, ATP15, YMR034C, YOR220W, TUFI, CORI,
ATP3, YNLI22C, ATP7, ATPI17, ATP20, HXTI, YER028C,
YJLI32W
generation of precursor metabolites and energy 5.7E-18
phosphorylation 6.0E-18
phosphorus metabolism 4.1E-16
phosphate metabolism 4.1E-16
LV2- PIGI, BAP2, MRKI, PRS2, UBPI4, MKC7 regulation of carbohydrate biosynthesis 8.1E-05
regulation of carbohydrate metabolism 2.1E-04
regulation of cellular biosynthesis 7.4E-04
regulation of biosynthesis 7.4E-04
carbohydrate biosynthesis 1.2E-03
LV3+ PRS2, CBP4, RPL7A, YOR314W, ALDI, ATP5, COXé purine ribonucleotide biosynthesis 5.6E-04
purine ribonucleotide metabolism 6.2E-04
ribonucleotide biosynthesis 6.2E-04
ribonucleotide metabolism 6.8E-04
purine nucleotide biosynthesis 7.1E-04
LV3- PIGI,ROMI, CNMé7, YBLI12C, MSC2, YOLI53C, UBI4, RAD2, asexual reproduction 1.9E-02
CHSI, MNT4, ZRT2, PRXI, AMSI, PHM8, FBP26, YMR034C,
YOR220W, HXTI, YJLI32W
cell budding 1.9E-02
carbohydrate metabolism 1.9E-02
reproduction 2.9E-02
cell homeostasis 3.4E-02
Lv4+ MSC2, PRXI, AMSI, PHM8, YMR034C, HXTI, MTHI, YPLO99C, monosaccharide transport |.2E-05
TRS23, CYC7, ZRG17, YLR431C, GPGI, YFL034W, PKHI,
HXT3, YER028C
hexose transport |.2E-05
carbohydrate transport 5.5E-05
transport 6.5E-04
establishment of localization 7.4E-04
LvV4- CNMé7, MRKI, MKC7, YDLI57C, YDRI119W, QCR8, QCR9, oxidative phosphorylation 7.6E-09
INHI, COX8, COX4, HAP4, ALDI
phosphorylation 5.0E-08
ATP synthesis coupled electron transport (sensu Eukaryota) 6.7E-08
ATP synthesis coupled electron transport 6.7E-08
electron transport 1.6E-07

Student's t-test was applied to loadings of the ORFs and only those ORFs with t < | x [0-> (within confidence interval 99.999%) are listed in the
Table. GO Mapping was applied to these ORFs and only the top five significant biological process terms are given. (+) and (-) signs indicate positive
and negative loadings of the ORFs, respectively.
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1. Discrimination of the effects of the above factors on
transcriptome and metabolic data.

2. Modelling of metabolic data as a function of transcrip-
tome data and elucidation of the extent of congruence
between these two data sets.

3. Identification of ORFs that mediate the changes in met-
abolic data in response to perturbations.

In cases where the number of variables in the metabolic
data is much higher, the PLS method will help in the iden-
tification of metabolites that are affected by the condi-
tions applied and the genes that mediate the effects of the
conditions. The unknown genes can be annotated using
this methodology and studies towards product maximiza-
tion can be conducted by identifying the genes and path-
ways that are responsible for the changes in formation of
metabolic products.

Methods

Experimental materials and methods

Deletion strains of S. cerevisiae with genomic background
BY4743 (MATa/MATo  his3A1/his3A1  leu2A0/leu2A0
lys2A0/LYS2 MET15/met15A0 ura3A0/ura3A0) from the
Yeast Genome Deletion Project library [21] were used.
The hoA/hoA deletant is commonly used as a standard
strain in control experiments since the deletion has no
measurable impact on either flux (growth rate, [22]) or
the metabolome [23]. The absence of the HO or HAP4
genes in a strain's genome was verified using PCR-based
methods.

Mineral media, supplemented with trace elements and
vitamins were used [22]. The compositions of the media
were as follows: KH,PO, (2 g/1), MgSO, - 7H,0 (0.55 g/1),
NacCl (0.1 g/1), CaCl,-2H,0 (0.09 g/1), Uracil (0.02 g/1),
L-Histidine (0.02 g/1), L-Leucine (0.1 g/1), ZnSO, - 7H,0O
(0.7 x 104 g/1), CuSO, - 5H,0 (0.1 x 104 g/l), H;BO, (0.1
x 10-4g/l), KI (0.1 x 104 g/1), FeCl;- 6H,O (0.5 x 104 g/1),
inositol (0.12 g/1), thiamine/HCI (0.014 g/1), pyridoxine
(0.004 g/1), Ca-pantothenate (0.004 g/1), biotin (0.0003
g/1).

For glucose-limited medium, 3.13 g/ (NH,),SO, and 2.5
g/l glucose were added to the medium described above.
For ammonium-limited medium 0.46 g/1 (NH,),SO, and
20 g/l glucose were added to medium described above.

The fermentors were autoclaved, and the media were fil-
ter-sterilized prior to inoculation. Pre-cultures (10 ml)
were grown overnight in G418-containing YPD medium
and used to inoculate the fermentors. The medium was
fed at a constant flow rate. Temperature and pH of chem-
ostats with 1L working volume were kept constant at

http://www.biomedcentral.com/1471-2105/7/203

30°C and 4.5 respectively, and the oxygen content was
maintained at saturation.

Homozygous hoA/hoA and hap4A/hap4A deletion strains
were grown both in glucose-limited and ammonium-lim-
ited media in separate experiments. The experiments were
started at a dilution rate of 0.1 h-! and, after samples had
been collected, the dilution rate was shifted to 0.2 h-1. The
samples were collected at steady state after three residence
times, and total RNA extraction was carried out. Yeast
Genome S98 arrays were used for hybridizations as
described by the manufacturer (Affymetrix, USA, 2003,
[24]). Supernatants were analyzed enzymatically for glu-
cose and ethanol content (using kits from Boehringer-
Mannheim, Germany).

Samples (5 ml) were centrifuged in pre-weighed tubes,
dried at 80°C overnight and re-weighed to determine the
dry weight of biomass.

Experimental design

Factorial experimental design is used to reveal the effects
of various factors on the output of a system. For an exper-
iment set with "a" levels of "k" factors, ak experiments are
needed to cover all possible combinations. The 23 facto-
rial design used in this work is given in Table 1. Eight
experiments were conducted to investigate all combina-
tions of the factors. Levels of the factors and the corre-
sponding experimental conditions are given in Table 2.

The abbreviations used for the homozygous hoA/hoA and
hap4A/hap4A mutants deletion strains are "hoA" and
"hap4A", respectively. The "G" and "N" are the abbrevia-
tions for the glucose and ammonium-limited cases, while
"1" and "2" are used for dilution rates 0.1 h-and 0.2 h-!,
respectively. In the Figures, "A" is omitted and the abbre-
viations ho and hap4 represent the deletion mutants.

Linear modelling
The linear model for a factorial experiment with three fac-
tors is as follows [25]:

Vie=H+Ti+ Bj+ v+ &5 (1)

where i, j, k: indices of the levels of the factors;i=1, 2, ...,
aj=1,2,..,b k=1,2,.., ¢ pu mean of the outputs; y:
simulated value of the output variable; 1, B, y: effects of the
factors; € random error. In the present experimental
design, each factor has two levels; thus, a =b = c = 2. The
output variable y represents the expression level of an ORF
on a log , basis.

The linear model in Eq.(1) was used to estimate the coef-
ficients to describe the expression level of each ORF. The
coefficients obtained in each case are the "effects" of the
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factors on the expression of the ORF modelled. A positive
effect made by a factor indicates that the ORF is up-regu-
lated at Level (+) when compared to Level (-) of that fac-
tor. Similarly, a negative effect indicates down-regulation
of the ORF at Level (+) when compared to Level (-).

P-values of the factors were calculated using the ratio of
variation sum of squares to error sum of squares in order
to indicate the significance of the correlation between the
gene expression and the factor.

Partial least squares

In industrial processes, large sets of process data are col-
lected by computerized control and monitoring systems.
Multivariate data analysis methods have emerged to com-
pensate for the need for data reduction towards under-
standing the nature of the process and fault diagnosis.
Partial least squares (projection to latent structures — PLS)
is a statistical method that was proposed for process anal-
ysis, monitoring and diagnosis [26-28]. Later on, this
method was employed as one of the standard tools of che-
mometrics in analytical chemistry [29].

In PLS methodology, the independent "cause" matrix X
and the dependent "response" matrix Y are regressed and
modelled simultaneously. The columns of these matrices
represent the variables (genes and response variables in X
and Y, respectively) and rows represent the samples. The
linear model is:

Y=XB+E (2)

where B is the regression vector and E is the residual
matrix.

Projection of the original data set X to a new space with
reduced dimensions is made by the loading matrix (p)
and the observations are represented by the score matrix
(t) in the new space. Decomposition of the data matrix X
into the score matrix (t), the loading matrix (p) and the
residual matrix (e) is as follows:

X=tpt+e (3)

where the superscript "t" denotes the transpose of the
matrix p. Columns of p and t matrices correspond to the
latent variables (LVs), which lie in the direction of the
maximum variation that remains in the data after removal
of the variation explained by the previous LV. The residual
matrix (e) represents the variation that remains unrepre-
sented in the t and p matrices. Similarly, the response
matrix Y is decomposed as:

Y=ug+f (4)

http://www.biomedcentral.com/1471-2105/7/203

The score vectors (vectors of u) and the loading vectors
(vectors of q) correspond to LVs. The residuals are given
by the f matrix. A linear inner relation also exists between
the matrices t and u, where U denotes the matrix of esti-
mated values of u:

i=bt (5)

The optimal number of LVs to be included in the model
depends on the amount of variation explained by the LVs
which are in descending order of the variation they
explain. One criterion for the selection of an optimal
number of LVs is to set a threshold value for the variation.
Then, a sufficient number of LVs is included in the model
to represent the threshold variation, and the rest of the
variation remains in the residual matrix. Cross-validation
is another criterion where the analysis is performed with a
subset of the data and the rest of the data set is used to
determine the prediction power of the model. Then, the
number of LVs that results in minimum prediction error
sum of squares (PRESS) is selected.

Authors' contributions

The biological problem was conceived by BK and SGO;
the experiments were executed by PP and AH. The PLS
approach was suggested by KOU who assisted PP in the
analyses. The manuscript was written by PP, BK, KOU and
Z10, and was revised by SGO. All authors read and
approved the final version.

Acknowledgements

This work was supported by Bogazici University Research Fund through
projects 035108, 03A504, 04HA503D, and by DPT-03K120250. The schol-
arship provided for PP by The Turkish Scientific and Technical Research
Council (TUBITAK-BAYG) is gratefully acknowledged. We acknowledge
grants from the Wellcome Trust (062350/2/00) and the COGEME
(19F13036, 918882) grant made to SGO under the 'Investigating Gene
Function' Initiative of the UK Biotechnology and Biological Sciences
Research Council. We thank to Leanne Wardleworth for technical assist-
ance.

References

. Castrillo JI, Oliver SG: Yeast as a touchstone in post-genomic
research: strategies for integrative analysis in functional
genomics. | Biochem Mol Biol 2004, 37:93-106.

2. Lockhart DJ, Winzeler EA: Genomics, gene expression and
DNA arrays. Nature 2000, 405:827-836.

3. Boer VM, de Winde JH, Pronk |T, Piper MDW: The genome-wide
transcriptional responses of Saccharomyces cerevisiae grown
on glucose in aerobic chemostat cultures limited for carbon,
nitrogen, phosphorus, or sulfur. | Biochem 2003, 278:3265-3274.

4.  Wu ], Zhang N, Hayes A, Panoutsopoulou K, Oliver SG: Global
analysis of nutrient control of gene expression in Saccharo-
myces cerevisiae during growth and starvation. Proc Natl Acad
Sci USA 2004, 101:3148-3153.

5. Hayes A, Zhang N, Wu |, Butler PR, Hauser NC, Hoheisel JD, Lim FL,
Sharrocks AD, Oliver SG: Hybridization array technology cou-
pled with chemostat culture: Tools to interrogate gene
expression in Saccharomyces cerevisiae. Methods 2002,
26:281-290.

6.  Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh
MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12054884

BMC Bioinformatics 2006, 7:203

20.

21.
22.

23.
24.
25.
26.

27.

Dam K, Oliver SG: A functional genomics strategy that uses
metabolome data to reveal the phenotype of silent muta-
tions. Nat Biotechnol 2001, 19:45-50.

Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG,
Kell DB: High-throughput classification of yeast mutants for
functional genomics using metabolic footprinting. Nat Biotech-
nol 2003, 6:692-696.

Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman
ZS, Jones T, Chu M, Giaever G, Prokisch H, Oefner PJ, Davis RW:
Systematic screen for human disease genes in yeast. Nat
Genet 2002, 3 1:400-404.

Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bum-
garner R, Goodlett DR, Aebersold R, Hood L: Integrated genomic
and proteomic analyses of a systematically perturbed meta-
bolic network. Science 2001, 292:929-933.

Hughes TR, Marton M}, Jones AR, Roberts CJ, Stoughton R, Armour
CD, Bennett HA, Coffey E, Dai H, He YD, Kidd M}, King AM, Meyer
MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D,
Chakraburtty K, Simon J, Bard M, Friend SH: Functional discovery
via a compendium of expression profiles. Cell 2000,
102:109-126.

DeRisi JL, lyer VR, Brown PO: Exploring the metabolic and
genetic control of gene expression on a genomic scale. Sci-
ence 1997, 278:680-686.

Gancedo JM: Yeast carbon catabolite repression. Microbiol Mol
Biol Rev 1998, 62:334-361.

Blom J, de Mattos T, Grivell LA: Redirection of the respiro-fer-
mentative flux distribution in Saccharomyces cerevisiae by
overexpression of the transcription factor Hap4p. Appl Environ
Microbiol 2000, 66:1970-1973.

Buschlen S, Amillet JM, Guiard B, Fournier A, Marcireau C, Bolotin-
Fukuhara M: The S. cerevisiae HAP complex, a key regulator of
mitochondrial function, coordinates nuclear and mitochon-
drial gene expression. Comp Funct Genom 2003, 4:37-46.

Nyugen DV, Rocke DM: Tumor classification by partial least
squares using microarray gene expression data. Bioinformatics
2002, 18:39-50.

Nyugen DV, Rocke DM: Partial least squaresproportional haz-
ard regression for application to DNA microarray survival
data. Bioinformatics 2002, 18:1625-1632.

Johansson D, Lindgren P, Berglund A: A multivariate approach
applied to microarray data for identification of genes with
cell cycle-coupled transcription. Bioinformatics 2003,
19:467-473.

Azmi Y, Griffin JL, Shore RF, Johansson E, Nicholson JK, Holmes E:
Metabolic trajectory characterisation of xenobiotic-induced
hepatotoxic lesions using statistical batch processing of NMR
data. The Analyst 2002, 127:271-276.

Antti H, Ebbels TMD, Keun HC, Bollard ME, Beckonert O, Lindon JC,
Nicholson JK, Holmes E: Statistical experimental design and
partial least squares regression analysis of biofluid metabo-
nomic NMR and clinical chemistry data for screening of
adverse drug effects. Chemometrics and Intelligent Laboratory Sys-
tems 2004, 73:139-149.

Dolinski K, Balakrishnan R, Christie KR, Costanzo MC, Dwight SS,
Engel SR, Fisk DG, Hirschman JE, Hong EL, Nash R, Oughtred R,
Theesfeld CL, Binkley G, Lane C, Schroeder M, Sethuraman A, Dong
S, Weng S, Miyasato S, Andrada R, Botstein D, Cherry JM: Saccha-
romyces Genome Database. [http://www.yeastgenome.org/].
latest time of access: November 2004

Yeast Genome Deletion Project [http://www.sequence.stan
ford.edu/grouplyeast deletion_project/deletions3.html]

Baganz F, Hayes A, Marren D, Gardner DCJ, Oliver SG: Suitability
of replacement markers for functional analysis studies in
Saccharomyces cerevisiae. Yeast 1997, 13:1563-1573.

Oliver SG, Winson MK, Kell DB, Baganz F: Systematic functional
analysis of the yeast genome. Trends Biotechnol 1998, 16:373-378.
Affymetrix: Affymetrix GeneChip expression analysis techni-
cal manual. Affymetrix Inc 2000.

Montgomery DG: Design and Analysis of Experiments 5th edition. New
York: John Wiley and Sons; 2001.

Geladi P, Kowalski BR: Partial least-squares regression: A tuto-
rial. Anal Chim Acta 1996, 185:1-17.

Kourti T, MacGregor JF: Process analysis, monitoring and diag-
nosis, using multivariate projection methods. Chemometrics
and Intelligent Laboratory Systems 1995, 28:3-21.

28.

29.

http://www.biomedcentral.com/1471-2105/7/203

Wold S, Sjostrom M, Eriksson L: PLS-regression a basic tool of
chemometrics. Chemometrics and Intelligent Laboratory Systems
2001, 58:109-130.

Hopke PK: The evolution of chemometrics. Anal Chim Acta 2003,
500:365-377.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11135551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11135551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11135551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12134146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12134146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9618445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10788368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10788368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11913873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11913873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11913873
http://www.yeastgenome.org/
http://www.sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
http://www.sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9509575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9744112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9744112
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Modelling expression levels of ORFs
	Integration of metabolic and transcriptomic data
	Analysis of ORFs with significant contribution

	Conclusion
	Methods
	Experimental materials and methods
	Experimental design
	Linear modelling
	Partial least squares

	Authors' contributions
	Acknowledgements
	References

