
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
GenoLink: a graph-based querying and browsing system for
investigating the function of genes and proteins
Patrick Durand*1,5, Laurent Labarre1,2, Alain Meil1, Jean-Louis Divo11,
Yves Vandenbrouck3,6, Alain Viari4 and Jérôme Wojcik1,7

Address: 1Hybrigenics SA, 3–5 Impasse Reille, 75014 Paris, France, 2AGC, UMR CNRS 8030 – Genoscope, 2 rue Gaston Crémieux, 91000 Evry,
France, 3Genome Express, 11 Chemin des Prés, 38944 Meylan, France, 4INRIA Rhône-Alpes, 655 Avenue de l'Europe, 38334 Saint-Ismier Cedex,
France, 5IRISA-INRIA, Campus de Beaulieu, 35402 Rennes Cedex, France, 6DRDC/BIM, CEA-Grenoble, 17 Avenue des martyrs, 38054 Grenoble
Cedex 9, France and 7Serono Genetics Institute, Route Nationale 7, 91030 Evry Cedex, France

Email: Patrick Durand* - Patrick.Durand@inria.fr; Laurent Labarre - labarre@genoscope.cns.fr; Alain Meil - ameil@hybrigenics.com; Jean-
Louis Divo1 - jldivol@hybrigenics.com; Yves Vandenbrouck - vandenbrouckyv@dsvsud.cea.fr; Alain Viari - Alain.Viari@inria.fr;
Jérôme Wojcik - Jerome.Wojcik@serono.com

* Corresponding author

Abstract
Background: A large variety of biological data can be represented by graphs. These graphs can be
constructed from heterogeneous data coming from genomic and post-genomic technologies, but
there is still need for tools aiming at exploring and analysing such graphs. This paper describes
GenoLink, a software platform for the graphical querying and exploration of graphs.

Results: GenoLink provides a generic framework for representing and querying data graphs. This
framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs
from the entire data graph, and several graphical interfaces to express such queries and to further
explore their results. A query consists in a graph pattern with constraints attached to the vertices
and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic
to the pattern and satisfy the constraints. The graph data structure does not rely upon any
particular data model but can dynamically accommodate for any user-supplied data model.
However, for genomic and post-genomic applications, we provide a default data model and several
parsers for the most popular data sources. GenoLink does not require any programming skill since
all operations on graphs and the analysis of the results can be carried out graphically through
several dedicated graphical interfaces.

Conclusion: GenoLink is a generic and interactive tool allowing biologists to graphically explore
various sources of information. GenoLink is distributed either as a standalone application or as a
component of the Genostar/Iogma platform. Both distributions are free for academic research and
teaching purposes and can be requested at academy@genostar.com. A commercial licence form
can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.

Background
The development of genomic and post-genomic technol-

ogies is producing a large amount of heterogeneous data
for investigating the functions of the genes and their prod-

Published: 17 January 2006

BMC Bioinformatics 2006, 7:21 doi:10.1186/1471-2105-7-21

Received: 20 June 2005
Accepted: 17 January 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/21

© 2006 Durand et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417636
http://www.biomedcentral.com/1471-2105/7/21
http://creativecommons.org/licenses/by/2.0
http://www.genostar.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
ucts. Biological data are spreaded across an increasing
number of databases that differ widely in terms of quality,
consistency, diversity and availability [1]. The biologists
are now faced with the problem of analysing this informa-
tion and turning it into new knowledge. Simple analysis is
usually performed directly on a database through a query
language (usually SQL for relational databases) or using a
pre-defined set of queries. More sophisticated analyses
require to integrate heterogeneous data coming from var-
ious sources and rely upon the use of specialized algo-
rithms and data structures, since database models are not
suitable for direct algorithmic use.

An efficient way to analyse the functions of the genes/pro-
teins consists in exploring the relationships between vari-
ous kinds of biological data [2]. As a very simple example,
it is possible to assign a function to a protein from a given
organism knowing that this protein is encoded by a gene
which is ortholog to another gene encoding a well-known
protein in another organism (Figure 1). In that case, a net-
work of objects (genes, proteins and organisms) is actu-
ally explored using relationships (a gene 'belongs' to an
organism, a gene 'encodes' a protein and a protein 'is sim-
ilar' to another one).

More generally, such a network can be modelled as a
graph. A graph is defined by two sets (V,E) where V is a set
of vertices and E is a set of edges. A vertex represents an
object in the network (see Figure 1). An edge connects two
vertices and corresponds to a particular relationship in the
network (see Figure 1). A graph is said to be directed (resp.
undirected) if it is exclusively made of oriented (resp. not
oriented) edges. Graphs benefit from efficient algorithms
and are widely used in computer science. During the past
few years, graph theory has been used in biology for data
modelling purpose, especially for molecular interaction
databases (e.g. IntAct, [3]) and metabolic pathway data-
bases (see [4] for a review). Graph-based algorithms have
also been used to answer various biological questions,
such as in the field of protein-protein interactions net-
works (e.g. [5]) or biochemical networks (see [6] for a
recent review). Most of the current solutions are dedicated
to restricted set of data and/or particular analyses, and
they cannot be easily modified to accommodate new
data/methods. Another approach to target data graph
analysis in a more general way consists in using a graph
database. Significant systems like GOOD [7], Hy+ [8], Gql
[9], Hyperlog [10] and the system from Butler et al. [11]
provide visual interfaces and pattern-oriented query lan-
guages allowing the end-user to answer various biological
questions through the use of diagram-based queries. This
approach is more intuitive and more generic than the pre-
vious ones, it can be applied to various data types, and
does not require the design of particular algorithms to
answer particular questions. However, current graph data-
base systems have a limited data modelling power since
they rely on a flat (i.e. non hierarchical) data model.
Graph querying approach could greatly benefits from
object-oriented data modelling techniques since they pro-
vide a higher level of abstraction (especially through
objects inheritance) that is especially well-suited to repre-
sent complex biological data. In this context, the Snow
system (under development, see [12]) provides an envi-
ronment dedicated to the representation and analysis of
biological networks which is based on an entity-relation-
ship data model.

This work is concerned with the development of Geno-
Link, a generic software application dedicated to the
exploration of graphs, where vertices and edges are
enriched with data modelled using an entity-relationship
model. GenoLink can be seen either as a generic graph
querying and browsing engine or as a dedicated applica-
tion for biologists. From the first point of view, GenoLink
provides a generic graph data structure, a graph query
engine, allowing to retrieve sub-graphs from the entire
data graph, and several graphical interfaces to express
such queries and to further explore their results. It is
important to note that the graph data structure does not
rely upon any particular data model but can dynamically

Example of a graph representing biological data and how it can be used to infer new informationFigure 1
Example of a graph representing biological data and
how it can be used to infer new information. The graph
vertices are represented by boxes and are associated to bio-
logical entities (Organism, Chromosome, Gene etc). The
edges (arrows) represent the relationships between these
entities (Chromosome BelongsTo Organism, Gene Istranslat-
edTo Protein). On this example, genes holA and HP1247 are
known to be orthologs (COG1466) but the protein product
of HP1247 is not annotated in the sequence databank (Ref-
Seq). The graph suggests to annotate the product of HP1247
as the delta subunit of polymerase III.
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
accommodate for any user-supplied data model. How-
ever, since our primary goal concerns genomic and post-
genomic applications, GenoLink is distributed with a
default data model for this particular purpose.

System and methods
Overview
The overall architecture of GenoLink, represented on Fig-
ure 2 is composed of two main components : the core and
the data storage system. The core provides the graph rep-
resentation of the data on the top of which querying and
display operations are performed. It interacts with the
storage system through an API based on an entity-rela-
tionship model (like UML). This API basically allows data
retrieval, creation or modification. The core relies on a
simple and generic graph model made of two entities: ver-
tices and edges. In order to link them to actual data, verti-
ces and edges have two attributes: a data identifier (ID)
and a data type. The ID is a unique identifier to a piece of
data kept in the storage system (e.g. a gene), and the data
type identifies the corresponding type for this data. The
API is therefore composed of two parts (Figure 2): one to
access the data (API-D), and one to access the data model
(API-M).

Accessing the data model has several important conse-
quences to the functionalities of the core. First, the data

model can specify that data types are organized into hier-
archies (i.e. classes and subclasses in an object-oriented
model). In that case, the core engine will retrieve this
information (through the API-M) and can further use it in
the querying process. For instance, if, during a query, the
user requires that a vertex should be of type 'Gene' and if
'ProteinGene' is a subtype of 'Gene', then all data of type
'ProteinGene' should match this vertex as well. A second
aspect relates to data consistency. By querying the model
(through API-M) the core can easily ensure that a user
query is consistent with the data model, for instance that
types are connected through the proper relationships.
Finally, a last aspect relates to the content of the data itself.
A piece of data in the storage system is described by an
identifier (the ID) and a set of attributes. For instance a
gene may have attributes to describe its name, its descrip-
tion and its length. During a query, some constraints will
be ascribed to these attributes (for instance "length >
1000"). Again, by querying the data model, the core is
able to control the consistency between the user's con-
straints and the data model.

In this architecture, any kind of data storage system could,
in theory, be used, as long as it can accommodate the API-
M and API-D. In practice, we implement GenoLink by
using an object-oriented DBMS (OO-DBMS), based on
the AROM system [13]. The reason for using an OO-
DBMS is that the mapping between the generic graph
model and the object model is greatly simplified.

Data connection and data import
There are basically two mechanisms to transfer data sets
from external sources into the GenoLink system: data con-
nection and data import.

Data connection is straightforward: when the core is
started, it connects trough the API-D to the storage system
and constructs a 'shallow graph' representation of this
data. We use the term 'shallow graph' to point out that the
graph model does only retain in memory the graph topol-
ogy and the identifiers and data types attached to the ver-
tices and edges, not the whole data set itself. Indeed, when
a specific part of data is needed (e.g. the value of some
attributes) the core will dynamically request it to the stor-
age system through API-D.

The data connection mode is conceptually simple but has
the drawback that all the data should be already available
in the storage system. This does not allow a great flexibil-
ity for the user to add some specific data. To this purpose,
GenoLink provides a data import mechanism. In this
mode the data are described in one or more external XML-
formatted flat files. Such a file contains the description of
a data graph in terms of vertices and edges. Each XML ver-
tex (or edge) should specify a data type and an ID. When

GenoLink overall architectureFigure 2
GenoLink overall architecture. The GenoLink core pro-
vides the generic graph data structure on the top of which
querying and display operations are performed. It is sepa-
rated from the storage system and interacts with it through
an API based on an entity-relationship model. Data can be
imported in two ways into the system: 1) through the stor-
age system or through external XML files. (See text for more
details).
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
loading the file, the core first checks that the provided data
type is known (through API-M). Then it checks whether
the ID already exists. If it does not, a new piece of data
(object) will be created in the storage system (through
API-D). The XML vertex (or edge) may also contain
attributes. Again, the core checks that each provided
attribute is correct for this type and will assign the pro-
vided value to it (unless the attribute was already valu-
ated). This mechanism provides a flexible way of
instantiating the data into the storage system since several
pieces of information pertaining to the same object can be
progressively put together by successively loading external
files. For instance, genomic information can be first
loaded to instantiate genes together with their relation-
ships to an organism, and additional information, such as
their homology relationships or their involvement in met-
abolic processes, can then be added. Of course this inte-
gration process relies on using the same identifier to
designate the same object in the various files.

In the context of genomic and post-genomic applications,
GenoLink is distributed with a set of parsers and XSL

transformation sheets to facilitate the construction of
these XML files, as described later.

Data Exploration
Exploring a data graph consists in finding vertices or paths
between two vertices or, more generally, sub-graphs of
particular interest. With currently available applications,
this can be done with dedicated graph algorithms (e.g.
[14]) or constraint programming systems (e.g. [15]; for a
recent review on graph matching, see [16]). However,
GenoLink proposes an exploration mechanism based on
a graphical 'query/browse' system adapted to data graphs.

In GenoLink, exploring a data graph is done in two steps.
First, the user formulates a query on the data graph. The
results of such a query are sub-graphs representing por-
tions of the whole data graph of particular interest. Then,
the user graphically browses into the whole graph by
using these sub-graphs as starting points.

The creation of a query can be achieved in two ways: either
using a dedicated graphical user interface, or using a query
language (GenoLink Query Language, or GQL). The
former does not require any programming skills.

Formally, a GenoLink query is a graph pattern where ver-
tices and edges are made of the data types defined by the
data model (Figure 3). These vertices and edges may carry
local constraints consisting of algebraic expressions
involving the vertex or edge attributes. A query may also
define a global constraint consisting in algebraic expres-
sions involving attributes of different vertices or edges. An
occurrence of a graph pattern in the data graph is a sub-
graph of this data graph where the vertices and the edges
fully satisfy the graph pattern constraints: topology, data
type (or subtypes) of vertices and edges and constraints on
attributes.

In addition to query declaration, GenoLink is also able to
compute union, difference or intersection between sub-
graphs. A full description of querying and graph operation
capabilities of GenoLink are provided with the documen-
tation distributed with the software.

The matching algorithm
The search engine of GenoLink is responsible for search-
ing for all matches of a graph pattern (hereafter called the
query graph) against the whole data graph. This graph
search problem is related to the sub-graph isomorphism
problem, which is known to be NP-complete [17]. One of
the most commonly used algorithms to solve that prob-
lem is the backtracking algorithm proposed by Ullmann
[18]. The algorithm used by GenoLink is inspired from
the Ullmann's one but present some slight differences that
mostly come from the fact that, in the sub-graph isomor-

Example of a GenoLink queryFigure 3
Example of a GenoLink query. (a) A simple query repre-
sented as a graph pattern. This simple query will retrieve het-
ero (Name1 != Name2) protein-protein interactions where
at least one of the two proteins has an annotated known
function (Name !: "hypothetical"). (b) The GQL script
describing the same query. GQL reserved keywords are indi-
cated in bold. In the declaration of variable p1, the expres-
sion located to the right of the 'where' clause is a local
constraint (here: the name must not contain hypothetical). In
the declaration of my_query, the expression located to the
right of the 'where' clause is the global constraint (here: the
two names must be different). (c) Result obtained by execut-
ing this query against the data graph shown in Figure 4b.
When applied to the entire Helicobatcer pylori strain 26695
data set, this query yields 896 different answers.
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
phism problem, one has to compare two graphs of the
same kind whereas, in the graph pattern problem, the
nature of the vertices and edges is not strictly the same
between the graph pattern and the data graph. Neverthe-
less, due to the close similarities between the two prob-
lems we (abusively) state that a result sub-graph is
'isomorphic' to the pattern graph.

GenoLink relies on a depth-first search (DFS) approach
which is guaranteed to find all the ways a query graph
matches the data graph. Local and global constraints are
used in the algorithm in order to prune the search space.
More precisely, the algorithm uses a two-steps process.
First, it uses the data types declared in the vertices and
edges of the query graph to find out which one returns the

GenoLink default data model and example of a data graphFigure 4
GenoLink default data model and example of a data graph. (a) Excerpt of the UML diagram describing the main classes
and associations of the default data model provided with GenoLink. Classes are indicated by boxes (white arrows indicate
inheritance) and association names are indicated in italics. For clarity, class and association attributes have not been indicated
(an example is shown to the right part of the figure, with the Polypeptide class). The complete diagram is distributed with the
GenoLink software documentation. (b) An example of data graph based on this data model. It represents a portion of the
genome of the bacterium Helicobacter pylori strain 26695 (NCBI RefSeq entry no. NC000915); IRO, ILO, ICF, IIG, HPA, CD and
HPIW stand for edges that are instances of associations: IsRepliconOf, IsLocatedOn, IsCodingFor, IsInGeneOrtholog,
HasPolypeptideAnnotation, ContainsDomain and HasPhysicalInteractionWith. The entire data graph for this genome actually
contains 3197 vertices (1 Organism, 1 Replicon, 1576 ProteinGenes, 43 RNAGenes, 1576 Polypeptides) and 4664 edges (1
IsRepliconOf, 1619 IsLocatedOn, 1576 IsCodingFor and 1468 HasPhysicalInteractionWith). The dashed box displays the
attributes for the Polypeptide ureB. COG, EC and IPR data are from the COG database [21], the Enzyme Commission data-
base [24], and the InterPro database [23], respectively. Protein-protein interactions are public data available from Hybrigenics
[30] and distributed with GenoLink.
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
smallest number of vertex/edge instances from the data
graph. That particular vertex or edge will be used as a seed
for the DFS exploration. The DFS proceeds through the

data graph, using the query graph as a guide, and will pro-
gressively add vertices and edges into the nascent sub-
graph. At each step, data types and local constraints are

The Query Builder: a graphical user interface to create a queryFigure 5
The Query Builder: a graphical user interface to create a query. (a) Main window. This snapshot shows the interactive
construction of query Q7 presented in Table 1 [see Additional file 1]. The left panel displays the graph pattern being con-
structed. The right panel displays either the hierarchy of classes or the hierarchy of associations of the data model. Here the
user is adding an association therefore the hierarchy of associations is shown. The associations with non empty set of instances
are marked "V". (b) Clicking on a vertex or edge will popup this constraint editor to add an algebraic constraint on the corre-
sponding object. Here the name of the organism (represented by vertex v2) should match "coli".
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
checked to prune the search. Finally, each time a sub-
graph has been completed, the global constraint is
applied.

At the end of the DFS, an additional filtering step may
optionally be added in order to discard redundant result
graphs (such redundancies may arise from symmetrical
relationships). This step is similar to the use of a distinct
clause in SQL queries.

Implementation
Default DBMS
As mentioned earlier, GenoLink comes with a default stor-
age system implemented using the AROM (Associating
Relations and Objects for Modelling, [13]) Java-based sys-
tem. AROM is an entity-relationship knowledge model-
ling and management system freely available (see [19]). It
provides data management services: formal description of
the data model, creation and modification of instances
and data persistence. It has a richer metamodel than Gen-
oLink that makes it easy to connect to the API. On the
other hand, it has the drawback of keeping all the
instances in memory that limits its usage to the available

RAM (see the Results section for order of magnitude of the
RAM required). In the future we plan to extend GenoLink
to other OO-DBMS, to XML storage systems or to Rela-
tional DBMS. The later case is the most difficult since the
metamodels are quite different and will probably require
a simplification and refactoring of the API.

Default data model
GenoLink comes with a default data model (implemented
in AROM) targeted at representing microbial genomics
and functional genomic data. The data model comprises
25 classes and 28 associations. A UML representation of
the main classes and associations is depicted on Figure 4.
There are basically three main categories of classes: one for
representing nucleic biological entities (e.g. Gene); one
for representing proteic biological entities (e.g. Polypep-
tide), the later being typically linked to the former by the
'isCodingFor' association. The last category relates to sets
of entities like functional classifications. A typical exam-
ple is a gene orthology classification (like COG) or the EC
number classification for proteins. Additional specific
associations allow representing the results of particular
experiments. A typical example, depicted on Figure 4, is

The Table Rider: a graphical interface to display the query results in a tabular formFigure 6
The Table Rider: a graphical interface to display the query results in a tabular form. The results of the execution of
query in Figure 5 are displayed in a tabular form. Each row of the table corresponds to a result sub-graph. Each column's
header contains two lines: the first one indicates the label of a vertex from the query graph (see Figure 5); the second line indi-
cates the name of an attribute of this vertex (the user can select which attributes to display: in this example only the "Name"
attributes have been selected).
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
the 'HasPhysicalInteractionWith' association between
peptidic entities which allows representing the results of
protein-protein interaction experiments.

The default data model can be easily modified or, even,
completely replaced by another one, in order to accom-
modate other experiments or different biological prob-

lems. This is done by editing the AROM model text file.
Thanks to the API-M, the GenoLink core will dynamically
adapt to the modified or new data model.

Default data import
Together with the default data model, GenoLink provides
a set of default data parsers for popular data formats: the

The Graph Rider: a graphical interface to display the query results in a graph formFigure 7
The Graph Rider: a graphical interface to display the query results in a graph form. By selecting a line in the Table Rider
(Figure 6), the user can display the actual sub-graph associated to it. This snapshot shows an example of result sub-graph cor-
responding to the Query Q7 (Table 1 [see Additional file 1] and Figure 5). The edge linking the two H. pylori Polypeptides cor-
responds to a physical interaction (HPIW). The red crosshair on the top-right of some vertices denotes that they are linked to
some others that are not currently shown. These vertices may therefore be further expanded to gain more information about
the full data graph. In this example, this operation has been performed on vertices holA and holB (from E. coli) in order to dis-
play the corresponding Polypeptides (DNA polymerase III) that were not part of the query (see Figure 5).
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
genomes from the RefSeq division of GenBank [20], the
NCBI COG database of pre-computed clusters of ortholo-
gous genes and its functional classification [21], the Gene
Ontology (GO) classification [22], the InterPro domains
database [23], the Enzyme Commission (EC) classifica-
tion [24], and protein-protein interactions formatted
using HUPO PSI-MI [3].

The purpose of these parsers is to produce (or transform)
files coming from the above mentioned data bases into
GenoLink XML-formatted files. These files are then loaded
on the fly by the XML import module as previously
described. Of course these XML files fit to the default data
model. If the user changes this model, then the parsers
should be modify accordingly.

User interfaces
GenoLink comes with various viewers/editors, namely the
KB Rider, the Annotator, the Query Builder, the Table
Rider and the Graph Rider.

The KB Rider is responsible for displaying the data model.
By using the API-M it allows to browse the classes and
associations that have been defined in the model. In a
similar way, the Annotator allows to browse and edit the
data actually attached to vertices and edges.

The Query Builder allows to graphically create a query
graph (i.e. without knowledge of the GQL language). A
typical screenshot is displayed on Figure 5. As shown in
Figure 5a, the user can compose the query graph by select-
ing vertices (and edges) in a window (right part of the fig-
ure). Clicking on a vertex (or edge) will call the constraint
editor as shown on Figure 5b, allowing to add an algebraic
constraint on the corresponding object.

Once a query has been composed, the query engine can be
launched and the sub-graph results can be further
explored by using the Table and the Graph Riders. The
Table Rider provides a tabular view of all the results. To
this purpose, each sub-graph is linearized and associated
to a line in the table. The columns correspond to the
attributes of vertices and edges (Figure 6). The Table Rider
therefore provides an overall view of the results and
allows to select interesting lines (i.e. sub-graphs). Once a
line is selected, the Graph Rider provides a graphic view of
the corresponding sub-graph (Figure 7) and allows to
browse the whole data graph by exploring the neighbours
of displayed vertices.

Core API and tasks
Besides the graphical user interface, all operations of the
GenoLink Core, such as graph creation, data import,
graph querying and display, can be executed and control-
led programmatically through a Java Core API. User-pro-

vided Java code can be dynamically loaded and executed
in the system (this functionality is provided by an exten-
sion of the AROM system called AROM Tasks). This
allows the user having some programming skills to design
her/his own tasks to perform some specialized work. The
core API and several tasks examples are distributed with
the software's documentation.

Implementation
GenoLink, like all modules of the Genostar platform, is
written in Java. It uses standard Java libraries such as
Xerces (XML parser, [25]) and Xalan (extensible style
sheet transformations (XSLT) engine [26]) from the
Apache Software Foundation, Castor (Java to XML bind-
ing, [27]) from "Exolab.org" and GNU RegExp (regular
expression pattern matching engine, [28]) from "Cas-
tor.org". The AROM task interpreter is built upon Bean-
shell [29]. All graphical user interfaces are written with the
Java Swing library.

Results and discussion
We now illustrate the querying capabilities of the system
by investigating the functions of genes and proteins from
bacteria Escherichia coli and Helicobacter pylori. To this pur-
pose, we imported the following data: the complete
genomes of the two bacteria (RefSeq entries NC000913
and NC000915) along with the annotations coming from
COG [21], InterPro [23] and Enzyme Classification data
[24]. The resulting data graph contains 21109 objects
(proteins, genes, organisms, chromosomes, clusters of
orthologous genes, etc.) linked together through 58064
relations. It takes about 5 minutes for GenoLink to read
and to integrate the data into a single data graph occupy-
ing around 90 Mo in main memory (a data graph can be
saved on disk for later reuse. In this example, it takes 30
seconds to reload the data graph from the saved binary
file, which is 10 Mo in size).

Table 1 [see Additional file 1] displays several examples of
queries addressing various biological questions in this
context.

Query Q1 is a very simple example showing how to
retrieve all CDS from E. coli. The constraint on the Organ-
ism reads as 'the Name attributes matches "coli"' and is
indicated in italics below the Organism vertex.

Query Q2 illustrates how to search for E. coli 'hypotheti-
cal' proteins that are annotated with the Enzyme Commis-
sion database. When this query is run against the
complete data graph, 94 'hypothetical' proteins are found
that are annotated with an EC number. Now, it is worth
noting that the same query executed against a data graph
containing only the E. coli RefSeq genome does not return
any result. The difference illustrates the data integration
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
process: the RefSeq E. coli genome has been dynamically
augmented with new annotations (i.e. links between pro-
teins and EC numbers) when we imported the EC data-
base.

GenoLink can be used to refine a query, depending upon
the results of a previous one. As an example, query Q3
retrieves all pairs of orthologous genes (according to the
COG database) between H. pylori and E. coli. Query Q4
refines the previous one by restricting to genes coding for
'hypothetical' proteins.

Query Q5 illustrates how to retrieve all pairs of genes
between H. pylori and E. coli encoding for proteins having
a common InterPro domain.

Query Q6 shows how it is possible to handle negation. In
this example we are interested in finding genes with no
(COG) orthologs between the two species; by extension,
we could suspect this genes are specific to each organism.
To this purpose, GQL proposes a 'neighbours' operator.
This operator explores the immediate neighbourhood of a
vertex in a data graph and counts the number of vertices
of a given type that are connected to it. In query Q6 that
operator is used as follows: when the query engine exam-
ines vertex of type ProteinGene, it will count how many
GeneOrtholog vertices are linked to that ProteinGene and
will retain this vertex only if this number is 0 (therefore
the ProteinGene has no orthologs).

Query Q7 gives an example of how some information can
be inferred from one organism to the other. In this exam-
ple we would like to infer unknown protein-protein inter-
actions into E. coli from already known interactions in H.
pylori and gene orthology relationships. To this purpose,
we first load the complete protein-protein interactions
map from H. pylori [30]. Then, we built up query Q7
under the assumption that if it exists an interaction
between two proteins in H. pylori, and if these proteins are
encoded by genes having (COG) orthologs in E. coli, then
we may hypothesize that these E. coli proteins could inter-
act as well. In this example, this yields 457 different
answers, one of them is displayed in Figure 7. For this
kind of query, the Table Rider (see section User interfaces)
proved to be very useful since it provides a synthetic view
allowing for a quick visual inspection of the 457 couples
of possibly interacting proteins (Figure 6).

Conclusion
GenoLink is a new software platform adding to existing
DBMS new functionalities dedicated to the querying and
exploration of data graphs. GenoLink handles graphs
where vertices and edges are enriched with data modelled
using an entity-relationship model. The platform provides
the biologists with a rich visual environment to graphi-

cally explore genomic and post-genomic data, without
prior knowledge of any programming or database query-
ing languages. GenoLink provides the bioinformaticians
with more advanced features such as a generic data graph
exploration tool able to accommodate user-provided data
models, a query language well-adapted to query graphs
and a programming API.

Availability and requirements
GenoLink is distributed either as a standalone application
or as a component of the Genostar/Iogma platform. Both
distributions are free for academic research and teaching
purposes and can be requested at academy@genos-
tar.com. A commercial licence form can be obtained for
profit company at info@genostar.com. The distributions
have been successfully tested on computers running Red-
Hat Linux, Windows 2000/XP or MacOS X. The GenoLink
distribution also incorporates a complete user's guide
including a beginner's tutorial.

Authors' contributions
PD and JW conceived the software architecture, designed
the graph query language, the graph pattern matching
algorithm and the whole set of graphical interfaces. PD
managed the overall project, wrote most of the software
code and documentation, and wrote the manuscript. LL
and JLD participated in coding the graphical interfaces.
AM and PD encoded the graph library used by GenoLink.
AV and JW initiated the project in the Genostar consor-
tium. All authors participated in the development of the
data model used to investigate the functions of genes and
proteins, in testing the software and in editing the manu-
script.

Additional material

Additional File 1
GenoLink query graph examples. Each row corresponds to a different
query (from simple to more sophisticated ones). The Query column gives
an informal statement of the query, the Query-Graph column displays the
corresponding graph pattern, that has to be constructed in the Query
Builder (Figure 5). The Results column indicates the number of distinct
results obtained (see text for information about the origin of data). The
Time column indicates the execution time (in seconds). In the sake of clar-
ity, the following code as been used to denote the type of edges: ILO for
IsLocatedOn, IRO for IsRepliconOf, ICF for IsCodingFor, HPA for
HasPolypeptideAnnotation, IIG for IsInGeneOrtholog, CD for Con-
tainsDomain and HPIW for HasPhysicalInteractionWith. When applica-
ble, constraints are displayed in italics under the concerned vertex or edge.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-21-S1.pdf]
Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-21-S1.pdf

BMC Bioinformatics 2006, 7:21 http://www.biomedcentral.com/1471-2105/7/21
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
The development of GenoLink is a research and development work from
the Genostar Consortium http://www.genostar.org. Created by the end of
1999, and headed by François Rechenmann (INRIA Rhône-Alpes, Greno-
ble), the Consortium aims at developing Genostar, a bioinformatics plat-
form for exploratory genomics. The Consortium brings together four
partners: two biotech companies, Hybrigenics (Paris) and Genome Express
(Grenoble), and two research institutes, the Pasteur Institute (Paris) and
the INRIA Rhône-Alpes (Grenoble). This work has been supported by the
French Agency for Innovation (ANVAR) and the French Ministry of
Research through the program 'Genopole' of the 'Direction de la Recher-
che' and the program 'GenHomme' of the 'Direction de la Technologie'.
We thank François Rechenmann and Jacques Nicolas for reading the man-
uscript and for helpful discussions.

References
1. Durand P, Médigue C, Morgat A, Vandenbrouck Y, Viari A, Rechen-

mann F: Integration of data and methods for genome analysis.
Curr Opin Drug Discov Devel 2003, 6:346-52.

2. Nitschké P, Guerdoux-Jamet P, Chiapello H, Faroux G, Hénaut C,
Hénaut A, Danchin A: Indigo: a World-Wide-Web review of
genomes and gene functions. FEMS Microbiol Rev 1998,
22:207-27.

3. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S,
Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit
H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R:
IntAct: an open source molecular interaction database.
Nucleic Acids Res 2004:D452-5.

4. Wittig U, De Beuckelaer A: Analysis and comparison of meta-
bolic pathway databases. Brief Bioinform 2001, 2:126-42.

5. Bader GD, Hogue CWV: An automated method for finding
molecular complexes in large protein interaction networks.
BMC Bioinformatics 2003, 4:2.

6. Deville Y, Gilbert D, van Helden J, Wodak SJ: An overview of data
models for the analysis of biochemical pathways. Brief Bioin-
form 2003, 4:246-59.

7. Gemis M, Paredaens J, Thyssens I, Van den Bussche J: GOOD: a
graph-oriented object database system. SIGMOD Rec 1993,
22(2):505-510.

8. Consens M, Mendelzon A: Hy+: a Hygraph-based query and vis-
ualization system. SIGMOD Rec 1997, 22(2):511-516.

9. Papantonakis A, King PJH: Gql, a declarative graphical query lan-
guage based on the functional data model. Proceedings of the
workshop on Advanced visual interfaces (AVI '94): Bari, Italy :113-122. June
1–4, 1994

10. Poulovassilis A, Hild S: Hyperlog: A Graph-Based System for
Database Browsing, Querying, and Update. IEEE Trans Knowl
Data Eng 2001, 13(2):316-333.

11. Butler G, Wang G, Wang Y, Zou L: A graph database with visual
queries for genomics. Proceedings of the 3rd Asia-Pacific Bioinformat-
ics Conference (APBC2005): Singapore . 17–21 January 2005,

12. Snow [http://www.northbears.org/]
13. Genoud P, Dupierris V, Page M, Bruley C, Ziebelin D, Gensel J, Bar-

dou D: From AROM, a new object based knowledge repre-
sentation system, to WebAROM, a knowledge bases server.
9th Int. Conf. on Artificial Intelligence: Methodology, Systems, and Applica-
tions: Varna, Bulgaria . 20–23 September 2000

14. Cordella LP, Foggia P, Sansone C, Vento M: A (Sub)Graph Isomor-
phism Algorithm for Matching Large Graphs. IEEE Trans Pat-
tern Anal Mach Intell 2004, 26:1367-1372.

15. Larrosa J, Valiente G: Constraint satisfaction algorithms for
graph pattern matching. Mathematical. Structures in Comp Sci
2002, 12:403-422.

16. Conte D, Foggia P, Sansone C, Vento M: Thirty years of graph
matching in pattern recognition. Intl J Pattern Recognition and Arti-
ficial Intelligence 2004, 18:365-298.

17. Garey MR, Johnson DS: Computers and Intractability: A guide
to the theory of NP-Completeness. W.H Freeman and Com-
pany; 1991.

18. Ullmann JR: An Algorithm for Subgraph Isomorphism. J ACM
1976, 23:31-42.

19. AROM [http://www.inrialpes.fr/romans/pub/arom]

20. Pruitt K, Maglott D: RefSeq and LocusLink: NCBI gene-cen-
tered resources. Nucleic Acids Res 2001, 29:137-40.

21. Tatusov R, Koonin E, Lipman D: A genomic perspective on pro-
tein families. Science 1997, 278:631-7.

22. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A,
Dolinski K, Dwight S, Eppig J, Harris M, Hill D, Issel-Tarver L, Kasar-
skis A, Lewis S, Matese J, Richardson J, Ringwald M, Rubin G, Sherlock
G: Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat Genet 2000, 25:25-9.

23. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman
A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Cour-
celle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S,
Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M,
Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M,
Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJA, Vaughan R,
Zdobnov EM: The InterPro Database, 2003 brings increased
coverage and new features. Nucleic Acids Res 2003, 31:315-8.

24. Bairoch A: The ENZYME database in 2000. Nucleic Acids Res
2000, 28:304-5.

25. Xerces: XML parsers in Java and C++. [http://xml.apache.org/
xerces2-j/].

26. Xalan: XSL stylesheet processors in Java and C++. [http://
xml.apache.org/xalan-j/].

27. Castor: Java to XML binding framework. [http://www.cas
tor.org/].

28. GNU RegExp: regular expressions for Java [http://
www.cacas.org/java/gnu/regexp/]

29. Beanshell [http://www.beanshell.org/]
30. Rain J, Selig L, Reuse HD, Battaglia V, Reverdy C, Simon S, Lenzen G,

Petel F, Wojcik J, Schächter V, Chemama Y, Labigne A, Legrain P: The
protein-protein interaction map of Helicobacter pylori.
Nature 2001, 409:211-5.
Page 11 of 11
(page number not for citation purposes)

http://www.genostar.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12833667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11465731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11465731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14582519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14582519
http://www.northbears.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15641723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15641723
http://www.inrialpes.fr/romans/pub/arom
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592255
http://xml.apache.org/xerces2-j/
http://xml.apache.org/xerces2-j/
http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-j/
http://www.castor.org/
http://www.castor.org/
http://www.cacas.org/java/gnu/regexp/
http://www.cacas.org/java/gnu/regexp/
http://www.beanshell.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11196647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11196647
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	System and methods
	Overview
	Data connection and data import
	Data Exploration
	The matching algorithm

	Implementation
	Default DBMS
	Default data model
	Default data import
	User interfaces
	Core API and tasks
	Implementation

	Results and discussion
	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

