
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
A factor analysis model for functional genomics
Rafal Kustra*1, Romy Shioda2 and Mu Zhu3

Address: 1Public Health Sciences, Health Sciences Bldg, University of Toronto, Toronto, ON, Canada, 2Department of Combinatorics and 
Optimization, University of Waterloo, Waterloo, ON, Canada and 3Department of Statistics and Actuarial Science, Universityof Waterloo, 
Waterloo, ON, Canada

Email: Rafal Kustra* - r.kustra@utoronto.ca; Romy Shioda - rshioda@uwaterloo.ca; Mu Zhu - m3zhu@uwaterloo.ca

* Corresponding author    

Abstract
Background: Expression array data are used to predict biological functions of uncharacterized
genes by comparing their expression profiles to those of characterized genes. While biologically
plausible, this is both statistically and computationally challenging. Typical approaches are
computationally expensive and ignore correlations among expression profiles and functional
categories.

Results: We propose a factor analysis model (FAM) for functional genomics and give a two-step
algorithm, using genome-wide expression data for yeast and a subset of Gene-Ontology Biological
Process functional annotations. We show that the predictive performance of our method is
comparable to the current best approach while our total computation time was faster by a factor
of 4000. We discuss the unique challenges in performance evaluation of algorithms used for
genome-wide functions genomics. Finally, we discuss extensions to our method that can
incorporate the inherent correlation structure of the functional categories to further improve
predictive performance.

Conclusion: Our factor analysis model is a computationally efficient technique for functional
genomics and provides a clear and unified statistical framework with potential for incorporating
important gene ontology information to improve predictions.

Background
Functional genomics is often described as one of the most
important challenges in the post-genomics era. Now that
many genomes have been sequenced, the next step is to
understand the functions of all the gene-products. One of
the most accessible genome-wide modalities that has
proven useful for this task is expression microarray exper-
iment e.g., [1-3]. The general idea is to associate genes to
functional categories by comparing their expression pro-
files to genes with known functional associations. This is
usually supported by the biological argument that genes

in the same or similar functional categories are often part
of a functional pathway and therefore likely to be co-reg-
ulated by the same set of transcription factors.

In a typical functional genomic experiment relying on
expression data, a few dozen to a few hundred samples
from an organism are processed and hybridized. The sam-
ples may be obtained from different tissues and organs,
e.g., the mouse experiment of [3], or from different exper-
imental conditions [1]. The expression data for p genes are
then assembled in a p × n matrix where each row presents

Published: 21 April 2006

BMC Bioinformatics2006, 7:216 doi:10.1186/1471-2105-7-216

Received: 13 October 2005
Accepted: 21 April 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/216

© 2006Kustra et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/216
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630343
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2006, 7:216 http://www.biomedcentral.com/1471-2105/7/216
an expression profile of the corresponding gene across n
samples.

A few distinct ways have been proposed to predict gene
functions from microarray data. The authors of [1] run a
multitude of clustering methods which generate thou-
sands of (overlapping) clusters. For each functional cate-
gory, every cluster is assigned an enrichment p-value based
ona hypergeometric distribution. Those clusters with p-
values below a certain threshold are used for prediction:
an uncharacterized gene is localized among all enriched
clusters and predicted to be involved in all functions these
clusters entail. This is biologically sensible since a gene is
usually involved in multiple functions. The authors of [2]
use gene-gene correlations to build graphical models of
gene expression data which are then used, among other
things, for functional prediction. The predictions are done
by first forming a set of shortest paths between genes,
thresholded at some length to retain significance, and pre-
dicting with a constrained majority rule using the genes
on the path.

One model-based approach, perhaps more intuitive for
statisticians, is to use one of many classification methods.
In such an approach, one starts with the expression
matrix, where genes correspond to observations and their
expression profiles correspond to features. A set of K func-
tional categories is specified which span all interesting
and relevant biological functions for a given genome.
Since any given gene can belong to multiple functional
categories, the simplest approach is to build K separate
binary classifiers, one for each function, and use them to
predict whether each of the uncharacterized genes belongs
to one of the K functional categories.

This general paradigm permits one to use many known
classification models and algorithms. The authors of [3]
apply the Support Vector Machine (SVM) classifier, popu-
lar in the machine learning literature, to a set of 55 micro-
arrays of different mouse tissues to predict functions of
over 12,000 mouse genes which currently have unknown
status. They use a set of 992 functional categories defined
by Gene Ontology – Biological Process (GO-BP; see [4]),
which is a hierarchical categorization of functions much
finer in scale than the set of 42 YPD Cellular Role func-
tions, largely independent of each other (in the sense that
most genes belong to at most two functional categories),
which was used by [1]. More details about GO-BP are
given below.

It is important to acknowledge that functions of gene-
products cannot, in many cases, be fully resolved from co-
expression data alone: co-expression may be a result of
other factors besides co-regulation, e.g., separate path-
ways that happened to be activated in the same experi-

ment, or simply chance. Similarly, trans-regulation factors
may be acting more globally inducing co-expression of
genes that are weakly connected or completely discon-
nected on a functional level. Some of these concerns can
be alleviated by using expression data that represent a
wide array of conditions, so that significant observed co-
expression between genes is more likely to have resulted
from close functional relationship of respective gene-
products than from other factors. Studies with such
design, as those already cited [1,3], have been successful
in that regard. As with many other genome-wide studies
that use high-throughput technologies, this proposal can
potentially be highly useful as an initial hypothesis-gener-
ating step.

In this paper, we propose a new approach to predicting
gene functions using expression data and GO-BP annota-
tions. It is worth noting that our framework can, in prin-
ciple, be extended to utilize further sources of
information, besides expression data (see "Discussion"
section). Such approaches, sometimes dubbed "genomic
data fusion" models, have been proposed in the literature
and show some promise of improving prediction accu-
racy. In [5], the authors utilize phylogenetic profiles and
fused domain methods in addition to experimental data
that include mRNA expression to derive a large number of
candidate protein-protein links and hence predict func-
tion in yeast Saccharomyces cerevisiae. A method which is
similar in spirit but more refined in terms of an approach
to assigning interactions from various genomic sources,
has been proposed by [6], who use phenotype data from
gene knockout experiments, cellular localization data,
and information from protein-protein interaction data-
bases in addition to expression data. Each data source
contributes a bit matrix that codes all the protein-protein
relationships. Depending on the manner of inferring the
relationships (e.g., various p-value thresholds of Pearson
correlation coefficient for expression data), and on the
manner in which various bit matrices are combined, one
can control the contribution of each data source and
arrive at the final association matrix and hence predict
gene functions. A moremodel-oriented approach to data
fusion is described in [7] and [8], which propose the Bolz-
tmann machine and SVMs, respectively, for gene-product
function prediction using various genomic data sources.

Gene Ontology – biological processes
We use the GO-BP annotations to provide us with a set of
functional categories and the associations of characterized
genes to these categories. Gene Ontology [9] is a popular
information resource for genetic research. The Biological
Process part (GO-BP), which is relevant for the expression
data, has currently almost 10,000 processes arranged in a
Directed Acyclic Graph (DAG) structure. The top node in
this DAG (Biological Process, accession number
Page 2 of 13
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:216 http://www.biomedcentral.com/1471-2105/7/216
GO:0008150) has six children (Development, Behaviour,
Physiological Process, Viral Life Cycle, Cellular Process,
Regulation of Biological Process) which constitute major
groupings of biological processes in all organisms. Each of
these is subdivided into more specialized characteriza-
tions. The seventh top child is a Biological-Process
Unknown node, which has no further descendants; it is
applied to currently uncharacterized genes. The arcs in the
GO-BP DAG usually denote subdivisions of a process
characterization (commonly called "is_a" relationships),
although sometimes they also denote partitions of a proc-
ess into smaller steps (commonly called "part_of" rela-
tionships). The GO-BP is a cross-organism ontology; for
any specific organism only a part of its structure will usu-
ally be relevant. For example, for simple eukaryotes such
as yeast studied in [1], the whole subgraphs under Viral
Life Cycle and Behaviour are not relevant and thus have
no genes associated to them.

In addition to providing a continually evolving ontology
structure, the GO consortium also maintains and curates
the association data. For most model organisms, one can
obtain a table where each known gene or Open Reading
Frame (ORF) is associated with a set of biological proc-
esses. These associations are built and maintained based
on reliable evidence such as major publications or directly
confirmable laboratory experiments, although there is a
range of "credibility" scores. These scores are called Evi-
dence Codes and are maintained alongside the associa-
tion data. They could potentially be used in the analysis to
weigh different associations according to their credibility,
but we have chosen not to make this distinction in this
research.

Motivation and summary of our study
A problem with the typical classification approach is its
need to train very large numbers of classifiers on thou-
sands of genes. This is further complicated by the need to
use multiple cross-validation experiments for each classi-
fier to fine tune its control parameters. These require-
ments are computationally prohibitive for most
laboratories. The authors of [3], for example, had access to
a powerful computer cluster to perform extensive compu-
tations, an atypical resource in many biological labs.

We propose a factor analysis model (FAM) to predict func-
tions for uncharacterized genes using microarray expres-
sion data and a subset of the GO-BP functional categories.
We show that our factor analysis approach provides sig-
nificant computational advantages without compromis-
ing prediction accuracy. It is worthwhile to notice that
FAM directly models the expression-induced correlation
structure among genes. This correlation structure coupled
with small signal-to-noise ratios of microarray data, can
negatively impact the statistical efficiency of some classifi-

ers that treat genes as independent observations [10,11].
Finally, we show that our model has the potential for
incorporating important gene ontology information and
deal with a number of major challenges in using statistical
classification techniques for functional genomics (see
"Discussion" section).

Results
This section gives an overview of our prediction model,
experiments (including descriptions of our data, preproc-
essing steps, benchmarks and performance evaluation
metrics) and computational results.

The model
Our model, FAM, applies factor analysis to predict gene
functions using microarray data.

The typical approach
We first describe the typical computational approach, e.g.,
[3], more formally. Let Z be the p × n matrix of gene
expression data; the (i,j)th element of that matrix, zij, is the
expression level of gene i from experiment (or sample) j.
Without loss of generality, we shall assume that the GO-
BP data contain the functional annotations of the first p1
<p genes. In particular, with a total of K different func-
tional categories, this information can be stored in a
binary p1 × K matrix, which we call Y1. Its (i, k)th element
yik equals 1 if gene i is associated with function k, and
equals 0 otherwise. We use Y2 to denote the unknown
functional annotation matrix for the remaining p2 = p - p1
genes; thus Y2 is the p2 × K matrix that needs to be pre-
dicted.

Using the matrix Y1 and the first p1 rows of Z, we can build
predictive models to associate gene functions (Y) from the
microarray data (Z). Typically, K different models {Fk : k =
1, 2, ..., K} are constructed independently, one for each
functional category, i.e., each column of Y. Since the ele-
ments of Y1 are binary, each model Fk is simply a classifier.
In theory, any classification algorithm can be used here,
the most popular being SVMs, e.g., [3]. Each model Fk is
then applied to the remaining p2 rows of Z to predict
whether or not these genes are associated with function k.

The factor analysis model (FAM)

Let  be the expression level of p different

genes from the jth microarray experiment. Using a factor
analysis model [[12], Chapter 9], we model the expression

level  as
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where  are latent variables that affect the

expression level. Others have applied latent variable mod-
els to analyze microarray data as well [13,14], although
most of these studies use latent variable models in unsu-
pervised ways and not directly to predict gene function.

In the absence of experimental covariates describing each
experiment, we may treat each experiment as equivalent
with both random noise and experimental differences

modeled by the error part, . If experiments are con-

trolled and experimental covariates are available, the

above model may incorporate them by making λil a func-

tion of covariates. This is one of the extensions to this
model being currently studied by our group.

In matrix form, Eq. (1) can be written as:

g(j) = Λf(j) + ε(j),  (2)

or

Suppose Var(g) = S. In factor analysis, it is typically

assumed that Var(f) = I is the identity matrix; Var(ε) = E =

diag{ } is a diagonal matrix; and that ε and

f are uncorrelated. We then obtain the following equation
from (2):

Var(g) = ΛVar(f)ΛT + Var(ε)

or

S = ΛΛT + E.  (3)

The matrix S can be estimated directly from the microar-
ray data. Following general conventions in factor analysis,
we take S to be the correlation matrix rather than the cov-
ariance matrix. This is equivalent to standardizing the data
prior to the analysis and is customary in factor analysis
[12].

A two-step algorithm

Our strategy for using this model to predict the gene func-

tions is as follows: We first estimate Λ with  using prin-

cipal factor analysis. The number of latent variables, L, can
be determined empirically by evaluating the goodness of

T as an approximation to S [[12], p. 262–267], but
we simply retain all factors with non-zero singular values.

Let 1 be the top p1 rows of  corresponding to the char-

acterized genes and let 2 be the bottom p2 rows of 

corresponding to the uncharacterized genes. We then

derive a mapping from 1 to Y1, say F, and apply F to 2.

We can picture the entire process as follows:

In this modeling paradigm, �(·,·) denotes a loss function
between the known associations Y1 and the predicted

associations F(·;θ) based on the estimated loadings 1.

The mapping F(·;θ) is assumed to be completely specified

by a collection of parameters which we simply write as θ,

where θ is estimated by minimizing the loss function.

Details on the implementation of this two-step algorithm
is given in the "Method" section below.

Experiments
In this section, we discuss the set-up of our computational
experiments, including descriptions of our data set, our
preprocessing steps, and how performance is evaluated.
We also briefly describe a benchmark SVM algorithm that
we use for the purpose of comparison.

Data
We applied our model to the microarray data for yeast
described in [1], but with functional annotations from the
December 2004 release of the GO-BP table and the Sac-
charomyces Genome Database (SGD; also part of the GO
consortium). The authors of [1] used a much simpler YPD
classification scheme, which is not publicly available.
Their microarray data contains 300 experiments from the
Rosetta Compendium using genetic variants of yeast, as
well as an additional publicly available data of 124 arrays
from a set of three different experiments from other labs.
Thus in total, there are 424 arrays with a common set of
6064 genes and ORFs. The full description of the data can
be found in [1] and references therein.

Data preprocessing
We obtained the data from the authors of [1], where the
data were already normalized and combined into one
data matrix. Our further preprocessing steps included the
following:
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1. We deleted ORFs which are not listed in the newest
(December 2004) SGD association table maintained by
GO. Most of those had a "Dubious ORF" characterization
in the SGD database.

2. We ignored the uncharacterized genes (and ORFs) –
genes annotated to the node "Biological Process
Unknown" in SGD.

3. We imputed missing values in the expression data using
an adaptation of the k-nearest neighbor imputing algo-
rithm for expression data described in [15]. We modified
it so that the putative nearest neighbour gene profile, con-
sidered for imputing a given missing value, did not need
to have a full expression profile as long as: (a) it had non-
missing data in the column under consideration and (b)
it had at least 80% expression values that were not miss-
ing. We used k = 10 nearest neighbours.

4. We restricted the set of GO-BP functional categories to
those with at least 15 but no more than 100 genes associ-
ated to it. Since the goal is to produce functional predic-
tions for genes to enable biologists to conduct more
guided confirmatory experiments, we chose not to con-
sider categories which had too few or too many genes
associated to them. On the one hand, categories with too
many genes annotated to them are less informative and
hence not as interesting. On the other hand, categories
with too few genes annotated to them cannot be credibly
predicted.

5. Restricting GO categories produced a small list of
"stranded" genes – genes which were otherwise known
but whose annotations happened to be exclusively in the
categories deleted from the list. We removed these
"stranded" genes from our data set.

This resulted in 3224 genes and 369 functional categories.
Specifically, we formed a 3224 × 424 expression data
matrix Z (see [1]) and a 3224 × 369 association
(response) matrix Y [see Additional file 1].

Benchmark
To compare the performance of our method, we also
applied the popular approach in functional genomics:
function-wise binary classification using Support Vector
Machines (SVMs). SVM is a well-known method in
machine learning (see [16] for links to much of the litera-
ture, tutorials and software) and is used by [3] to classify
mouse genes.

We chose Gist 2.1.1 [17] as our SVM software due to its
tailored interface for microarray data and because of its
use in [3]. We tested several different values via cross-val-
idation for the following tuning parameters in SVM: the

type of kernel (linear, polynomial, and radial basis func-
tions), the misclassification penalty (diagfactor in Gist),
and the width factor (widthfactor in Gist) that controls
the bandwidth of the radial basis kernel, which is calcu-
lated as (width) × (width factor). The "width" is taken to
be the median distance from a data point to its nearest
neighbor of the opposite class; the "width factor" is spec-
ified by the user. Further details on the parameter selec-
tion process are elaborated in the "Methods" section.

Performance evaluation
Although classifiers are typically evaluated by the misclas-
sification rate in the statistics and machine learning liter-
ature, it is not a useful criterion for functional genomics
from a biologist's point of view. Since the most interesting
functional categories are those that are fairly rare, the vast
majority of genes would not be associated with such a cat-
egory. This means that even poor classifiers can achieve
very low misclassification rates by simply predicting that
no genes are associated with that category (i.e. by classify-
ing everything to the majority class). Instead, suppose the
prediction algorithm ranks genes according to predicted
likelihood of association to that category (e.g., FAM can
rank genes using estimated posterior probabilities via
naïve Bayes – see the "Method" section). Biologists are
most interested in using a computational algorithm to
generate a list of candidate genes which can be further
investigated in the lab. Since such investigations are often
labourious and costly, a highly relevant measure of suc-
cess should determine whether the algorithm ranks the
truly associated genes ahead of the unassociated ones.

In the biomedical literature, prediction accuracy is often
evaluated by sensitivity and specificity [18]. Suppose we
focus on m <p top-ranked genes. Sensitivity is the proba-
bility that a gene appears in this top-ranked list given that
it is truly associated, whereas specificity is the probability
that a gene does not appear in this list given that it is not
associated. They both depend on the number m, the size
of the top-ranked list. The 2 × 2 Table 1 shows how these
quantities can be calculated. Hence, we have:

The number m is typically determined by external factors
such as how much funding there is to perform confirma-
tory experiments. Full confirmation or rejection of a puta-
tive association predicted from a genome-wide scan will
typically involve classical experiments from molecular
biology or biochemistry over a longer time span. A given
lab may decide to pursue a few of these candidate genes,
taking into account their ranking from prediction tools as
well as additional information such as specific reagents
needed and lab's area of expertise. However an intermedi-

sensitivity and specificity=
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ate screening step which we have in mind, such as quanti-
tative RT-PCR, may be performed on a larger subset of
candidates.

In order to compare two prediction algorithms, one needs
to decide on the threshold m. Objectively derived statisti-
cal thresholds are hard to estimate and do not always
reflect the reality of the biologist. We decided on a fixed
threshold of m such that the top-ranked list consists of
10% of the genes, which we felt was a realistic compro-
mise. For example, yeast has about 2000 uncharacterized
genes, and attempting to furtherscreen the top 200 of
them by lower-throughput methods such as quantitative
RT-PCR would be feasible in a typical lab.

For predicting rare functional categories, sensitivity is
more important than specificity. Again, refer to Table 1. By
definition, s is small compared to p for rare functional cat-
egories. Clearly, b <s. Therefore,

which is roughly constant for fixed m. This means all algo-
rithms will have very similar specificity values.

In practice, the choice of m must reflect an acceptable
trade-off between falsely detecting an unassociated gene
and failing to detect an associated gene. Given that our
choice of m is somewhat arbitrary, it is important for us to
consider a more global performance measure. According
to [18], the receiver operating characteristic (ROC) curve
is currently the best-developed statistical tool for evaluat-
ing ranking algorithms; it "describes the [entire] range of
trade-offs that can be achieved" by a given algorithm.

The area under the ROC curve – often referred to simply
as AUC in the biomedical literature – is a widely used
summary measure of the ROC curve. Let g and  be a ran-

domly selected pair of associated and unassociated genes,

and rg and  be their respective rankings. It is well-known

[18,19] that AUC is equal to the probability that g and 

are correctly ordered by the ranking algorithm, i.e., AUC =

P(rg < ). Therefore, AUC is a good (and threshold-free)

performance measure for determining whether an algo-
rithm can rank truly associated genes ahead of the unasso-
ciated ones. The use of AUC as a performance criterion is
also becoming more popular in the machine learning
community [20]. As the averaged results later illustrate,
SVM and FAM tend to perform comparably on the AUC
scale.

Computational results
We validated our method with a four-fold cross-valida-
tion (C-V) experiment. We used four folds (rather than ten
folds, for example) because of the need to retain a reason-
able number of associated genes in each fold for each
functional category, which we verified post hoc. It is impor-
tant to note that the C-V folds were obtained by an uncon-
strained randomization process.

More specifically, the 3224 genes were randomly divided
into 4 groups of 806 each. In each C-V run, one of the four
folds is designated as the test set and the corresponding
part of the association matrix, Y, removed. The remaining
three quarters of the data were designated as the training
set. Then both FAM and SVM were fitted to the training
data and then applied to the test data to obtain predic-
tions. For FAM, the prediction was based on the estimated
posterior probability (see Method section for more
details); for SVM, the prediction was based on the signed
distance to the separating hyperplane. The test genes
would then be ranked by each method for each function
separately and the three performance metrics (sensitivity
and specificity for the 10% top-ranked genes, and area
underneath the ROC curve) calculated.

Computational details
FAM is implemented in R [21]. Executing the four-fold C-
V experiment, run serially across the 369 functional cate-
gories, took less than 5 CPU minutes on a dual-CPU (3
GHz Pentium) Linux desktop with 2 GB of RAM. Gist is
implemented in ANSI C. Executing the four-fold C-V
experiment, run in parallel across the 369 functional cate-
gories, took at least 12 hours on a 32 CPU (l.3 GHz Ita-
nium II each) SGI Altix server with 64 GB of RAM (where
each of the processors were fully loaded for the 12 hours).
This corresponds to approximately 23040 CPU minutes
(12 hours × 60 × 32 CPUs). Thus, compared to FAM's run-
ning time of 5 CPU minutes, training the SVMs took
approximately 4000 times longer.

Prediction results
Tables 2 and 3 show the main results from our four-fold
C-V experiments. Table 2 compares the performance of
FAM and SVM, averaged across all 369 functional catego-
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Table 1: Illustration of performance metrics. A hypothetical 
table illustrating 4 possibilities in predicting one GO category.

In top-ranked list Not in top-ranked list Total

Associated a b s
Unassociated c d p-s

Total m p-m p
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ries. Table 3 makes pairwise comparisons of the predic-
tions made by FAM and SVM for the 369 GO functions in
the four C-V experiments. For each of the 369 GO func-
tions, the performance of FAM and SVM are compared,
and Table 3 reports the number of GO functions for which
FAM's predictions are better than, tied with, or worse than
that of SVM. The last row, denoted by "ACV," compares
FAM and SVM using averaged performance metrics over
the four C-V folds, which give rise to much fewer ties.

The general conclusion is that the two methods are very
similar in terms of their predictive performances (as meas-
ured by the three performance metrics). FAM is slightly
better than SVM based on the ACV pairwise comparison
(Table 3). These differences are not statistically significant,
but we are greatly encouraged by these results given the
tremendous computational advantages of FAM.

Tables 4 and 5 are similar to Tables 2 and 3, except the 369
functional categories are partitioned into 4 groups based
on how informative they are. We say that a GO function
is more informative if fewer genes are associatedwith it.
The first group (H) consists of categories with only 15 to
20 associated genes (out of a total of 3224) – these func-
tional categories are highly informative; there are 95 such
categories. The second and third group consist, respec-
tively, of categories with 21 to 40, and 41 to 60 associated
genes, which we label as Medium High (MH) and
Medium Low (ML) on the informativeness scale. There are
144 and 71 such functional categories in these two
groups, respectively. The least informative group (L) con-
tains functions with over 60 associated genes; there are 59
such GO categories.

To illustrate, we randomly choose one GO function from
each of the four groups described above (H, MH, ML, and
L) and display the corresponding sample ROC curves of
the two methods in Figure 1. The curves produced by FAM
and SVM are quite similar; naturally, we would expect
them to have similar areas underneath as well. We also
observe that the ROC curves of FAM tend to slightly dom-
inate in the early part, where specificity is high. This
explains why FAM tends to perform slightly better in
terms of sensitivity at low thresholds (see Table 2),
although the differences here are quite small. Full predic-
tion results for FAM and SVM are in [Additional file 2] and
[Additional file 3], respectively.

Discussion
In terms of using microarray expression data to identify
uncharacterized genes that may be associated with various
biological functions, FAM appearsto be as effective as
SVM, a powerful machine learning tool. However, our
FAM-based algorithm is faster than the SVM by a factor of
4000.

More importantly, the FAM framework has a great poten-
tial for incorporating important gene ontology informa-
tion and dealing with a number of major challenges in
using statistical classification techniques for functional
genomics.

FAM as a functional random-effects model

The hierarchical nature of how the functional categories
are organized in GO-BP imply that some of these func-
tional categories are highly correlated. A very promising
and important extension of FAM is the possibility of tak-
ing this correlation structure into account. More specifi-
cally, with a total of K different functional categories, we

can model the expression level  explicitly as being

dependent on the K functional categories, i.e.,

where  is now a (non-latent) random effect for func-

tion k. Thus, there are two random components in this

model: the function-dependent random factors, ,

realized independently for each microarray experiment j,

and the error term, , which is realized independently

for each microarray (j) and each gene (i).

As stated above, these (functional) random effects can no
longer be assumed to be independent. Let Φ ≡ Var(f) ≠ I
be the covariance matrix of these random effects. Eq. (3)
then becomes

S = ΛΦΛT + E.  (6)

When properly estimated, the number λik in this model
can be interpreted as the "coefficient of association"
between gene i and function k and used directly to predict
gene functions.

Hence, FAM has the potential to explicitly account for the
fact that both the gene expression profiles and the func-
tional categories are correlated. By contrast, applying a
classifier such as SVM separately for each functional cate-
gory implicitly assumes that both are independent.

The challenge lies in the estimation of the covariance
matrix Φ based on the DAG structure of GO-BP. This is a
non-trivial but interesting challenge. So far, we have
experimented with three different methods to obtain a
similarity matrix: Lin similarity [22], which has previously
been applied in microarray data [7]; Resnik similarity

gi
j( )

g fi
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[23], which has also been applied to microarray data [24];
and a flexible Jiang and Conrath similarity [25], which has
been extended to specifically apply to estimate gene-gene
similarity using GO-BP by [26]. Such similarity matrices
then need to be transformed to a valid (i.e., positive-defi-
nite) covariance matrix, which can be used as an estimate
of Φ. After experimenting with these different techniques,
we obtained very different estimates of Φ. At the current
state, it is difficult to evaluate which estimate is better than
others. We will report more details in our future work.

FAM with functional constraints
If it is known that there is no association between gene i
and function k, we can set λik = 0 in Eq. (6) and estimate
the remaining entries of Λ from data. This is closely
related to confirmatory factor analysis [27]. Using the nota-
tion above, we wish to find values for the unknown
entries of the matrix Λ that optimally "fits" Eq. (6). For
example, we can use the Frobenious norm as the loss func-
tion and minimize the function:

||S - ΛΦΛT - E||F.  (7)

If λik are restricted to be 0 or 1, this problem would be a
nonlinear binary optimization problem, which is compu-
tationally taxing but potentially solvable due to recent
breakthroughs in integer programming [28]. The continu-
ous relaxation (when the restrictions λik = 0 or 1 are
removed) is still a non-trivial problem since the objective

function is non-convex with respect to Λ [29]. Neverthe-
less, we explored various techniques to tackle non-convex
integer programming problems, including approximating
the solution by a semi-definite programming formulation
(SDP) – a technique that has been successful in many
non-convex optimization problems [30]. Although the
Lagrangian relaxation of minimizing (7) can be modeled
as an SDP problem [30], the objective value is often non-
positive. Thus, this relaxation did not lead to a usable
solution.

There has been some recent advancements in the area of
non-convex integer programming problems, where
researchers from chemical engineering and optimization
have joined forces to develop a practical software [31]. In
the future, improvements in computation time of these
algorithms may allow us to solve our problem to global
optimality.

Other extensions
Finally, even by considering just the basic FAM framework
(3) alone leads to a number of different algorithms. For
example, we are currently exploring alternatives to princi-
pal factor analysis such as maximum likelihood or Baye-
sian factor analysis. As mentioned earlier, our FAM-based
algorithm has a big computational advantage. Alterna-
tives mentioned such as maximum likelihood and Baye-
sian factor analysis are computationally more demanding
but we expect that they would retain their computational

Table 2: cross-validated performance of FAM and SVM, averaged over all 369 GO functions. For each of the four C-V folds, the other 
three folds are used to train FAM and SVM. The performance metrics listed are averaged over all 369 GO functions.

CV Fold Sensitivity10% Specificity10% AUC
FAM SVM FAM SVM FAM SVM

1 0.503 0.501 0.905 0.905 0.784 0.783
2 0.482 0.480 0.905 0.905 0.769 0.773
3 0.518 0.509 0.905 0.905 0.797 0.791
4 0.485 0.478 0.905 0.905 0.769 0.764

mean 0.497 0.492 0.905 0.905 0.780 0.778

Table 3: pairwise comparison of predictions made by FAM and SVM for 369 GO functions in 4 cross-validation experiments. For each 
of the 369 GO functions, the performance of FAM and SVM are compared. "Win," "Tie" and "Lose" refer to the number of GO 
functions for which FAM's predictions are better than, tied with, or worse than that of SVM, respectively. The last row, denoted by 
"ACV," compares FAM and SVM using performance metrics which are averaged over the 4 cross-validation folds. As expected, this 
gives rise to fewer ties.

CV Fold Sensitivity10% Specificity10% AUC
Win Tie Lose Win Tie Lose Win Tie Lose

1 106 168 95 107 167 95 193 2 174
2 87 181 101 88 183 98 177 1 191
3 104 171 94 109 166 94 186 3 180
4 90 193 86 92 192 85 199 6 164

ACV 184 36 146 194 34 141 201 0 168
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advantage over training hundreds of SVMs to a data set
comprised of thousands of gene expression vectors.

Conclusion
We now summarize the main contributions of our work.
First, we proposed a model and an algorithm based on
factor analysis (FAM) for predicting gene functions using
microarray expression data. We evaluated the perform-
ance of our algorithm with data previously analyzed by
[1]. By running a four-fold cross-validation experiment
using only characterized genes, we showed that our
method is not only orders of magnitude faster, but per-
forms comparably against a sophisticated, state-of-the-art
classifier that is being widely used in functional genomics.
Second, we showed that our FAM framework will allow us
to incorporate important gene ontology information and
hence deal with a number of major challenges in using
statistical classification techniques for functional genom-
ics. Most importantly, it will allow us to directly account
for the fact that the functional categories are inherently
correlated and exploit this correlation structure for predic-
tion.

Method
This section elaborates on the details of our implementa-
tion both for FAM and SVM.

Algorithm implementation
Here, we give more details for how we implemented the
two-step algorithm based on our factor analysis model.

Step 1: Principal factor analysis

To estimate Λ, we choose  and  that minimize some

loss criterion �(S, ΛΛ + E). For example, one may choose
�(A, B) to be the Frobenious norm of the difference A - B

and choose  and  that solve:

In our procedure, we use the most popular algorithm for
fitting a factor analysis model known as Principal Factor
Analysis [[12], p. 261], but one could also use maximum
likelihood or Bayesian factor analysis to estimate these
quantities (see the "Discussion" section). Principal factor

Λ̂Λ Ê

Λ̂Λ Ê

min .
ΛΛ,,ΕΕ

ΛΛΛΛS E− +( ) ( )T

F
8

Table 4: averaged cross-validation performance of FAM and SVM for 369 GO functions classified into 4 groups based on how 
informative they are. A GO function is said to be more informative if fewer numbers of genes are associated with it. N = number of 
GO functions in each group. H, MH, ML, L denote the 4 groups with high, medium-high, medium-low, and low levels of 
informativeness. For each GO function, the averaged cross-validation (CV) performance metrics of FAM and SVM are used. These 
(averaged) CV performance metrics are then averaged over all GO functions within each category. Notice that the last row is identical 
to that in Table 1.

Sensitivity10% Specificity10% AUC
Group N FAM SVM FAM SVM FAM SVM

H 95 0.550 0.532 0.903 0.903 0.788 0.784
MH 144 0.521 0.521 0.904 0.904 0.792 0.790
ML 71 0.449 0.445 0.906 0.906 0.771 0.768
L 59 0.412 0.412 0.908 0.908 0.748 0.749

mean 369 0.497 0.492 0.905 0.905 0.780 0.778

Table 5: pairwise comparison of predictions made by FAM and SVM for 369 GO functions classified into 4 groups based on how 
informative they are. A GO function is said to be more informative if fewer numbers of genes are associated with it. N = number of 
GO functions in each group. H, MH, ML, L denote the 4 groups with high, medium high, medium low, and low levels of 
informativeness. For each GO function, the performance of FAM and SVM are compared using averaged performance metrics over 
the 4 cross-validation folds. "Win," "Tie" and "Lose" refer to the number of GO functions for which FAM's predictions are better than, 
tied with, or worse than that of SVM, respectively. Notice that the last row is identical to that in Table 2.

Sensitivity10% Specificity10% AUC
Group N Win Draw Lose Win Draw Lose Win Draw Lose

H 95 46 22 27 46 20 29 55 0 40
MH 144 64 12 68 76 12 56 74 0 70
ML 71 43 2 26 39 2 30 39 0 32
L 59 31 0 28 33 0 26 33 0 26

ACV 369 184 36 149 194 34 141 201 0 168
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analysis produces an approximate solution, , to Eq. (8),

where the columns of  are uncorrelated.

Step 2: Naïve Bayes

The fact that the columns of  are uncorrelated allows us
to use very simple procedures to construct the mapping F,
e.g., the naïve Bayes method [[32], Section 6.6.3], which
fully exploits the uncorrelated nature of the inputs. In
order to apply naïve Bayes, we break the mapping F into L
components, F = {Fl; l = 1, 2, ..., L}; each Fl uses the naïve

Bayes method to map  to the lth column of Y.

The Naïve Bayes method
Let y ∈ {0,1} be the class label and x ∈ �L, the vector of
predictors. Suppose p0(x) and p1(x) are the density func-
tions for the two classes. The posterior probability that an
observation belongs to class 1 is simply

where π1 and π0 are prior probabilities. The naive Bayes
method simply assumes the density functions p1 and p0 to
be of a product form:

In other words, the elements of the input vector x are
assumed to be independent. The marginal density func-
tions p0,l and p1,l can be estimated with standard (univari-
ate) density estimators.

For any given functional category, often only a few genes
are associated with it, meaning that class 1 is relatively
rare. Under such circumstances, it is often necessary to
impose additional parametric assumptions on the density
functions before they can be estimated. We assume (as is
also commonly done) that both p0,l and p1,l are Gaussian

density functions with the same variance. This means
uncorrelated inputs are the same as independent inputs
and that p0,l and p1,l are completely specified by three

parameters: µ0,l, µ1,l, and . Under such assumptions,

naïve Bayes becomes equivalent to Diagonal Linear Dis-
criminant Analysis [[33], DLDA].

Other than using a penalized variance estimate for 

(see below), we use the formulae derived by [33]. DLDA
classifies an observation x to class 1 when

where

The left-hand side of (10) is monotonically equivalent to
the posterior probability (9).

To estimate , we use a penalized estimate, , which

is similar in spirit to variance estimates used in [34]. In
particular,

 = s0 +   (12)
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four sample ROC curvesFigure 1
four sample ROC curves. We group 369 GO functions 
into four groups based on how informative they are. We say 
a GO function is more informative if fewer genes are associ-
ated with it. H, MH, ML, L denote the 4 groups with high, 
medium-high, medium-low, and low levels of informativeness. 
Here, we show sample ROC curves for four randomly 
selected GO functions, one from each of the four groups. 
G0:0000002 = "mitochondrial genome maintenance" (from 
group H); G0:0007568 = "aging" (from group MH); 
G0:0006626 = "protein targeting to mitochondrion" (from 
group ML); and G0:0006399 = "tRNA metabolism" (from 
group L). Solid line = FAM; dashed line = SVM.
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where s0 = 0.01 is a small positive constant and  is the

standard pooled variance estimate. As noted by [34], the

resulting estimate  is numerically more stable than

.

SVM parameter selection
Due to the heavy computational burden of fine-tuning
SVM parameters for each of the 369 functional categories,
we tuned the parameters to a subset of the categories.
Namely, we applied the same parameter values to func-
tional categories with similar levels of informativeness. To
select the parameters for SVM, we relied on the more glo-
bal performance measure, AUC. As stated in the "Perform-
ance Evaluation" section, AUC does not depend on the
threshold m and it summarizes the entire range of trade-
offs that can be achieved by a ranking algorithm.

We trained SVMs on ten functional categories chosen as
follows: We sorted all 369 functional categories according
to their informativeness or gene association levels (again,
we refer to a functional category as more informative if
fewer genes are associated with it). From that sorted list,
we split the categories into ten groups based on the
deciles. For example, the first group is comprised of the
most informative functions and the tenth group is com-
prised of the least informative functions. To construct the
"training set", we chose one function from each of these
groups, and chose the SVM parameter values correspond-
ing to the highest AUC value for each of them.

We tested all three kernels (linear, radial basis function,
and polynomial) with diagfactor = {0.01, 0.02, 0.05, 0.1,

0.5, 1, 2, 5, 10}. For radial basis function (RBF) kernels,
we tested widthfactor = {0.1, 0.2, 0.25, 0.5, 0.75, 1, 1.5,
2} and for polynomial kernels, we tested power = {2, 3}
which corresponds to the degree of the polynomial ker-
nel. For each of the ten training set categories, the AUC
values were plotted in contour plots to determine the
highest value. If this optimal parameter set was on the
boundary of the tested parameter range, the range of the
parameter values were expanded. This process was
repeated until we found a range of parameters in which
the optimal parameter set did not lie on the boundary of
our contour plots. Additional values tested include diag-
factor = {0.001, 0.005, 12, 15, 20} and widthfactor = {3,
5, 7}.

To test whether the fine-tuned parameters generalizes for
other functional categories, we measured their perform-
ance on a separate "test set". From each of the ten groups
described above, we selected five additional functional
categories as the "test set". The AUC values of the test set
areshown in Table 6. Two different sets of parameters
were applied to the SVM:"default", which corresponds to
Gist's default parameters (diagfactor = 0.1 and widthfactor
= 1) with RBF kernels (we chose this kernel since it appear
to perform well across all functions we tested); and
"tuned", which corresponds to the parameter values fine-
tuned to the training set.

Table 6 illustrates that there is little difference between
using the default and the fine-tuned parameters with
respect to AUC values. Using default parameters resulted
in higher AUC values than using the tuned parameters in
5 out of 10 groups, and the mean AUC across all groups

�σ l
2

�σ l
2

�σ l
2

Table 6: AUC of SVM on the testing set. The testing set is comprised of 50 functional categories classified into 10 groups according to 
how informative they are. A GO function is said to be more informative if fewer numbers of genes are associated with it. An SVM was 
trained for each of these categories using two sets of parameters. In this table, Group 1 consists of the most informative functions 
whereas Group 10 consists of the least informative functions. The "default" column reports to the prediction performance on the 
AUC scale using default control parameters in our SVM software Gist. The "tuned" column reports the prediction performance on the 
AUC scale using control parameters optimized on the corresponding the training set. The AUC values listed are averaged across the 
four C-V folds. See the substraction "SVM" Parameter Selection" in the "Method" section for further detail.

Group Default Tuned

1 0.804 0.793
2 0.683 0.638
3 0.803 0.806
4 0.853 0.862
5 0.864 0.863
6 0.751 0.740
7 0.788 0.805
8 0.807 0.796
9 0.748 0.773
10 0.739 0.766

Mean 0.784 0.784
(Stdev) (0.055) (0.064)
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were the same. Since the Gist default parameters appear to
be robust across different functional categories for this
particular data set, we decided to use the default parame-
ters to train the SVMs for all 369 categories in our experi-
ments.

FAM parameter selection
FAM formally has one parameter: a penalty on diagonal
variances, s0, mentioned in section The Naïve Bayes
Method. We have not performed an extensive optimiza-
tion of this parameter and settled on s0 = 0.01, since it
seems that FAM is not very sensitive to its value.
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2105-7-216-S1.txt]

Additional File 2
FAM predictions Tab-delimited file with 3225 lines each with 370 col-
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(first line), for 3224 genes and 369 GO-BP categories used in the text. 
Contains FAM prediction scores realized when a gene was part of the val-
idation set.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-216-S2.GZ]

Additional File 3
FAM predictions Tab-delimited file with 3225 lines each with 370 col-
umns, including gene names (first column) and GO accession numbers 
(first line), for 3224 genes and 369 GO-BP categories used in the text. 
Contains SVM prediction scores realized when a gene was part of the val-
idation set.
Click here for file
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