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Abstract

Background: Accuracy of document retrieval from MEDLINE for gene queries is crucially
important for many applications in bioinformatics. We explore five information retrieval-based
methods to rank documents retrieved by PubMed gene queries for the human genome. The aim is
to rank relevant documents higher in the retrieved list. We address the special challenges faced
due to ambiguity in gene nomenclature: gene terms that refer to multiple genes, gene terms that
are also English words, and gene terms that have other biological meanings.

Results: Our two baseline ranking strategies are quite similar in performance. Two of our three
LocusLink-based strategies offer significant improvements. These methods work very well even
when there is ambiguity in the gene terms. Our best ranking strategy offers significant
improvements on three different kinds of ambiguities over our two baseline strategies
(improvements range from 15.9% to 17.7% and 11.7% to 13.3% depending on the baseline). For
most genes the best ranking query is one that is built from the LocusLink (now Entrez Gene)
summary and product information along with the gene names and aliases. For others, the gene
names and aliases suffice. We also present an approach that successfully predicts, for a given gene,
which of these two ranking queries is more appropriate.

Conclusion: We explore the effect of different post-retrieval strategies on the ranking of
documents returned by PubMed for human gene queries. We have successfully applied some of
these strategies to improve the ranking of relevant documents in the retrieved sets. This holds true
even when various kinds of ambiguity are encountered. We feel that it would be very useful to apply
strategies like ours on PubMed search results as these are not ordered by relevance in any way.
This is especially so for queries that retrieve a large number of documents.

Background mation about drugs and genes related to a specific disease

This research focuses on the problem of retrieval from
MEDLINE for gene queries. The ability to retrieve the cor-
rect set of documents about genes is at the foundation of
a fast growing variety of text-based solutions in bioinfor-
matics. Whether the end goal is to automatically identify
gene disease relationships [1] or to extract relevant infor-

such as cancer [2], it is important to identify the associated
document set accurately. Effective retrieval for gene que-
ries is particularly relevant to the expanding body of
research on using MEDLINE to analyze gene clusters gen-
erated by DNA microarray and oligonucleotide arrays
experiments [3-7]. A single array experiment typically
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involves thousands of genes, often on a genome-wide
scale. This makes the analysis of array expression data
quite challenging. Several researchers have proposed tech-
niques using MEDLINE data for each gene. For example
Chaussabel and Sher [7] complement gene expression
cluster analysis by clustering genes according to their liter-
ature profiles. Kankar et al. [5] statistically evaluate MeSH
terms from the gene literature to identify a gene cluster's
topical characteristics at different levels of importance.
Wren and Garner [6] exploit literature co-occurences to
evaluate the cohesiveness of gene clusters. Naturally such
methods for analyzing several hundred genes at a time
crucially depend upon the accuracy of their underlying
document retrieval functions.

A significant aspect that makes gene query retrieval chal-
lenging, and hence interesting, is the ambiguity associated
with gene names [8]. There is a sizable and growing body
of research on this gene name ambiguity phenomenon [9-
13], with particular emphasis on designing and testing
disambiguation strategies. Weeber et al. [11] studied the
various kinds of ambiguities, such as synonymy and
homonymy, in LocusLink (LL) gene names. They also use
the Schwartz and Hearst expansion algorithm to automat-
ically create a gene disambiguation test collection. Tuason
etal. [12] studied ambiguity in gene names for four organ-
isms (Mouse, Drosophila, Worms and Yeast). They iden-
tify ambiguity across all organisms, within each organism
and with general English words.

Various disambiguation approaches can be found in the
literature. Liu et al. [14] used a two-phase unsupervised
approach to automatically train and build word sense
classifiers for ambiguous biomedical terms. Podowski et
al. [15] used a supervised approach to assign to each gene
name in a MEDLINE abstract its corresponding LocusLink
ID. They created models for each LocusLink ID trained
using MEDLINE citations in LocusLink and SWISSPROT
records. Koike and Takagi [16] used heuristically built dic-
tionaries for gene names and for gene family names while
Seki and Mostafa [17] explored probabilistic approaches.
Most recently Schijvenaars et al. [18] used a method
involving both a thesaurus and reference descriptions for
the different meanings of genes with the latter built from
representative documents or from OMIM. Their thesaurus
of gene symbols, names etc. was built from five public
databases such as OMIM and LocusLink.

As indicated before, our approach is to view the problem
from a retrieval perspective. Initiatives such as the KDD
2002 challenge cup [19], BioCreAtIVE challenge [20] and
TREC Genomics [21] offer related research. However, our
research is distinct both in its goals and in the experimen-
tal design. In KDD 2002 although one task was to rank
and retrieve papers in order of probability of the need for
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curation, the experimental conditions are significantly dif-
ferent from ours. For example, the collection had less than
1100 "cleaned" full text papers from the FlyBase domain.
In sub-task 2.3 for the BioCreAtIvE 2004 workshop, par-
ticipants were asked to "provide for, ten proteins, the arti-
cles which are relevant for annotation," along with
information pertaining to GO annotation [22]. Here
again the collection was limited to 212 full text articles
from the Journal of Biological Chemistry. Moreover, as
stated by the organizers, the results of the sub-task were
not evaluated due to reasons such as "the limited number
of participants".

In the 2003 TREC Genomics Track, one task was retrieval
from a collection of 525,938 MEDLINE records for 50
gene topics [23]. The 2004 TREC Genomics track also had
a retrieval task again with 50 queries but this time repre-
senting a broader variety of bioinformatics queries [24] as
for example queries exploring the relationship between a
gene and a disease. Our effort is different from these two
TREC efforts. Although we use a dataset of 4.6 million
MEDLINE records, built chiefly from the TREC 2004 data-
set, we focus on a much larger (close to 9,400 queries) and
different query set (focussed on gene queries). We use a
similar, but not identical strategy, as that in TREC 2003, to
identify gold standard relevant documents. Our method
identifies more than double the number of relevant docu-
ments. In addition to differences in experimental design,
our retrieval goal relates more directly to the needs of bio-
scientists using MEDLINE based evidence for the analysis
of array based expression data involving thousands of
genes.

In contrast to the extensive research on gene string ambi-
guity recognition and resolution, there are few studies
where the central emphasis is on assessing the effective-
ness of MEDLINE document retrieval with gene queries.
Disambiguation focuses on individual occurrences of
gene strings in specific documents. However, although a
disambiguation strategy may correctly decide that a given
ambiguous string represents a gene of interest, the docu-
ment may still be non relevant. This could happen for
example if the gene was mentioned only in a peripheral
context. Retrieval on the other hand is, by definition, con-
cerned with relevance. In the long run it may be beneficial
to combine the strengths of both retrieval research and
disambiguation research when working with genes. Our
focus in this paper is on retrieval. For each gene in our
sample we begin with the set of documents retrieved via
PubMed and aim at improving this set using ranking
methods from information retrieval research.

PubMed, the public interface to MEDLINE, offers a
sophisticated range of search functions designed within
the Boolean framework. However, the main option for
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sorting a retrieved set of documents is chronological. In
other words, a PubMed query divides the MEDLINE col-
lection into 2 sets: one that satisfies the query and one that
does not. The former is then shown to the user in chrono-
logical order. There are no 'shades of grey' in PubMed
retrieved sets. Ranking documents by their relevance
potential can be of significant benefit, especially when
large sets of documents are retrieved - the case with many
gene queries. Thus our objective is to explore strategies for
effectively ranking documents retrieved by PubMed. We
begin with a baseline ranking strategy that uses only the
terms in the original gene query submitted to PubMed.
We then explore a variety of other ranking strategies
assuming different levels of domain knowledge about the
genes. We also study the effect of ambiguity on perform-
ance.

In recent research, Chen et al. [13] conducted the most
extensive study to date, on gene names. Exploring 21 spe-
cies, they studied the distribution of different ambiguities
including the ones studied in this research. They found,
for example, that although only 0.57% of their gene set
consisted of genes with English meanings (in the context
of a mouse dataset), these retrieved an additional 233%
gene document 'instances' of which the majority were
incorrect. We offer logically complementary research
albeit one that focuses on the genes of a single genome.
We present a systematic study on retrieval effectiveness,
for human genes, with all of their inherent nomenclature
ambiguities. Specifically we present three main experi-
ments altogether involving 9,390 genes (human genes
with known function identified from LocusLink (LL)).
Each experiment explores the effectiveness of one or more
ranking queries applied to document sets retrieved for
gene queries from MEDLINE. Our goal is to rank relevant
documents higher than the non relevant ones in the
retrieved set.

Results and discussion

For each gene we retrieve documents from MEDLINE by
searching the disjunction of its aliases taken from the
OFFICIAL_GENE_NAME, OFFICIAL_SYMBOL  and
ALIAS_SYMBOL fields of LL. Retrieved documents are
restricted to a subset of MEDLINE (close to 4.6 million
records) consisting chiefly of the 2004 TREC Genomics
dataset [24]. 44% of the gene queries retrieve 100 or more
documents while almost 25% retrieve 500 or more docu-
ments. Relevant documents (our gold standard) are
extracted from the PMID' and 'GRIF' fields in each gene's
LL record. In TREC 2003, gold standard documents were
identified for the 50 gene topics using only the GRIF field
of LL. This pool of relevance information has been noted
to be incomplete [23]. For our collection of 9,390 queries,
our strategy extracting from both PMID and GRIF fields
identified more than twice the number of gold standard
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judgments (47,639) as compared to using the GRIF field
alone (21,517). We observe that 76% of our topics have
five or less relevant documents identified through LL. This
suggests that ensuring accuracy in retrieval for gene que-
ries is a challenge and users are likely to benefit from
retrieved sets ranked by relevance potential. For a given
gene we compute a set of term vectors using a basic tf*idf
strategy for term weighting. Term vectors are computed
for each retrieved MEDLINE record and for each ranking
query. Cosine similarity scores in [0,1] are calculated for
each ranking query vector - retrieved document vector
pair. Given a ranking query retrieved documents are
ranked by cosine similarity to the query. The ranked sets
are limited to the top ranked 10,000 documents. We
believe it is unlikely that a user would want a larger
retrieved set. We measure the quality of ranking using
average precision (AP) [24]. AP is the average of the preci-
sion scores calculated at the position of each relevant doc-
ument in a ranked document list. E.g., given a ranked list
where the 3 gold standard documents are at rank 2, 5 and
7, AP is the average of precision scores (0.5, 0.4, 0.43)
which equals 0.44. Since AP is sensitive to the rank of each
relevant document we also compute (normalized) preci-
sion of the top 5 ranked documents (NTop5P = Top5P/
max_Top5P). Top5P is the number of relevant documents
in the top 5 ranks divided by 5. The normalization factor
is included as some queries have less than 5 relevant doc-
uments. E.g., if a gene has only 3 gold standard docu-
ments then the max_Top5P is 0.6. If for such a query, all
3 relevant documents are within the top 5 positions,
NTop5P = 0.6/0.6 = 1. If instead only 2 are in the top 5,
then NTop5P = 0.4/0.6 = 0.63. For queries with at least 5
relevant documents, NTop5P is the same as Top5P.

Scores are averaged across topics to yield mean AP (MAP)
and mean NTop5P. AP is our primary measure. We com-
pare five document ranking strategies. B1 and B2 are base-
line strategies. S, P and SP are built from LL.

1. Baseline 1 (B1): This ranking query is the same as the
PubMed query (gene name and aliases) without the dis-
junction operator.

2. Baseline 2 (B2): We add to the B1 ranking query the
terms 'gene’, 'genetics', 'genome’ and 'oncogene'. Here we
hope to steer the ranking in favor of documents in the
overall genetics domain. This query is motivated in part
by the notion of a "query zone" [25].

3. Summary (S): We add to B1 the SUMMARY field of the
gene's LL record. This field, when available, describes for
example, the gene's function, its structure and associated
phenotype information. It is generated using data from
various sources [26].
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Performance of Ranking Strategies (MAP). The graph
shows the mean AP scores (with 95% confidence interval)
for the different strategies on the set of 4,647 genes for
which summary and product is available in LL.

4. Product (P): We add to the B1 query the PRODUCT,
PREFERRED_PRODUCT, ALIAS_PROT fields in LL.

5. Summary+Product (SP): Both LL summary and prod-
uct information are added to the B1 ranking query.

Unfortunately not all 9,390 genes in our pool have both
the summary and product fields in LL. A subset of 4,647
genes have both summary and product (used in expt. 1);
a different subset of 4,195 has no summary (used in expt.
2), while the full set is used in expt. 3.

Ranking results (Expt. 1)

We first compare our five ranking strategies using the
4,647 genes that have both summary and product fields.
Figure 1 shows the MAP scores for each strategy along
with the 95% confidence intervals. We find that the
generic query (B2) is not that different from B1 in per-
formance. But S and SP give significant gains in the range
of 14% compared to B1 and 12% compared to B2. Addi-
tionally, the 95% confidence intervals for S and SP do not
overlap with those for B1 and B2 indicating that the dif-
ferences are statistically significant at the 0.05 significance
level. P is weak even when compared with B1 although it
does not hurt performance when added to S (S and SP
show almost identical results). Figure 2 shows the corre-
sponding mean NTop5P scores for each strategy. Again we
see that S and SP are significantly different from B1 and B2
at the 0.05 significance level. Improvements are around
10.4% and 8% compared to B1 and B2 respectively.

For more detailed analysis, figure 3 displays difference
graphs for AP scores where differences are calculated
against B1. The genes are distributed into 10 bins defined

Performance of Ranking Strategies (NTop5P). The
graph shows the mean NTop5P scores (with 95% confidence
interval) for the different strategies on the set of 4,647 genes
for which summary and product is available in LL.

by B1 AP score. We see that as B1 performance drops
approximately below 0.7, the other ranking strategies gen-
erally become increasingly beneficial. In fact the best strat-
egy, SP yields increases in AP from 0.06 to 0.14 from the
4th bin onwards to the right. Assessed against the baseline
averages, this bin range showing significant improve-
ments, spans 3,297/4,647 (71%) of the genes. Again we
see that P is not effective.

Figure 4 shows difference plots for NTop5P scores. Bin-
ning is again done by the corresponding B1 score. We see
that as the baseline performance drops below 0.7, other
ranking strategies show positive effect. SP is the best with
average increases in the range of 0.02 to 0.3 from bin 5
onwards. Here too, P does not perform well.

In general, our best strategies, SP and S, do significantly
better than B2. For SP, the percentage improvements start
at 11.6% for AP (from bin 4) and 7.9% for NTop5P (from
bin 5). Thus our gene specific strategies perform better
than the generic ranking strategy. Not surprisingly, we
observe that it is difficult to make improvements when B1
performance is already quite reasonable. The question we
now face is, given a gene query, can we predict whether its
B1 performance is going to be sufficient? In other words,
can we identify genes for which our SP ranking will gener-
ate improvements? We return to this question later in the

paper.

Results for ambiguous genes

A significant emphasis in recent research is on exploring
and understanding the extent and variety of ambiguity in
gene terms. Thus we examine the merits of our ranking
strategies within particular genes that are referenced by
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Difference in Average Precision: Genes Binned by B
AP. The genes are distributed into 10 bins defined by BI AP
score. Each bin has 450 genes except for the right most bin,
which has 617 genes. Average Bl scores for the genes in the
bins are shown in square brackets along the X axis. The Y
axis depicts the mean difference in AP between a given strat-
egy and BI. Thus for example, for the bin closest to the ori-
gin, which has average Bl score of 1.0, B2 degrades
performances. On average it brings down AP by 0.06. Bars
below the X axis indicate negative effects of ranking and bars
above indicate positive effects. The height of the bars indicate
the extent of the improvement/drop in performance.

ambiguous terms. We explore three varieties of ambiguity.
These are not mutually exclusive, since a given gene search
term may be ambiguous in more than one way. We
remind the reader of the distinction between a gene and
its component gene terms (search terms). Ambiguities are
determined at the search term level. A gene is considered
ambiguous if at least one of its search terms is ambiguous.

Different genes — same gene terms

Gene terms sometimes refer to more than one gene. For
example, the gene term Frapl refers to both a mouse gene
and a rat gene. Another example is APAHI, which is a
search term for a human gene but also is an alias for the
Mouse gene Nudt2 .This type of ambiguity has been stud-
ied by several researches [12,13]. For each term in our
4,647 gene searches, we count the number of LL records
in which it occurs. (Counts are limited to occurrences in
the OFFICIAL_GENE_NAME, OFFICIAL_SYMBOL and
ALIAS_SYMBOL fields and are done independent of spe-
cies indicated in the record). A gene term occurring in
more than 1 LL record is considered ambiguous. A gene
with such a search term is considered ambiguous. Using
this criteria, 2,516 of the 4,647 genes (54%) are tagged as
ambiguous. Results for these 2,516 genes are presented in
figures 5 & 6 under 'Duplicate Genes'. We see that SP and
S, still the best, improve MAP by 13.3% (15.9%) & 12.8%

Difference in NTop5 Precision: Genes Binned by Bl
NTop5P. The genes are binned by Bl NTop5P Score. Each
bin has 450 genes except for the right most bin, which has
617 genes. The average Bl NTop5P score for each bin is
shown in square brackets along the X axis. The Y axis indi-
cates the mean difference in NTop5P between a given strat-
egy and BI. Bars belowthe X axis indicate a drop in
performance whereas bars above the X axis indicate an
improvement in performance. The extent of improvement/
drop is indicated by the height of the bars.

(15.4%) and mean NTop5P by 9.2% (12.9%) & 9.1%
(12.7%) compared with B2 (B1). Since the 95% confi-
dence intervals do not overlap, the improvements offered
by both strategies are statistically significant at the 0.05
significance level.

Gene terms with English language meanings

The second variety of ambiguity is one where the gene
term (typically gene symbols such as GAB, ACT and BAR
)also has a general English language meaning. We identify
such terms by a simple lookup of WordNet [27]. We elim-
inate instances where the meanings contain words such as
gene, genome, enzyme, amino acid, which point back to
a genetics related meaning. 446 of the 4,647 (9.6%) genes
in our pool have at least one gene term with a general Eng-
lish meaning. The results for this subset are shown in fig-
ures 5 & 6 under 'English Genes'. Here the S strategy takes
the lead, especially in NTop5P. It gives 13.6% (19%)
improvement in MAP and 13.7% (24.5%) improvement
in NTop5P over B2 (B1). Except for MAP w.r.t. B2, all
improvements are statistically significant at 0.05. SP also
performs very well. However, the differences in MAP and
mean NTop5P are in general not statistically significant at
the 0.05 level.

Gene terms with other meanings in MEDLINE
There are also gene terms with other biological meanings
[13]. For example, the gene term ACR has many different
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Performance with Ambiguous Genes (MAP). The
graph shows the MAP score (with 95% confidence interval)
of each strategy on genes having duplicate records in LL
(DG), general English meanings (ENG) and other biological
meanings (BIO).

Performance with Ambiguous Genes (NTop5P). The
graph shows the mean NTop5P score (with 95% confidence
interval) of each strategy on genes having duplicate records
in LL (DG), general English meanings (ENG) and other bio-

logical meanings (BIO).

biomedical meanings including albumin/creatinine ratios,
acquired cellular resistance and acute to chronic ratio .Mean-
ings such as anomalous cosmic rays also appear in
MEDLINE. The correct gene meaning we seek is acrosin
.Other researchers have explored this aspect, especially in
the context of expanding abbreviations [28,29]. In partic-
ular Schwartz and Hearst [30] published an algorithm
that allows one to recognize short form-long form pairs
appearing as A (B) in text where A is a short form and B is
its corresponding long form. We choose this algorithm
over the others [28,29] because of its simplicity and speed.
It is also equivalent in effectiveness to most of the other
approaches [30].

We process the retrieved documents for each gene through
the Schwartz and Hearst algorithm looking for possible
expansions for each term in that gene's search. 2,277/
4,647 genes (47.8%) have at least 1 component gene term
with more than 1 long form identified. These are consid-
ered ambiguous. This approach is not without limitations,
since the algorithm relies on the presence of A (B) struc-
tures in the texts with A representing the gene term and B
recognized correctly as a possible expansion. Results for
this subset of 2,277 genes are shown under 'Bio Genes' in
figures 5 & 6. The SP strategy, (with S being equivalent)
gives a 11.7% (17.5%) improvement in MAP and 9.7%
(17.2%) improvement in mean NTop5P over B2 (B1).
The figures also indicate that the improvements are signif-
icant at the 0.05 significance level. We also estimate the
extent of ambiguity at the gene level, which we call Ambi-
guityg,,. For a gene G it is defined as follows:

Ambiguityg, (G) = 0, if |Expansions(g;)| = 1,Vi e n

Ambiguityg,; (G) = X, n|Expansions(g;)| otherwise

where |Expansion(g;)| is the number of long forms for gene
term g; found by the algorithm and g;i n are the search
terms in the PubMed query for gene G.

Figure 7 depicts the relationship between this ambiguity
estimate (limited to genes with ambiguity score > 1) and
ranking strategy performance in terms of AP. We observe
improvements in the range of 9.2% to 25.8% across all
the bins for the SP strategy, with >10% in 9 of the 10 bins.

Summary of ambiguity analysis

With two of the three varieties of ambiguity, SP is signifi-
cantly better than B1 and B2 in MAP and NTop5P. The
scores for ENG seem to lag behind both in MAP and
NTop5P. When we consider MAP, DG seems easier to
accommodate. We note that the gene sets overlap across
these ambiguities. There are 411 genes that are in ENG
and BIO, 361 in Eng and DG, 1,948 in DG and BIO. Thus
for example, 92.2% and 80.9% of the ENG genes also fall
into the BIO and DG categories respectively; 18.1% and
70.3% of the BIO genes are also in ENG and DG respec-
tively.

Performance versus retrieval set size

Figure 8 is a binned difference plot for AP exploring the
connection with retrieved set size. We know from prior
research in IR that as retrieved set size grows, precision
tends to fall. We observe the same trend in terms of our
baseline scores. Interestingly our S and SP strategies offer
significant benefits, both against B1 and B2. Although
improvements become harder to achieve as more docu-
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ments are retrieved, these remain significant for all bins.
The smallest improvement for SP, when 100 documents
or more are retrieved, is 13.3%. The improvement in AP is
18.1% when the average retrieved set size is the largest. B2
lags significantly behind S and SP.

Ranking results without LL summaries (Expt. 2)

We now focus on the 4,195 genes (of the 9,390) which do
not have a summary field in LocusLink. Can we use some
other strategy to rank documents for these genes? We do
have the B2 ranking query (with some domain informa-
tion added to the gene names). But, is there a more effec-
tive generic query, perhaps one that better represents the
kinds of summary statements made about genes? To
explore this we take the M most frequent words (after
eliminating stopwords) from the summary fields availa-
ble for the 4,647 genes (of expt. 1) and form a generic
query. As with B2, the gene names are added which tailors
the ranking query to each gene. Since M is a parameter
that needs to be set, we divide our dataset of 4,195 genes
randomly into a training set of 1,000 genes for training
and 3,195 for testing. The training set was used to find the
optimal value of M which was varied from 5 to 50 in steps
of 5 and from 100 to 500 in steps of 50. Unfortunately
none of our automatic generic strategies improve per-

BB.2
ge
@as
msp

Mean Difference in AP

ULJHMHJ”
|

-0.05

(2) (9) (19) (34) (60) (111) (225) (483)(1242)(43572)
[0.86][0.65][0.56][0.48][0.44][0.37][0.34][0.28][0.29][0.24]

Genes Binned by # of Docs Retrieved

Figure 8

Difference in Average Precision (AP): Genes Binned
by Number of Retrieved Documents. The figure shows
the relationship between retrieved set size and ranking strat-
egy performance in terms of AP. Genes are binned into equal
sized groups based on the number of retrieved documents.
Each bin, except for the last one, has 450 genes. The last bin
consists of 617 genes. Average retrieved set size for each bin
is shown in parenthesis and average Bl AP for each bin is
shown in square brackets.

formance beyond the B2 strategy. (Thus figure 9 which
shows the results for this experiment, only includes the
best generic strategy with M = 5 during training). Hence
we only try B1 and B2 strategies on the test set of 3,195
genes. Note that PubMed only ranks chronologically and
hence comparatively our B1 and B2 performances, where
ranking is by relevance potential, are themselves of value.

Predicting Bl performance

We now return to the question left unanswered when dis-
cussing the results of experiment 1. For a given gene can
we predict its B1 performance? Observe in figure 3 that as
B1 performance becomes higher than approximately 0.7,
our S and SP ranking strategies degrade performance. If we
can identify such cases up front with reasonable accuracy,
then we may avoid using the SP or S ranking strategies
inappropriately. We examine four characteristics of our
gene topics (DG, ENG, BIO and N: the number of docu-
ments retrieved) to see if they can be used to predict Bl
performance. We begin by looking at correlations (Pear-
son's after data transformations) for the set of 4,647 genes
(Table 1). Prior to calculating these, since the values for
Ambiguityg;, and N are skewed, we apply a log transforma-
tion (In(1+x)) on these values. The transformed values are
referred to as N' and Bio'. Note that both ENG and DG are
binary values. If the gene has at least one search term with
an English meaning it gets a 1 for ENG, otherwise a 0.
Likewise, a gene with at least one term shared with
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Table I: Correlation Coefficients. The table shows the strength
of the correlations among the different kinds of ambiguities and
the number of retrieved documents and their correlation with
the Bl AP Score.

DG Bio' Eng N'
Bio' 0.371
Eng 0.175 0.456
N’ 0.336 0.697 0.436
Bl AP Score -0.182 -0.363 -0.149 -0.508

another gene gets a 1 for DG, otherwise a 0. N' has the
strongest correlation with B1 score, followed by BIO'.
Thus N' has the most potential for predicting score. Hav-
ing selected N', BIO' is redundant as a feature given its
strong correlation with N'. Similarly given the observed
dependencies between N' on the one hand and ENG or
DG on the other, we do not consider these two ambiguity
properties either for prediction purposes. As an aside, one
advantage with using only N' is that it is readily under-
stood and measured (as compared with say the Ambiguity
Bio score). Thus we run a simple least square regression
model with one independent variable (N') using the
equation:

score = fBy+ f;. N'+ €
where £, is a coefficient, £,is a constant and € the error

term. Table 2 details the regression results. The coeffi-
cients are significant at extremely small p .Also the model

0.56 -
0.52 4 10.534

0.48 1

IO-SW :[0.543 I[)_sq

Fo.s3e

0.44 -
0.4 -

0.36

0.32 1

MAP Score

0.28

0.24
B1 B2 M=5 B1 B2

Strategy

Figure 9

Performance of Generic Ranking Strategy on Train-
ing Set (1,000 genes) and Test Set (3,195 genes). The
figure shows MAP scores (with 95% confidence interval) for
our generic ranking strategy, Bl and B2 on training and test
sets. M is the number of top ranked terms selected. Since M
= 5 is our best generic ranking strategy we show only the
performance of this strategy.
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is powerful with an adjusted R-square of 0.257. Thus we
may be able to effectively predict the B1 AP score.

To test this calibrated model we exploit the natural split in
our collection of genes. The regression model was devel-
oped on the set of 4,647 genes of experiment 1. We use the
non-overlapping, naturally held out set of 4,195 genes
(those without summary and product information) as our
test set. We are specifically interested in predicting if the
B1 score for each test gene is likely to be higher than 0.7
or not. From figure 3 observe that if B1 AP score is approx-
imately 0.7 or higher, it is best not to do any other kind of
ranking. In the test set there are 1,498/4,195 (35.7%)
genes with B1 score > 0.7. The default (majority) decision
that all genes will have scores < 0.7, gives an accuracy of
0.643. In contrast the regression results applied to the test
data gives an accuracy of 0.716, an improvement of
11.4%. These encouraging results indicate that it may be
possible to predict the level of B1 performance given just
the size of the retrieved set. These conclusions will be
tested further in future research.

Results with an overall strategy (Expt. 3)

Combining the results obtained thus far, the overall strat-
egy we propose for an arbitrary gene is to use SP to rank
its retrieved set. Ranking by the S strategy is the next
option. If summary is not available then we rank using the
B2 strategy. In figures 10 and 11, 'B2+SP+S' shows MAP
and NTop5P scores of this combined strategy on our full
set of 9,390 genes (4,647 with summary and product,
4,195 without summary and 548 genes with summary
alone). Compared to our two baseline strategies, we see
statistically significant improvements (at the 0.05 signifi-
cance level) in both performance measures. Observe that
as PubMed only ranks chronologically our B1 result is
itself a contribution. The ranking goal is a challenging one
given that in our dataset less than 7% of the retrieved doc-
uments are known to be relevant. Additionally, we are
able to improve ranking by 6.5% to 7.5% using our com-
bined strategy even though about half of the genes in our
collection do not (as yet) have summary information in
LL. As this information accumulates in LL/Entrez Gene,
we expect our overall performance to improve. As a refine-
ment to our overall strategy, we may use the results from
our regression model to identify genes for which ranking

Table 2: Regression Results. The results of the regression to
predict the Bl AP score using the size of the retrieved set as the
predictive variable.

Model p std err t P
Constant (/) 0.783 0.009 83.23 0
N(3) -0.071 0.002 -40.14  9.314E-303

R-square: 0.258, Adjusted R-square: 0.257
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Performance of Combined strategy over 9,390 genes
(MAP). This figure shows the MAP scores (with 95% confi-
dence intervals) of our combined strategy (B2+S+SP), Bl and
B2 on the full set of 9,390 genes.

Performance of Combined strategy over 9,390 genes
(NTop5P). This figure shows the mean NTop5P scores
(with 95% confidence intervals) of our combined strategy
(B2+S+SP), Bl and B2 on the full set of 9,390 genes.

by B1 is preferred. This refinement will be tested in future
research.

Conclusion

We explored the relative effectiveness of five different post
PubMed retrieval ranking strategies for human gene que-
ries. We conclude that the combination of LocusLink
summary and product information (or just summary)
along with the gene name and aliases may be used to
effectively rank retrieved documents. This conclusion is
consistent with other research where some form of
curated knowledge has been used to improve perform-
ance as for example the work of Koike and Takagi [16]. A
ranked list of documents for each gene is provided on our
web site [31].

Interestingly, using product names without summary is
ineffective. This could be because the product names are
more prone to being ambiguous. We find that in the
absence of summary information, our manually designed
generic query targeting the genetics domain combined
with the gene names is the best. We were not able to auto-
matically build a more effective 'generic' query.

Our LocusLink strategies are significantly more effective
than baselines even when faced with ambiguity. The Eng-
lish ambiguity problem is the most challenging and is also
fortunately the least prevalent. Finally, retrieved set size
may give us a way to predict which genes are best handled
by the B2 strategy. This could also be the basis of gene
query clarity scores akin to research in [32]. We observe
the presence of genes with very low B1 AP scores (< 0.2)
that are not identified as having any ambiguity using our
methods. Either our ambiguity detection methods are

inadequate or there are other facets impeding retrieval.
We plan to explore other detection approaches as seen for
example in [13].

For any approach to be successful it is important for it to
be robust. One criteria for robustness in our context is that
S and SP continue to be relatively the best strategies even
as the number of gold standard documents changes. To
test this aspect we repeated our tests of the five ranking
strategies using the relevance judgments from the latest
LocusLink file (August 2005). We did this with the 4641
human genes that were common to the LocusLink files
from 2003 (used in the experiments reported in earlier
sections) and 2005 and that had both summary and prod-
uct information available. The 2005 LocusLink file pro-
vides us with 45,728 relevance judgments as opposed to
29,730 in the 2003 version. Thus, we now have more than
one-and-a-half times the number of relevance judgments.
It is important to state that the retrieved sets for each gene
were kept the same as before. That is the only difference
between the two sets of experiments is that we now have
one-and-a-half-times the number of relevance judgments.
Figures 12 and 13 show the performances of our 5 strate-
gies on the 4641 genes using both relevance judgment
sets. We see that the relative ordering of our strategies still
holds in terms of both MAP and mean NTop5P score with
S and SP performing the best. As before, the improve-
ments offered by S and SP over the baseline strategies are
statistically significant at the 0.05 level. We also con-
ducted a small expert user evaluation study. We randomly
selected 34 gene topics and pooled together the top 15
ranked documents retrieved by the B2 and SP strategies
for each topic. We then randomly assigned different topics
to each of our 3 experts and had them judge documents
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Performance of Ranking Strategies (MAP) on Differ-
ent Gold Standard Sets. This figure shows the MAP
scores (with 95% confidence interval) for each strategy on
4641 genes for which summary and product is available in
two versions of LL. The left half of the graph shows the per-
formances using relevance judgments from the 2003 LL file
whereas the right half shows performances using relevance
judgments from the 2005 LL file.

Performance of Ranking Strategies (NTop5P) on Dif-
ferent Gold Standard Sets. This figure shows the mean
NTop5P scores (with 95% confidence interval) for each
strategy on 4641 genes for which summary and product is
available in two versions of LL. The left half of the graph
shows the performances using relevance judgments from the
2003 LL file whereas the right half shows performances using
relevance judgments from the 2005 LL file.

for relevance. We found that the difference between SP
and B2 in terms of NTop5P is 10%. This is similar to the
results from other experiments.

An analysis of the probable causes of error raises some
interesting observations. We observe three probable
causes of failure with our SP strategy. Firstly, there are rel-
evant documents without abstracts. SP favors documents
with abstracts (as more words are then likely to be shared
with the summary from LocusLink). E.g., the gene A2M
(LLID 2) has a gold standard document (PMID 1707161)
which has no abstract. This is ranked at position 5 by B2
and 180 by SP. In our dataset 25% of the gold standard
instances that have abstracts are in the top 5 ranked docu-
ments (for SP) while the corresponding percentage for
gold standard instances without abstracts is only 15%
(also for SP). Another probable cause of error is the vary-
ing themes in the documents. Since the SP strategy is
dominated by the LocusLink summary, this strategy favors
documents that reflect a similar theme. For an example of
an error where themes do not match, the gold standard
document with PMID 9116026 for the gene CENPB (LLID
1059) talks about isolating a novel human homolog to
the gene whereas the LL summary is primarily a descrip-
tion of the gene's function. This document is ranked 17th
by SP and 2nd by B2. A third probable cause of error is the
high rank given to some documents that mention the cor-
rect gene but in the context of another organism. E.g., for
the gastrin gene (LLID 2520), 6 of the top 10 ranked doc-

uments (including the top ranked document) are not
about humans. These are not in the gold standard set for
the gene. One way of dealing with this problem may be to
consider only those documents that have the MeSH term
'Human' (under the 'Organisms' semantic category),
assigned to them. Although far from conclusive, these
observations give us directions for more rigorous error
analysis in the future.

We deliberately kept the ranking model simple using only
traditional tf*idf vectors and cosine similarity. This
allowed us to focus on other dimensions in this research.
Clearly retrieval models such as language models with or
without feedback may be tried. Having obtained encour-
aging results with the TREC dataset, we will now consider
the full MEDLINE database. We also plan to work with
genes from other genomes. We will also explore other
sources for gene descriptions such as OMIM. These may
offer interesting avenues for genes without LL/Entrez
Gene summaries.

Methods

Gene queries and documents

We start with 12,385 human genes with known function
identified from LocusLink (LL)!. LL is a manually curated
database with a variety of information on genes such as
names, symbols and pointers to relevant documents. For
each gene we search MEDLINE using the ESearch utility
available from the NCBI website [33]. Our search strategy
is the disjunction of the aliases for the gene, taken from
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Table 3: Distribution of Retrieved and Relevant Documents
(9,390 genes) A topic is defined as a gene query. Thus, in the
table, 5270 gene queries retrieve between 0-100 documents and
7101 gene queries have between |1-5 relevant documents
identified in LocusLink.

# Retrieved # Topics # Relevant # Topics
Documents Documents

0-100 5270 (56%) 1-5 7101 (76%)
101-500 1944 (21%) 6-10 1344 (14%)
500-1000 633 (7%) 1-15 430 (5%)
1001-2500 676 (7%) 16-20 204 (2%)
2501-5000 323 (3%) 21-25 100 (1%)
5001-10000 230 (2%) 26-30 58 (<1%)
10001-25000 154 (2%) 31-35 38 (<1%)
25001-50000 71 (1%) 36-40 29 (<1%)

> 50,000 89 (<1%) > 40 86 (<1%)

the OFFICIAL_GENE_NAME, OFFICIAL_SYMBOL and
ALIAS_SYMBOL fields of LL. For example the search for
the gene with official name alpha- 1-B glycoprotein is
"A1BG OR A1B OR ABG OR GAB OR alpha-1-B glycopro-
tein". Relevant documents (our gold standard) are identi-
fied by extracting the documents identified in each gene's
LL record (PMID and GRIF fields). Documents listed in
these fields are typically identified by human curators and
indexers (with subject expertise).

In order to minimize the load on the NCBI server, given
our large number of queries, we constrain our experi-
ments to the 2004 3TREC Genomics dataset [24], which
contains close to 4.6 million MEDLINE records. This sub-
set is a recent one-third (approximately 1994 to 2003) of
the full MEDLINE database. When limited to this dataset,
9,390 of the 12,385 original gene topics have at least 1
retrieved relevant document. These retrieve a total of
45,216,725 records from this dataset (average = 4,815).
The one modification made to the TREC dataset was to
add relevant documents retrieved but not already present
(5,516 relevant documents). 4,111,272 unique records
(of the 4.6 million) in the modified TREC dataset were
retrieved for at least 1 gene query. The 9,390 genes and
their associated data form the basis of our experiments.

Table 3 gives the distribution of the retrieved and relevant
document set sizes. Observe that 44% of the topics
retrieve 100 or more documents while almost 25%
retrieve 500 or more documents. At the same time 76% of
the topics have five or less relevant documents.

Ranking system

We use Lemur version 3.1 [34] installed on a system with
2 GB RAM, running Redhat Linux 9.0. Lemur is a toolkit
developed by researchers at Carnegie Mellon University
and the University of Massachusetts for language mode-

http://www.biomedcentral.com/1471-2105/7/220

ling and IR-related tasks. For a given gene its retrieved doc-
uments and its ranking query(ies) are first represented by
term vectors where term weighting is done using a basic
tf*idf (term frequency * inverse document frequency)
strategy. These vectors are built using Lemur. A stoplist of
571 commonly used English words (such as 'a’, 'are’, 'the')
is used and words are stemmed. Cosine similarity scores
in [0,1] are calculated between query vectors and docu-
ment vectors. Given a ranking query and a retrieved set of
documents for a gene, the documents are ranked by their
cosine similarity score with the query vector. The ranked
sets are limited to the top ranked 10,000 documents. We
believe it is unlikely that a user would want a larger
retrieved set. To index the documents we use the title,
abstract, MeSH (Medical Subject Headings) and RN
(chemical names) fields.

Availability
A web-based system offering access to retrieved and
ranked document sets for gene queries is freely available

at (http://sulu.info-science.uiowa.edu/genedocs).
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Note

! Download date October 2, 2003. We note that
LocusLink is now a part of NCBI's Entrez Gene. Impor-
tantly, the LocusLink fields used in this study are still
available through Entrez Gene.
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