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Abstract

Background: The modeling of dynamic systems requires estimating kinetic parameters from
experimentally measured time-courses. Conventional global optimization methods used for
parameter estimation, e.g. genetic algorithms (GA), consume enormous computational time
because they require iterative numerical integrations for differential equations. When the target
model is stiff, the computational time for reaching a solution increases further.

Results: In an attempt to solve this problem, we explored a learning technique that uses radial
basis function networks (RBFN) to achieve a parameter estimation for biochemical models. RBFN
reduce the number of numerical integrations by replacing derivatives with slopes derived from the
distribution of searching points. To introduce a slight search bias, we implemented additional data
selection using a GA that searches data-sparse areas at low computational cost. In addition, we
adopted logarithmic transformation that smoothes the fitness surface to obtain a solution simply.
We conducted numerical experiments to validate our methods and compared the results with
those obtained by GA. We found that the calculation time decreased by more than 50% and the
convergence rate increased from 60% to 90%.

Conclusion: In this work, our RBFN technique was effective for parameter optimization of stiff
biochemical models.

Background biochemical models, and large-scale models in particular,

The application of mathematical expressions for bio-
chemical systems is useful for understanding complex
biological phenomena. Reactions are expressed as rate
equations, and the numerical integration of variables is
applied to simulate these reactions. The simulation of bio-
chemical models requires the identification of all kinetic
parameters of each rate equation. However, almost all

involve parameters that are extremely difficult to measure
in vivo or in vitro [ 1-3] and the exclusive use of results from
wet-bench experiments may be insufficient for the identi-
fication of all parameters. Therefore, to establish precise
models, it is essential to determine unknown kinetic
parameters from the time-courses of concentrations.
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Various optimization algorithms such as the Levenberg-
Marquardt method, genetic programming, simulated
annealing, and evolutionary algorithms have been
applied to infer parameters or equations in biochemical
models [4-9]. The genetic algorithm (GA) [10] is com-
monly applied to these problems because of its global
optimization ability [11-15].

However, the GA, including the real-coded GA [16], relies
on stochastic optimization algorithms and requires vast
numerical integrations to evaluate estimated parameters.
In addition, the computational cost increases further
when the target model has the stiffness that often appears
in equations for biochemical systems because each solu-
tion requires small integration steps [17-19]. The applica-
tion of the stochastic method to large-scale or stiff models
involves enormously expensive computational time and
superior hardware performance. In addition, use of GA
elicits the sampling bias phenomenon [20,21]. This
becomes an inherent problem that may result in failure in
cases where an optimal parameter exists around the
boundary of the parameter space. In particular, parame-
ters of stiff systems tend to be allocated around the
boundary of the search space because they involve differ-
ent-order parameters.

The radial basis function network (RBEN) [22,23], a type
of artificial neural network (ANN) [24], is one of the arti-
ficial learning methods that describe complex non-linear
relationships between inputs and outputs. The RBEN can
solve parabolic, hyperbolic, and elliptic partial differential
equations numerically [25] and is able to approximate
non-linear time-courses effectively [26-28]. Due to the
increased accumulation of biological information, RBFN
are now applied in the biochemical field [29-33].

In the work presented here, we adopted RBEN to parame-
ter estimation for local and global searches. RBFN enable
to reduce the computational cost by omitting numerical
integrations, resulting in solution of the above problems.
In applying RBEN to biochemical modeling, we imple-
mented subsidiary 2 improvements: (1) Since it is difficult
to model highly nonlinear biochemical systems, we
adopted a logarithmic transformation to both the input
and output layer of the RBEN, thereby facilitating param-
eter-optimization. (2) RBEFN require the selection of
appropriate additional learning data to obtain a global
minimum. Here we propose additional data selection
using a GA for selecting additional learning data sets. This
method adopts elemental GA to search data-sparse areas
in the parameter space. We applied the proposed method
to parameter estimation in a stiff biosystem. Our results
demonstrate that compared to the GA, our method facili-
tates the acquisition of equivalent or more accurate
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parameters at half the calculation time and yields a 50%
increase in the optimization success rate.

Results

Experimental conditions

To examine the performance of the proposed method we
used the metabolic pathway model shown in Figure 1. It
is one of the typically stiff models employed to show the
difficult optimization often observed in biochemical
modeling [34-36]. The model is composed of 5 reactions
with 6 reactants and 1 feedback loop in terms of enzyme
concentration. We adopted a stiff model whose parame-
ters differed by about 5 orders of magnitude since bio-
chemical models often have stiffness and inference of
those parameters is difficult. The kinetic equations and
parameters used in the model are presented in Tables 1
and 2. The concentration of X, is fixed as an external
metabolite. Figure 2 shows calculated time-course data
using Tables 1, 2, and 3; the concentrations of the
enzymes are set to 0.01. From each time-course, 10 points
were sampled for optimization (Time = 0.02, 0.04, 0.06,
0.08, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0). Table 4 shows the
experimental conditions in this work. These parameters
were selected empirically. The search ranges were K; €
[0.1,1000]. The convergence indicates that learning
attains a 10% relative error within 600 minutes. The
processing time is the average of the calculation time
required until learning succeeds. The test error is the rela-
tive error between given and calculated time-courses using
initial conditions shown in Table 3. The computer envi-
ronment was as follows: Pentium 4, Xeon 2 GHz, CPU
with a memory size of 1024 MB. Our algorithm was

GA RBFN
_inputl time-courses _input| parameter | GA|
! N
parameter ! integration ;
|

| output|  #itness output| fitness

! integration |

Figure |

Differences of learning procedures between GA and
RBFN methods.While GA learns the fitness between
parameters and time-courses, RBFN learn the fitness of
parameters. Therefore, numerical integrations used to evalu-
ate the fitness of calculated time-courses are reduced from
trial-and-error to one. The simple GA included in RBFN is
used as an input data selection method of RBFN. RBFN ena-
ble to fast optimization by reducing the iterative calculations
of numerical integrations.
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Stiff model of the metabolic pathway used in this
work. It was composed of 5 reactions with 6 reactants,
where X is the final product, X, the external substance with
fixed concentration, and X, X3, X, and x, are intermediate
metabolites, e, E,, E3, and E4 are enzymes. The dotted line
represents a feedback reaction. Details of the numbered
reactions are shown in Table .

implemented using Python language. The 4th-order
Runge-Kutta method was employed as the ordinary differ-
ential equation solver; the time step was 0.0001.

Performance of ADSGA

We compared the performance of additional learning
using ADSGA with kNN. First, we inferred 2 parameters
(K, Ks3) in the Figure 2 model to examine the data dis-
tribution in the early learning phase. The additional learn-
ing of kNN and ADSGA was repeated 20 times. A density
distribution of learned data is shown in Figure 3. Cases
where k = 2, 4, 8, and 16 were examined. Deepening
colors represent the density of existing data. For instance,
a white grid represents no learning data in the parameter
space; a black grid indicates that there are too many learn-
ing data in the parameter space. We found that the density
distribution varied greatly depending on the value of k. A
few grids did not include additional data in cases where k
= 16. The grid that includes the answer exhibits the deep-
est color where k = 4, 8. In cases where k was not suitable,
a few grids were over-searched while others were not
selected appropriately. Therefore, kNN was not effective
for finding the area that included few learned data. In
cases where the parameter space is large, the additional
data deviation is important because the distribution of the
subsequent data influences learning in the early stage. In
contrast, as indicated by the small color differences
among the grids, ADSGA succeeded. There were minor
deviations in density, indicating that additional learning
data were selected from each grid almost equally. We also
found that the grids near the correct answer were densely

http://www.biomedcentral.com/1471-2105/7/230

5 r
T — X1 (f ixed)
—_—X2
o 3T — X3
5 — X4
=
2+ X5
— —X6
\._-‘__
—-I-_|_____
0 , ;
0 02 04 06 08 1
Time
5 -
4+
— X1 (f i xed)
—_—2
e ST — 3
5 —_—d
3
2+ X5
— —X6
E2
1+ \
0 : : ‘ : .
0 0.2 0.4 0.6 08 1
Time
Figure 3

Examples of time-courses that is artificially gener-
ated from the ordinary differential equations (Table
1) and the kinetic parameters (Table 2). The upper and
lower graph indicate the cases No.3 and No.5 shown in
Table 3, respectively. The changes of the time-courses of X;
and X, are large compared with the other time-courses
because of the stiffness. The X is the external substrate, and
the value is not changed.

searched. This shows that global and local searches can be
performed simultaneously using ADSGA.

Second, we inferred all parameters in the Figure 1 model.
Table 6 shows that we succeeded in obtaining desirable
results in terms of generalization ability using ADSGA and
ENN with k = 4. kNN with the other k values attained
lower achievements compared with our algorithm.
Although ADSGA employed GA for determining addi-
tional data, the optimization speed was raised compared
with ENN.

Performance of logarithmic transformation

Table 6 shows the results using parameter transformation
and fitness transformation in the inference of all parame-
ters in the Figure 3 model. Log indicates the application of
the logarithmic transformation of the fitness. The loga-
rithmic transformation of the parameters applies to all
cases. We found that the logarithmic transformation

Page 3 of 11

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:230

http://www.biomedcentral.com/1471-2105/7/230

Table I: Kinetic equations used in the model. Reactions I, 2, and 3 are reversible Henri-Michaelis-Menten reactions with one substrate
and one product. Reaction 4 is an irreversible Henri-Michaelis-Menten reaction with one substrate and one product. Reaction 5 is a
mass action reaction with 2 substrates and one product.

Reaction number

kinetic equation

d[X,] _ (K1K1o[X1]= KisKa[Xo DIE ] _ (K21Kpo[Xo] = KosKoa[X51)[Es |

dt Kyg[ X, ]+ Kpp[ X1+ Ki4K1o Ko X3]+ Kpa[Xo ]+ Koy Ky
2 d[X5] _ (Kp1Kpo[Xa]= KasKoa[X3D[Ea] _ (K31K35[X5] - K33K34[X4])[Es]
d Kpa[X3]+ Ko X1+ Koy Ko K34[X4]+ K3 [X3]+ K34K3;
3 d[Xy] _ (K31K35[X3] - K33K34[X4])[E3] ~ Kg1[X4][Es] _
Cd K34[X4]+ K3 [X3]+ K34 K35 Kyp +[X4] + KsalXsl-Ksal Xl 2]
. dXs] _ KirlXallEs]
dt Kyy +[X4]
d[X
Xl Ks1[X4][Ea]— K5, X6]
5 dt
d|E
% = K5,[Xg] = Ks51[X4][Es]

reduced the learning time by 23% while maintaining a
high convergence rate. However, the test error increased
by 16%. Optimization becomes simple with logarithmic
transformation in cases where the view of the fitness space
could be transformed to gently sloping. On the other
hand, the test error increased slightly since it also changes
the neighbor view of the answer. Since the parameters of
power-law formalisms affect the parts of exponential fac-
tors, the perturbation leads to large changes in the varia-
bles and the individual fitness during their optimizations.
The fitness values tend to become 0 in most of the search
space since the results of numerical integrations become
infinite. The smoothing of the error surface by the loga-
rithmic transformation enables to simplify the search sur-
face to optimize. The transformation achieved 1.2-fold
faster optimization.

Table 2: Kinetic parameters used in the model. These values
were determined artificially. Details of the kinetic parameters
are shown in Table I. The search ranges were K; € [0.1,1000].

Parameter value

K, =10 K, = 1000
Ki,=0.1 Kyp =
Ki;= 4 Ky3= 0.1
Kig=3 Ksq=

Ky, = 1000 Ky =2
Kp=1 Kp=1
Ky; = 0.1 K, = 1000
K24= 3 K52= 0.1

RBFN application to stiff systems

The results obtained with the conventional GA method
and our proposed RBFN method are presented side-by-
side in the leftmost GA column and the rightmost
ADSGA+Log column in Table 6. We employed simplex
crossover as the recombination procedure (SPX) [37] as
the recombination procedure and ranking selection as the
selection procedure. Parameter transformation applies to
all cases. Parameters for GA are shown in Table 5. These
parameters were selected empirically.

The calculation time was reduced to less than half com-
pared with GA. The 1.6-fold and 2.1-fold increases in the
optimization speed are ascribable to RBFN and the com-
bination of RBFN and the logarithmic transformation,
respectively. RBEFN learning omit the calculation of
numerical integration because it learns the relationship
between a parameter and its evaluation space. When
problems are examined that require a long calculation
time for each integration, the difference in the processing
time between RBFN and GA increases further.

The convergence rate of RBEN was raised from 60% to
90% compared with that of GA. The RBFN application,
not 2 subsidiary improvements, achieved to raise the con-
vergence rate. Ref [20] reported a peculiar problem that
pertains to the sampling bias phenomenon when the
optimal solution exists at the edge of a parameter space.
GA was unable to find the optimal solution because some
parameters existed at the edge of a parameter space. As
RBFN are only biased to the area near the estimated opti-
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Table 3: Initial conditions of training data sets from No.l to No.l0 and test data sets from No.l | to No.20. Examples of time-courses
using initial conditions No.3 and No.5 are shown in Figure 3. Concentrations are non-unit.

Training X, X, X X, Xs X
| 4.5 0.4 0.3 34 0 42
2 1.7 0.5 0.8 1.0 0 4.3
3 4.2 0.4 0.7 33 0 1.2
4 4.1 0.3 0.2 4.1 0 2.1
5 1.3 1.5 1.8 1.6 0 0.2
6 4.2 3.9 0.1 0.2 0 0.1
7 4.2 0.1 4.6 0.2 0 4.1
8 0.3 0.7 0.3 35 0 2.0
9 4.5 0.5 0.6 4.1 0 0.3
10 4.1 0.2 0.1 25 0 4.2

Test X, X, X3 X4 Xs X
Il 0.5 0.5 0.3 1.0 0 0.1
12 2.3 27 1.3 1.0 0 I.1
I3 1.7 1.5 32 1.4 0 1.6
14 1.2 1.8 2.6 1.9 0 3.1
I5 1.3 1.7 1.5 2.0 0 2.6
16 22 24 27 32 0 2.1
17 23 23 2.0 1.0 0 0.1
I8 3.1 3.1 32 37 0 2.6
19 3.6 2.7 3.0 2.6 0 3.9
20 1.9 23 25 1.7 0 4.6

mal solution, the optimal solution can be searched
regardless of its location in a parameter space. The test
error of RBFN did not decrease compared with that of GA.
RBFN, which employ logarithmic transformation of fit-
ness, are slightly inferior to GA in terms of local searches,
resulting in a decline in the generalization ability com-
pared with GA. If the logarithmic transformation is not
applied in RBEN, the generalization ability of the 2 algo-

Table 4: Parameters applied in this work. The top column shows
the parameters of RBFN, the bottom column the parameters of
ADSGA using SPX as the recombination- and ranking selection
as the selection procedure.

parameter of RBFN meaning value
Prear number of near individual [
Prar number of far individual |
Lo initial L 0.4
o neighborhood control parameter 0.02
A generalization control parameter 0.1
parameter of ADSGA  meaning value
Pca number of individual 30
Gea max of generation 100
mq initial mutation ratio 0.05
n* selection control parameter 2.0
n selection control parameter 0.0
€ extension rate 1.0

rithms is equivalent and high convergence and fast opti-
mization are retained.

Discussion

GA involves the sampling bias phenomenon because the
search region of unimodal normal-distribution crossover
[38], parent-centric crossover [39], or SPX is biased to the
interior of a parameter space. The phenomenon is bound
to occur more frequently as the parameters become larger.
To solve this problem, extrapolation-directed crossover
[40] has been proposed; it is biased toward extrapolative
crossover. In addition, boundary extension by mirroring
[41] and toroidal search space conversion [42] have been
proposed; they extend the search space arbitrarily. How-
ever, these techniques raise computational costs rather
than conquering the sampling bias phenomenon.

The performance of RBFN was superior to that of GA in
the parameter inference of stiff systems since it enables to
reduce the number of numerical integrations.

For further improvement, the optimization algorithm is
switched to the gradient method which is deterministic
and can search local minima quickly at the end of the
learning stage. A decrease in test error can be expected
when a combination of algorithms is applied. It is consid-
ered that the additional improvement by the numerical
integration methods such as Gear algorithm [43] is har-

Page 5 of 11

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:230

(K11=0.1,K33=10)

/

http://www.biomedcentral.com/1471-2105/7/230

s

i
K11

Answer

k=2

k=4

Figure 4

k=8 k=16 ADSGA

The performance of ADSGA that is proposed for additional learning of RBFN. From left to right: density distribu-
tions of learned data when 2 parameters (K, ,K3;) are estimated using kNN (k = 2, 4, 8, and 16) and ADSGA, where the X-axis
and the Y-axis represent logarithmic coordinates of data. 'Answer' represents coordinates of the optimal solution. Deepening
colors represent the increasing density of existing data. The Grids represent 0.1-100 from the left-bottom. This results show
that ADSGA applied RBFN searches both data-sparse areas and answer-adjacent areas simultaneously.

monious with our parameter estimation algorithm. The
hybrid method is also one of tasks to be confirmed in the
future. In this paper, we tested the case of stiff equations,
and it is considered that non-stiff equations could also
show the advantage of our method because of the simple
dynamics.

We obtained solutions with low generalization ability
when only a few time-course sets were given as input data.
Predicted solutions with high generalization ability are
likely to be biologically meaningful parameters. Careful

Table 5: Parameters for GA. SPX is employed as the
recombination method, ranking selection as the selection
method.

parameter meaning value
Pca number of individual 30
my initial mutation ratio 0.05
n* selection control parameter 2.0
n- selection control parameter 0.0
€ extension rate .1

selection of the number of sampling points [44] and
application of the data smoothing method [19,45] are
necessary when our method is applied to real problems
because the most appropriate combination with our
method is dependent on the data and the system in ques-
tion.

RBFN are optimized by adding a new function O(p2) and
then adding a new data set O(m2+ mp + p2), where p is the
number of learned data and m is the number of the kernel
function. The inference of numerous parameters causes a
serious problem. Biological restriction as well as the dele-
tion of several learning data in overcrowded areas can lead
to a reduction in computational costs. In addition, prob-
lem decomposition strategies [15,46] are useful to reduce
the number of parameters that should be inferred simul-
taneously.

Conclusion

We applied RBFN to the parameter estimation of bio-
chemical models, especially stiff systems. RBFN method
could reduce the number of numerical integrations. Espe-
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Table 6: Validation of two subsidiary improvements and comparative experiments between GA and RBFN including above-mentioned
improvements. The comparison between kNN and ADSGA are shown in the columns headed kNN and the second columns from right
headed ADSGA. The results acquired with the conventional kNN method and our proposed ADSGA are shown in the columns headed
kNN and ADSGA. The improved results obtained with the fitness transformation are demonstrated in the 2 columns headed ADSGA
and ADSGA+Log. The validation of main improvement that is the application of RBFN is presented in the leftmost GA column and
the rightmost ADSGA+Log column. The proposed method yielded equivalent or more accurate results compared to the parameters
obtained with GA at half the calculation time and a 50% increase in the optimization success rate.

GA RBFN
kNN ADSGA ADSGA Log
k=2 k=4 k=8 k=16
Convergence rate (%) 60 90 88 92 90 86 90
Processing time (min) 273 163 188 170 157 167 130
Test error (%) 103 £25 129 £ 3.9 104 +2.0 11.0+£23 11.8+34 93+22 10.8 = 2.1

cially, it leaded to the fast optimization in stiff systems of
biochmical models. It yielded equivalent or more accurate
results compared to the parameters obtained with GA at
half the calculation time and a 50% increase in the opti-
mization success rate. Also we adopted 2 secondary learn-
ing techniques to RBFN. One is the fitness transformation
that changes a fitness function into a gently sloping func-
tion and reduces the calculation time 0.8-fold. The other
is the new selection method of learning data, ADSGA.
ADSGA was able to quickly obtain optimal solutions with
high generalization ability, almost equivalent to kNN
with optimal k. In this paper, it was shown that our RBEN
technique attained the parameter optimization for stiff
biochemical models from measured time-courses only.

Methods

Overview of RBFN optimization method

While the RBFN are our main optimization algorithm to
infer kinetic parameters, GA is used as a selection method
for additional data for the RBEN. Figure 1 is an illustration
of optimization using GA or RBFN. RBFN predict the opti-
mal parameters by learning the relationship between
parameters and fitness values. Unlike stochastic algo-
rithms such as GA, this method replaces numerical inte-
grations with slopes in the evaluation phase, thus
numerical integration is significantly reduced. Our
method is described as follows:

(a) Initialization

Parameters are generated and uniform random numbers
are assigned to each parameter within the search space.

(b) Evaluation

Each parameter is set to the kinetic model to calculate the
relative squared errors E between calculated and given
time-courses. The fitness F is the reciprocal of E, i.e. F= 1/
E). If F is high, the calculated time-course resembles the

given time-course. The goal is to search for the parameter
space that maximizes F.

. . 2
Ln T X" (0)—-X" (1)
1 calc given
E=r322

1,8
Inm s=li=1t=1 Xgiuen (t)

: M)

where [ is the number of time-course sets, n the number of

experimentally given state variables, X};.(t) the numeri-

cally calculated concentration at time t of a state variable

X;, and Xlgiven(t) represents the given concentration at

time t of a state variable X;. For expedience, when

ngi,,en (t) is 0, the denominator of E is set to 0.1.

(c) RBFN learning

RBEN learn the relationship between parameters and fit-
ness values. The output of RBFN f(x) defines the view of
the fitness space in the parameter estimation. The value is
calculated from

fx) = wihj(x), (2)
j=1

where w; s the jth weight, x the learning data from param-
eter space, m the number of learning data, and h; is the
jth kernel function, e.g.,

—lx—g¢; P
— | Q

h;(x) = exp

where ¢;is the center of the j-th kernel and 7 is the radial of
kernels. The optimal weight of each kernel is immediately
obtained by the matrix operation. Various methods deter-

mining internal parameters of RBFN, e.g. generalized
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cross-validation [47] or calculation of the marginal likeli-
hood of the data [48], can adjust the centers of kernels
[49]. In this study, we assume that the inputs of the data
set are used as the fixed centers since adjustment involves
high computational costs. For details of the supervised
training scheme, refer to [50].

(d) Capturing the RBFN shape by GA

GA is used to search for the optimal parameters for the
maximum F based on the function of parameters (input)
and the fitness value (output) from the previous step. We
employed real-coded GA; it could attain a high conver-
gence success rate, fast optimization, and high accuracy
compared with conventional binary GA [16]. We then
adopted the GA for searching the optimal solution of the
network at the present stage. The calculation cost of this
procedure is very small since the GA does not require
numerical integration in the evaluation phase.

(e) Additional data selection

If the solution obtained in the previous phase is not satis-
factory, additional learning parameters are used to
improve fitness. Two types of learning parameters are
employed for relearning [51]: One is selected from the
neighborhood of the current optimal parameters to add
local information near the optimal point, the other is
selected from a sparse area in the parameter space to add
global information. Iterative learning using 2 types of data
enables a local and global search for the optimal parame-
ters.

() Repeat (b)-(e)

If the current optimal solution is unsatisfactory, learning
is repeated from (b).

Subsidiary improvements

Additional learning

RBEN capture the function of parameters and the fitness
value by exercising feed-forward control of the optimal
parameters. Additional learning is performed to search
parameters with higher fitness. Parameters for learning are
carefully selected from 2 areas in order to consider global
and local optimizations. In one area learning data are few
because a whole view of fitness function can be obtained
by adding such data. The k-nearest-neighbor method
(KNN) [52,53] is a clustering technique to find the sparse
area. The density function of a data set x, is described as

flx,) = ZﬁeD dist(x,, y), where y is a set of k data near x,in

all the data D, and dist(x_y) represents the Euclidean dis-
tance of x,and y. kNN defines x, which has the maximum

http://www.biomedcentral.com/1471-2105/7/230

value of f(x,), as the most sparse data set. Optimal k

changes with the distribution of data learned early, the
dimension of the parameter space, and the number of
groups or units of data. Therefore, searching the optimal
parameters involves the computational costs for obtain-
ing the optimal k.

We propose a method for selecting additional data for
RBFN learning and capturing the rough surface using ele-
mental GA. Note that GA was not applied to the parame-
ter-estimation phase. We employ the simple GA to
accelerate finding the next data. This is indicated in para-
graph (d) of the previous section. This procedure is called
additional data selection using GA (ADSGA). The rule for
selecting data in ADSGA is as follows. First, the density
function of the learned data is created by RBEN, where
[11--- 1]Tis applied as F. Next, the minimum value of
the function is searched by simply using GA. ADSGA
searches the minimum value of the function as the spars-
est data set. Since ADSGA does not require control param-
eters such as k, it can create the density function without
pilot studies.

The other additional learning data are selected from the
area near the current optimal solution to obtain more
detailed information. The size of this neighborhood is

controlled by X = rand(X-L,X+L), where X repre-

sents the parameters for learning in the next repetition, X
is the current optimal solution, and rand(A, B) generates
a vector consisting of uniform random numbers € [A, B].
When the estimated optimal solution varies greatly with
every learning session, the search continues to be defined
as an early stage. When the solution seldom changes even
with repeated learning sessions, the search is defined as a
finishing stage. We recommend decreasing the L value as
the search advances.

Two conditions are then defined to change the value of L:

(1) the current estimated optimal solution X is near the
preceding estimated optimal solution X, and (2) the fit-

ness of X is better than that of X . If conditions (1) and
(2) are fulfilled, L - a is substituted for the value of L. If
only condition (1) is fulfilled, L,, which is the initial value
of L, is substituted for the value of L. If neither (1) nor (2)
is fulfilled, the value of L remains unchanged.

The simultaneous inclusion of global and local data can
prevent convergence into a local minimum solution, and
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» Optimal value
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gradual
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. optimal value

The adoption of fitness transformation that facilitates parameter estimation using RBFN. View of the fitness func-
tions when 2 parameters (K Kj) are estimated, where the X-axis and Y-axis represent logarithmic coordinates of data and the
Z-axis represents fitness of the coordinates. On the right, logarithmic transformation of fitness is applied.

can obtain a better solution near the current optimal solu-
tion.

Logarithmic transformation

We applied parameter transformation and fitness trans-
formation. Parameters in a metabolic pathway, especially
a stiff system, may involve various scales. Such parameter
spaces take the ridge structure [54] where the valley for
optimal solutions exists in a very narrow space with
respect to comparatively small scales. Ridge structures
complicate the process of optimizing functions. Because
parameter values are positive and fitness seldom changes
with large parameter values, we adopted parameter trans-
formation where a parameter space is mapped into a log-
arithmic space. The method enables dense searches for
small-range parameters and avoids ridge structures, allow-
ing optimization to progress smoothly. Fitness function is
often a rapid-peaked function where values change rap-
idly near a certain point since biochemical models often
exhibit strong nonlinearity. If gradient-descent methods
such as ANN are used for searching an optimal solution in
a rapid-peaked function, the optimal solution can be
approached only from a data set near the solution. In such
cases, many iterations are usually required to produce a
solution. To overcome this problem, we propose fitness
transformation where fitness is mapped into a logarithmic

space. As a result, the function turns into a gently sloping
function, so that the approach from nearby data becomes
easier, with fewer iterations. A view of the fitness function
is presented in Figure 5.
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