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Abstract
Background: Genomic tiling micro arrays have great potential for identifying previously
undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data
have been performed in an ad hoc fashion.

Results: We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data
prior to predicting expression on genomic sequence. A hidden Markov model (HMM) is used to
model the distributions of tiling array probe scores in expressed and non-expressed regions. The
HMM is trained on sets of probes mapped to regions of annotated expression and non-expression.
Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The
prediction is accompanied by an expression probability curve for visual inspection of the supporting
evidence. We test ExpressHMM on data from the Cheng et al. (2005) tiling array experiments on
ten Human chromosomes [1]. Results can be downloaded and viewed from our web site [2].

Conclusion: The value of adaptive modelling of fluorescence scores prior to categorisation into
expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive
approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag
specificity.

Background
Tiling micro arrays query genomic sequence in a manner
not biased towards coding transcripts and has proven a
valuable resource in the exploration of genomic expres-
sion. To date, the approach has been applied to Human,
Arabidopsis, and Rice [3-11] and has been reviewed
recently [12,13]. The challenge of tiling micro array anal-
ysis is to categorise genomically consecutive probes as
either expressed or non-expressed. The Affymetrix tiling
array analyses [1,3,4] invoke extensive experience from

gene arrays. Here, chip noise between replicates is dealt
with using a quantile-normalisation procedure [14]. Back-
ground and probe sequence-specific signal is normalised
using the MAS 5.0 method [15]. In order to convert
expression values into transcribed fragments (transfrags)
Affymetrix uses a smoothing window approach, whereby
expression values within a genomic neighbourhood are
averaged. A region is labelled as expressed if all probes
exceed a threshold value. The threshold is determined
from expressed RNA spiked into the micro array experi-
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ment. Neighbouring regions closer than a distance thresh-
old are then joined, forming transfrag predictions. We will
use the collective acronym ANTM for for Affymetrix's nor-
malisation and transfrag methods. For a review of existing
algorithms for tiling micro array analysis see Royce et al.
[16].

Previous related work includes analysis of ChlP-chip
experiments using Affymetrix tiling arrays to predict tran-
scription factor binding sites [17]. These ChlP-enriched
regions on the tiling arrays are predicted using log-odds
scores for each probe generated by a two-state hidden
Markov model. Tiling array intensities have been used
together with a rudimentary HMM gene finder to estab-
lish likely exon-intron transcripts in windows of signifi-
cant expression intensity [18]. This work, however, does
not treat the probe intensities as observables of the HMM
but as separate evidence supporting prediction of expres-
sion.

The approach to tiling array analysis presented here
employs a hidden Markov model (HMM), trained directly
on the correspondence between tiling array fluorescence
scores and annotation of expression. The model is then
used to categorise consecutive probes as expressed or non-
expressed. Training the model using annotation of expres-
sion presents a problem since, in many cases, annotation
does not represent actual expression. This may be due to a
number of factors, such as non-expressed genes, alterna-
tive splicing, un-annotated exons, antisense transcription,
and non-coding RNAs. This type of incomplete informa-
tion presents a problem to machine learning approaches
as missing information compromises the training of the
model unless properly addressed. We describe a two-step
modelling and training approach that allows the training
algorithm to down-weight dubious annotation in the con-
text of the relevant cell line. The adaptive nature of our
method avoids the ad hoc thresholds characteristic of pre-
vious work. As a case study we analyse Human tiling array
data of a single cell-line from Cheng et al. [1].

Methods
Data
The data we use is derived from the tiling array experi-
ments on Human chromosomes 6, 7, 13, 14, 19, 20, 21,
22, X, and Y [1]. The tiling arrays use 25-mer probes que-
rying genomic positions at five nucleotide intervals on the
genomic sequence. Only non-repetitive sequence is tiled
resulting in a coverage of approximately 30%. From the
Cheng et al. raw array data we analyse the subset querying
poly-adenylated RNA extracted from Human neuroblast-
oma cells (SK-N-AS cell line).

Array and probe normalisation
The Affymetrix MAS 5.0 method addresses probe and
array normalisation by, in addition to perfect match (PM)
probes, also designing mismatch (MM) probes, where the
complementary base at the 13th position of the 25 mer
probe is used instead of the actual base. The mismatch
probe is expected to capture much of the probe sequence
and array-specific contributions to the signal as well as
problematic probe eccentricities such as secondary-struc-
ture and cross-hybridisation effects while capturing little
real signal. The difference in fluorescence score for the PM
probe and an Idealised-MM probe score is then used to
estimate expression signal from the queried genomic posi-
tion.

We tested a number of strategies for array and probe nor-
malisation. These included PM - MM with and without
quantile normalisation and a novel approach inspired by
Naef and Magnasco [19] that shares similarities with GC-
RMA [20,21].

For the normalisation inspired by Naef and Magnasco
sequence and array specific signal is modelled in a way
that allows this to be subtracted from the raw signal. For
each chip a large sample of probe scores are selected and
used to fit position-specific estimates of nucleotide contri-
bution to the signal. Three free parameters for each posi-
tion times the 25 parameters for each probe sequence
position gives rise to 75 parameters. These are modelled
by the following linear system:

where each nucleotide type (A, C, G or T) in position k in
a 25-mer probe is modelled by a triple in the indicator
function ai (a3k-2, a3k-1, a3k). I.e. an A at position k has cor-
responding coefficients (a3k-2, a3k-1, a3k) = (1, 0, 0), a C has
corresponding coefficients (0, 1, 0), a G has correspond-
ing coefficients (0, 0, 1), and a T has corresponding coef-
ficients (-1, -1, -1). A least-squares solution to this system
of equations for xi provides estimates of the expected con-
tribution to the expression for any nucleotide at position
k. That is, the estimated contribution to the expression
level of an A at position k is given by x3k-2, a C at position
k is given by x3k-1, a G at position k is given by x3k, and a T
at position k is given by -x3k-2 - x3k-1 - x3k. To obtain a rep-
resentative expression level over different replicates the
mean log-likelihoods are computed:

An illustration of this strategy and comparison with
unnormalised distributions is shown in Figure 1. For the
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PM - MM approach rather than using an idealised MM we
use the raw values of both PM and MM. A representative
expression level over different replicates using the MM
probe are computed as:

The performance of each normalisation strategy was eval-

uated (see discussion) and  was chosen as the more
appropriate.

Training data
From Ensembl (Ensembl Mart version 30) [22] we extract
all annotated Human RefSeq transcripts [23] for the rele-

vant ten chromosomes. Transcripts with no introns are

discarded. To obtain a one-to-one correspondence
between annotation and sequence, overlapping annota-
tion of expression is collapsed, forming a single set repre-
senting all annotated expression. The training set consists
of RefSeq genes each represented by the corresponding
sequence of genomically consecutive probe scores. Using
the 5' position of probes on the genome each probe is
labelled as expressed or non-expressed in accordance with
the collapsed RefSeq annotation (see Figure 2). The train-
ing set includes 6411 sequences of labelled probe scores
that each represent the transcribed part of a RefSeq gene.
The entire set is used for training the hidden Markov
model (HMM). For evaluation purposes a ten-fold cross-
validation is used.

HMM Architecture and training
The correspondence between scores and annotated
expression, presented by the training set, is captured by an
HMM, see e.g. Durbin et al. [24]. An HMM is a probabil-
istic model that consists of a set of connected hidden
states that each emit observables. In this case, states repre-
sent expression and non-expression and these states emit
scores that constitute the sequence of probe scores over
expressed or non-expressed regions. First order emission
probabilities are used to model the dependency of scores
for neighbouring-probes.
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These plots summarise the Naef & Magnasco (2003) inspired normalisation procedure tested in the development of ExpressHMMFigure 1
These plots summarise the Naef & Magnasco (2003) inspired normalisation procedure tested in the development of 
ExpressHMM. Sub-figure A displays fitted fluorescence contributions of the nucleotides A, C, G and T at each sequence posi-
tion in the probe. Sub-figure B displays the effects of normalising chips using PM .estimate's on the data distribution.
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Labelling of probesFigure 2
Labelling of probes. Each probe is labelled as either 
expressed (red) or non-expressed (blue) based on expres-
sion annotation of the genomic position corresponding to 
the 5' end of the probe.
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The HMM is shown in Figure 3. Two loop states (E0 and
N0) model the bulk of probe scores in expressed and non-
expressed regions, capturing the score distributions of the
two cases. The loop states are connected by states that cap-
ture score gradients induced by genomically consecutive
probes that overlap borders of expressed regions. The loop
probabilities are tied during training of the HMM and
thus estimated as one parameter. This is done in order to
avoid bias of predictions towards typical exon length. The
HMM used is discrete and expression scores are binned.
Considering the distributions of scores for probes anno-

tated as expressed and non-expressed, we choose 13 bins
uniformly covering the scores from -50 to 50. Another two
bins capture extreme positive and negative values, (see
Figure 4).

The type of HMM used is a Class HMM [25]. The collec-
tion of states in a Class HMM is divided into classes, each
designated by a label. The observables (i.e. probe scores)
in the training set are each assigned a label corresponding
to a class. An observable with a given label can only be
emitted by a state belonging to the class designated by that
label. Hence, the labelling of states and observables in the
training set determines which parts of the training data are
used to estimate which parts of the model. In our case, the
labels are expression and non-expression and correspond
to the red and blue colours in Figure 3. The advantage of
the Class HMM is that it allows all model parameters to be
estimated simultaneously from sequences of labelled
probe scores. Alternatively, the individual parts would
have to be estimated separately from expressed and non-
expressed probe scores. The model is trained using the
Baum-Welch algorithm [26].

Self-supervised re-training

As noted above, the correspondence between labelling of
probe scores and actual expression in the relevant cell line
is at best an approximation. This issue is addressed by re-
training after adding a parallel shadow model that mirrors
the core model shown in Figure 3. The combined model

is shown in Figure 5. Each state in the shadow model, ,

shares emission probabilities with a corresponding state,
Xi, in the core model but does not contribute to the esti-

mation of these parameters. The labelling of states in the
shadow model differs from those of the core model in that

the states  model non-expressed probes labelled as

expressed and the  state models expressed probes

labelled as non-expressed. Additional states impose a
minimum on the number of consecutive probe scores that
can be captured by the shadow model. Without this con-
straint the model is not able to distinguish natural varia-
tion and noise from dubious annotation. The shadow
component models regions annotated as expressed using
the score distribution initially learned from non-
expressed regions. Analogously regions annotated as non-
expressed are modelled using the score distribution ini-
tially learned from expressed regions. Re-training after
adding the shadow model allows the Baum-Welch algo-
rithm to weight the contribution of training information
to parameter estimation in proportion to how characteris-
tic this is: In the E-step of the Baum-Welch algorithm the
posterior probabilities of each emission from state Xi are

′Xi

′Ei

′N0

This figure shows how normalised expression scores are dis-cretised prior to HMM training and decodingFigure 4
This figure shows how normalised expression scores are dis-
cretised prior to HMM training and decoding. 13 bins uni-
formly cover the scores from -50 to 50. Another two bins 
capture extreme positive and negative values.
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summed over all observables in the training set. The 

state does not contribute to this sum. Hence, the posterior

probability of using state Xi relative to  for a given

observable effectively constitutes a weight reflecting how
likely the annotation is at the given position in the train-
ing set given the probe score distributions learned in the
initial training. As a result, each subsequence of labelled

probe scores in the training set contributes to estimation
of emission probabilities to an extent determined by its
reliability. It should be noted that the maximum likeli-
hood of the model is obtained when only transition prob-
abilities in the slave model are positive – the situation
where the model discards all training material. The pre-

′Xi

′Xi

Table 2: Performance of ExpressHMM and ANTM on the tiled 
regions of the ten chromosomes. The statistics show to what 
extent the two approaches make predictions in accordance with 
the collection of Human EST, mRNA, and known gene 
annotation.

ExpressHMM ANTM

Nucleotide sensitivity 35% 20%
Novel nucleotides 55% 46%
Nucleotide Count 43523440 21190998
Transfrag sensitivity 27% 22%
Novel transfrags 44% 58%
Transfrag Count 88604 170788
Average Length 491.21 124.08
Median Length 325 79

Core and shadow modelFigure 5
Core and shadow model. The upper part of the architecture is the core model shown and explained in Figure 3. The states  

and  in the shadow model, displayed in the shaded box, share emission parameters with the corresponding states Ei and Ni 

in the core model. This is done such that states in the shadow model do not contribute to estimation of the shared parame-
ters. The labelling of states in the shadow model differs from those of the core model in that the states  are now labelled as 

non-expressed and  is labelled as expressed. This allows the Baum-Welch algorithm to use the correspondence between 

annotation and score in proportion to how likely this is, given the information obtained in the initial training.  and  

states impose a minimum on the number of consecutive probe scores that can be captured by the shadow architecture. This 
means the model considers at least six consecutive probe scores at a time when evaluating the evidence in the training set. 
Prior to training the parameters are set so that the probability is distributed uniformly among transitions and among emissions 
for each state. The exceptions are the transitions shown as dashed lines. These are primed with probability 0.001.

E4 E3 E2 E1

0
’NN N0 N00

’ ’ ’

N N N3 N421

E0

E4 E3 E2 E1
’’’’

N N N3 N421
’ ’ ’ ’

E E E000
’ ’ ’N0

’ N0
’ E0

’ E0
’ E0

’

0N

1 2

3 4

5

6

′Ei

′Ni

′Ei

′N0

′E0 ′N0

Table 1: Performance of ExpressHMM and ANTM on the training 
set of probes covering RefSeq genes. The statistics show to what 
extent the two approaches make predictions in accordance with 
the RefSeq annotation. The exon/transfrag statistics refer to the 
sets of contiguous probes representing exons/transfrags. The 
splice site sensitivities refer to the single probes constituting the 
borders of such sets.

ExpressHMM ANTM

Probe sensitivity 65% 44%
Novel probes predicted 65% 49%
Overlap exon Sensitivity 58% 58%
Novel transfrags predicted 27% 58%
5' Splice site sensitivity 16% 9%
3' Splice site sensitivity 16% 13%
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training, however, produces a starting point that allows
the model to reach a desirable local optimum.

Once the parameters of the HMM have been estimated the
parallel shadow architecture is removed. The sequences of
probe scores corresponding to the tiling of each chromo-
some are then decoded using an N-best algorithm [25]. In
this step the most likely sequences of contiguous
expressed and non-expressed probes are established. In
addition, the forward-backward algorithm [27] is used to
assign a posterior probability of expression to each probe.
The prediction for each sequence of probe scores is then
mapped onto the nucleotide sequence of the correspond-
ing chromosome.

The tiling of the chromosomes only covers non-repeat
sequence. Some predictions may span untiled regions. To
avoid this, gaps in the tiling larger than ten bases are
removed from the predictions.

Evaluation of performance
To establish the relative performance of ExpressHMM and
Affymetrix's normalisation and transfrag method (ANTM)
we test each method on the training set of probes covering
RefSeq genes. To ensure that test and training material do
not overlap, the performance of ExpressHMM is evaluated
using six-fold cross-validation. The ANTM predictions are
mapped onto the training set for comparison.

To acknowledge the most recent repeat predictions we
remove, from all genomic predictions, all overlaps to the
Human Repeat Masker annotation from the UCSC
genome browser database (October 2005) [28]. Perform-
ance statistics are calculated using the Eval program [29].
Sensitivity is defined as true positives divided by the sum
of true positives and false negatives but is calculated as the
number of annotation objects (e.g. nucleotides or

sequence blocks) overlapped by predictions, divided by
the total number of annotation objects. Specificity is
defined as true positives divided by the sum of true posi-
tives and false positives but is calculated as the number of
prediction objects overlapping annotation objects divided
by the total number of prediction objects. The statistics are
calculated this way to ensure a sensible treatment of one-
to-many overlaps. Since the motivation in tiling array
analysis is to find un-annotated expression a high specifi-
city based on known expression is not a goal in itself. For
this reason we report 1 – specificity as "Novel Prediction".

To further evaluate the performance we compare the two
sets of predictions to annotation of Human ESTs, mRNAs,
and known genes (UCSC Oct. 2005). Only annotation of
tiled genomic sequence is included. Before evaluation the
expression annotation is pooled and all overlapping
annotation is collapsed into a maximal set where each
nucleotide is only represented once.

Within both sets of annotation only a subset are actually
expressed in the SK-N-AS cell line, and a substantial frac-
tion of expression remains un-annotated. Collapsing all
overlapping annotation presents a similar problem espe-
cially affecting splice site statistics. Relying on this annota-
tion will make estimates of sensitivity artificially low and
the absolute values of this statistic should not be given too
much weight. The relative values for ExpressHMM and
ANTM, however, should accurately reflect relative per-
formances.

Results
The performance statistics obtained from the cross-valida-
tion of our model is shown in Table 1. Statistics of the
ExpressHMM genomic predictions on the ten chromo-
somes are shown in Table 2. The overlap of ExpressHMM
predictions to ANTM predictions is shown in Figure 6. The
distribution of predictions and annotation is exemplified
by chromosome 6 shown in Figure 7.

In addition to the most likely categorisation of probes
ExpressHMM also calculates a posterior probability of
expression for each probe. When mapped to the nucle-
otide sequence this results in an expression probability
curve parallel to the predictions allowing the user to eval-
uate the significance of predictions and to directly view
the evidence of expression.

Two example predictions, together with the ANTM predic-
tions, are shown in Figure 8 and 9. Note the correspond-
ence between ExpressHMM predictions and conservation
in human, chimp, mouse, rat, dog, chicken, fugu, and
zebrafish [30].

Overlap between ExpressHMM and ANTM transfrags pre-dictionsFigure 6
Overlap between ExpressHMM and ANTM transfrags pre-
dictions. The diagram shows the percentage of ExpressHMM 
predictions that are overlapped by one or more ANTM pre-
dictions and vice versa. Due to the one-to-many relation-
ships of overlaps overlap percentages corresponding to each 
set of predictions are given.

59%

45%
41% 55%

ExpressHMM ANTM
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All predictions can be downloaded and viewed from our
web site [2].

Discussion
Evaluation of normalisation strategies

In the process of developing our method we compared the

performance of the LL and  normalisation strategies on
the training set. Six-fold cross-validation was used to
ensure no over-training. The nucleotide-level sensitivities

of LL and  was approximately 38.8% and 44.6% respec-
tively with corresponding specificities of 51.1% and
20.7%. Subsequent optimisation of the model resulted in
further improvement of these values (see Table 2). The LL
based normalisation is significantly more specific than the

 approach but at a significant cost to sensitivity. We

have used the  approach in this study because we view

sensitivity as a more desirable trait than specificity for our
predictor.

A tentative explanation for these rather surprising differ-
ences in performance can be found by considering Figure
10. Observe the heavy right tail of the LL distribution for

probes tiling coding regions. For the  method both the
left and right tails of the distribution are heavy for probes
tiling coding regions. The HMM only requires signifi-
cantly different distributions between expressed and non-
expressed regions in order to perform well. The two heavy

tails generated by the  method seems to supply more
discriminative information to the HMM than the single
heavy tail generated by the LL method. The effect of quan-
tile normalisation was tested. This did not improve per-
formance, and is not used for the results presented.

D
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Distribution of predictions and annotation over chromosome 6Figure 7
Distribution of predictions and annotation over chromosome 6. The top plot shows the fraction of nucleotides, within tiled 
portions of the genome, that are included in an ExpressHMM transfrag, ANTM transfrag, RefSeq exon, or the pool of EST, 
mRNA, and known genes. The bottom plot shows the number of ExpressHMM and ANTM transfrags as well as tiled parts of 
RefSeq exons. Bin size is one mega base.
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Relative performances on the training set
As shown in Table 1, our probe sensitivity is higher than
ANTM. Of the total number of probes annotated as
expressed we predict 21% more than ANTM. Note that the
upper limit to sensitivity is not 100% as only a fraction of
the annotated sequence is actually expressed. For identifi-
cation of exons ExpressHMM is equal to ANTM but better
at predicting the borders of expressed regions correctly.
The percentage of predicted probes that do not overlap

RefSeq exons is 16% larger than ANTM. In contrast, the
number of predicted transfrags not overlapping a RefSeq
exon comprise only 27% of the ExpressHMM predictions
whereas this number is 58% for ANTM. This means that
even with the higher probe sensitivity ExpressHMM is
more conservative than ANTM in predicting novel transf-
rags.

Predictions of the known ZSWIM4 gene and downstream expression including a miRNA cluster on the same strandFigure 9
Predictions of the known ZSWIM4 gene and downstream expression including a miRNA cluster on the same strand. Note the 
correspondence between the conservation track and the ExpressHMM curve. The miRNA track is extracted from the UCSC 
genome browser (October 2005). It is generated by aligning miRNAs from the miRNA Registry [33] to the genome. The 
remaining tracks are explained in Figure 8.
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Predictions of the known Dicer gene involved in the processing of pre-miRNA to miRNAFigure 8
Predictions of the known Dicer gene involved in the processing of pre-miRNA to miRNA. The conservation curve shows the 
conservation in human, chimp, mouse, rat, dog, chicken, fugu, and zebrafish, based on a phylogenetic hidden Markov model 
[30]. Note how peaks in the ExpressHMM curve identify expression that is not sufficiently characteristic to result in a predic-
tion. All information including the Repeat Masker track is extracted from the UCSC genome browser (October 2005).
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The HMM in ExpressHMM models the signal variability
within expressed and non-expressed regions. As a result
the algorithm does not predict very short expressed or
non-expressed regions unless the relevant probe scores are
highly characteristic. ANTM's threshold approach allows
for little variability in score along a region. For these rea-
sons ANTM tends to split exons into smaller predictions
whilst ExpressHMM tends to join proximal exons into a
single prediction. These differences are reflected in the
length statistics given in Table 2. In effect, the two meth-
ods complement each other.

Relative performances on the chromosome level
The comparison of genomic predictions to all Human
EST, mRNA and known gene annotation within the tiled
regions also reflects the good performance of
ExpressHMM. The nucleotide sensitivity is 75% larger
than ANTM's and our transfrag sensitivity is 23% larger.
ExpressHMM identifies an 19% larger fraction of novel
nucleotides. In contrast, however, the fraction of novel
transfrags among ExpressHMM predictions is 24%
smaller than among ANTM predictions.

ExpressHMM predicts roughly twice as many expressed
nucleotides as ANTM. Still the total ExpressHMM predic-
tions only amount to 1.5% of the genome. For compari-
son, recent cDNA based findings in Mouse indicates that
62% percent of the genome is transcribed and that the

number of transcripts is at least an order of magnitude
larger than the estimated number of genes [31].

As indicated by the nucleotide plot in Figure 7 the lower
nucleotide specificity of ExpressHMM is not due to false
positives uniformly distributed across the chromosomes.
Rather, the distribution closely follows the density of both
ANTM predictions and RefSeq exons. Note the excess of
prediction in the sub-telomeric regions. This is most likely
due to frequent duplication events in these regions as
observed in the recent Chimpanzee-Human genome com-
parison [32]. These duplications are expected to cause
extensive cross-hybridisation. The two large peaks around
4e+07 correspond to similar-sized peaks in the density of
EST and mRNA annotation (data not shown).

The transfrag plot in Figure 7 shows the close correspond-
ence between the distributions of ExpressHMM predic-
tions and occurrence of RefSeq exons.

Hidden Markov model
Individual values of probe scores form only a fraction of
the signal characteristic of expressed and non-expressed
regions. The distribution of scores within and between
regions of expression constitutes an important source of
information that is not utilised by simple threshold
approaches. To capture as much relevant information as
possible we use an adaptive approach. This learns directly
from probe scores covering regions where expression is

Sub-figure A shows the distribution of LL for exonic, intronic and intergenic regions from the Y chromosomeFigure 10
Sub-figure A shows the distribution of LL for exonic, intronic and intergenic regions from the Y chromosome. Sub-figure B 

shows the analogous distribution for . Note the heavy tails for both these statistics in the exonic distribution.
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annotated. As a result the parameters of the model are
optimal for the training data. These properties takes the
place of the ad hoc cut-offs applied in previous
approaches. 

Before settling on the HMM described above, a variety of
models were tested. These included different order
Markov models with and without modelling of transfrag
borders. None of these offered apparent advantages over
the one presented here. The order of the HMM has a pro-
nounced effect on the results. For zeroth and first order
emissions the nucleotide statistics are very similar. On the
transfrag level, however, the zeroth order model is more
sensitive (72% identified RefSeq exons) but less specific
(55% novel transfrags predicted). We also experimented
with excluding score sequences from the training set that
did not seem unambiguously expressed. This improved
the performance of some models but not that presented
here.

The training of the model parameters does not include
any nucleotide sequence information. In addition, to
avoid any discriminative length modelling characteristic
of coding exons the trained intron and exon length distri-
butions are geometric and estimated as one to make them
identical. As a result, the training data does not bias
ExpressHMM predictions towards the length distribution
of coding exons.

The expression probability curve that accompanies the
ExpressHMM prediction has a direct interpretation as the
evidence of expression given the model. It is a valuable
tool to visually assess the significance of each transfrag as
well as to identify regions with evidence not sufficient to
result in a transfrag. With slight modifications
ExpressHMM can equally well be used for the analysis of
tiling micro arrays with non-overlapping probes of vari-
ous length.

Conclusion
In addition to performing better than the approach pre-
sented by Cheng et al. [1], the adaptive approach used by
ExpressHMM avoids ad hoc thresholds for the analysis of
signal data. Decisions regarding prediction are learned
from the data in an automated fashion. In addition to pre-
dicting the most likely categorisation into expression and
non-expression each genomic position queried by a probe
is assigned a probability of expression. The resulting graph
has a clearer interpretation than a smoothed fluorescence
score. We expect that tiling arrays will play an increasing
role in the investigation of genomic output.
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