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Abstract

Background: Chaos game representation of genome sequences has been used for visual
representation of genome sequence patterns as well as alignment-free comparisons of sequences
based on oligonucleotide frequencies. However the potential of this representation for making
alignment-based comparisons of whole genome sequences has not been exploited.

Results: We present here a fast algorithm for identifying all local alignments between two long
DNA sequences using the sequence information contained in CGR points. The local alignments can
be depicted graphically in a dot-matrix plot or in text form, and the significant similarities and
differences between the two sequences can be identified. We demonstrate the method through
comparison of whole genomes of several microbial species. Given two closely related genomes we
generate information on mismatches, insertions, deletions and shuffles that differentiate the two
genomes.

Conclusion: Addition of the possibility of large scale sequence alignment to the repertoire of
alignment-free sequence analysis applications of chaos game representation, positions CGR as a
powerful sequence analysis tool.

Background described by an iterated function system defined by the
Chaos game representation was proposed as a scale-inde-  following equations
pendent representation for genomic sequences by H.J. Jef-
frey [1]. A CGR of a DNA sequence is plotted in a unit X; = 0.5(X;_; +8i)
square, the four vertices of which are labelled by the YV 0.5(Y . (1)
nucleotides A-(0,0), C-(0,1), G-(1,1), T-(1,0). The plot-  Yi = 0-5(Yi-1 +8iy)
ting procedure can be described by the following steps: where Six and giy are the X and Y co-ordinates respec’[ivelyl
the first nucleotide of the sequence is plotted halfway  of the corners corresponding to the nucleotide at position
between the centre of the square and the vertex represent- i in the sequence. For example if the ith nucleotide is C,
ing this nucleotide; successive nucleotides in the sequence
are plotted halfway between the previous plotted point g, =0and gy=1.
and the vertex representing the nucleotide being plotted.

CGRs of DNA sequences were shown to exhibit interesting
Mathematically coordinates of the successive pointsin the  patterns. These interesting features relevant to the DNA
chaos game representation of a DNA sequence is  sequence organization attracted immediate further
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Finding k. Flow chart of the procedure for identifying
matching segments

research [2-4]. CGR has been used in various kinds of
investigations of DNA sequences. The first potential of
CGR to be recognized was its capability to depict genomic
signatures. Hill et al. [3] examined the CGRs of coding
sequences of 29 relatively conserved alcohol dehydroge-
nase genes from phylogenetically divergent species. They
found that CGRs were similar for the genes of the same or
closely related species but were different for the genes
from distantly related species. Oliver et al. [4] used the
density of CGR points to derive entropy profiles for DNA
sequences that showed a different degree of variability
within and between genomes. Using CGR for making, oli-
gomer frequency counts Deshavanne et al. [5] observed
that subsequences of a genome exhibit the main charac-
teristics of the whole genome, attesting to the validity of a
genomic signature concept.

CGR research received a setback when Goldmann [6]
asserted that simple Markov Chain models based solely
on di-nucleotide and tri-nucleotide frequencies can com-
pletely account for the complex patterns exhibited in
CGRs of DNA sequences. However Almeida et al. [7]
showed that Markov chain models are in fact particular
cases of CGRs. They showed that the distribution of points
in CGR is a generalization of Markov chain probability
tables that accommodates non-integer orders. Wang et al.
[8] proved that while nucleotide, di-nucleotide and tri-
nucleotide frequencies are able to influence the patterns
in CGRs these frequencies cannot solely determine the
patterns in CGRs. They showed that CGR is completely
determined by frequencies of oligonucleotides of all
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lengths. The work of Almeida et al. positioned CGR as a
powerful sequence modelling tool that has the advantages
of computational efficiency and scale independence.

Sequence comparisons can be made using two different
aspects of the CGR:

1. The frequency matrices of oligonucleotides of different
lengths, that are derivable from CGR by resolving the CGR
using grids of different sizes

2. The co-ordinates of the CGR points of the two
sequences

In the CGR, a point corresponding to a sequence of length
'n' is contained within a square with side of length 2 [1].
The frequency of appearance of any oligomer in a
sequence can be found out by partitioning the CGR space
into squares of appropriate sizes. Thus counting the CGR
points in the squares of a 21 x 27 grid gives the number of
occurrences of all possible n-mers in the sequence. This
representation is called Frequency chaos game representa-
tion (FCGR) where frequency of an oligomer is the
number of points in the corresponding square. It is also
possible to calculate oligonucleotide frequencies of non-
integer lengths by resolving the CGR using grids of sizes
other than powers of two. [7]

Most applications of CGR have been based on point
counts calculated at various grid resolutions (FCGR).
Sequence comparisons based on CGR co-ordinates have
been left relatively unexplored. Almeida et al. [7], pointed
out that, regions of local similarity between two
sequences is reflected in the distance between CGR points.
CGR points come closer together as sequence similarity
increases. They defined a measure of local similarity as
length of similar sequence ny; calculated as a function of
the maximum absolute difference between either CGR
coordinate. However no attempt was made to use the
information for developing an algorithm for aligning and
comparing whole genomes.

As more and more genomes are being sequenced it has
become possible to study evolutionary events by compar-
ing whole genomes of closely related species and identify-
ing the differences. Efficient programs for detecting and
aligning matching segments in pairs of mega-base scale
sequences is important for comparing whole genomes
and determining evolutionary relationships. Several pro-
grams for large-scale genome comparison have been
developed in the last six years, for example, MUMMER]9],
SSAHA[10], AVID[11], BLASTZ[12]. All these programs
follow an anchor-based approach in which all matching
n-mers for a fixed n are first identified as potential anchors
and the anchors are extended into longer alignments.
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In this paper we develop a fast algorithm for comparison
of pairs of long sequences using the information con-
tained in CGR points. We first show how all similar seg-
ments of two sequences can be identified based on the
distance between the CGR points of the two sequences.
Since determination of distance between all pairs of CGR
points, is costly in time (complexity O(N x M), N and M
being the length of the two sequences), we speed up the
program by using an anchored alignment approach simi-
lar to that used in other programs. We use CGR resolved
by a 2n x 2n grid for fast location of the matching n-mers
which form the anchors. The distance between CGR
points corresponding to each pair of matching n-mers, is
then used to see if the matching n-mers can be extended
into longer local alignments. We allow for mismatches by
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chaining together close local alignments. The program
finds multiple local alignments between two sequences,
allowing the detection of homologous segments, internal
sequence duplications and shuffling of segments.

Results

Figures 3, 4, 5, 6, 7 show dot matrix plots showing the
local alignments between Human Immunodeficiency
Virus [GenBank: K02013.1] and Chimpanzee Immunode-
ficiency Virus [EMBL:X52154], Pyrococcus abyssi GE5
[EMBL:AL096836] and Pyrococcus horikoshii OT3
[DDBJ:BA000001], E. coli OH157:H7 [DDBJ:BA000007]
and E. coli K12 [GenBank: U00096], Rickettsia p. madrid
E. [EMBL:AI235269] and Rickettsia c. malish 7 [Gen-
Bank:AE006914], Mycobacterium leprae TN
[EMBL:AL450380] and Mycobacterium tuberculosis
H37Rv [EMBL:AL123456] respectively. It can be seen that
large segments have been inverted between Pyrococcus
abyssi and Pyrococcus horikoshii as well as between
Mycobacterium leprae TN and Mycobacterium tuberculo-
sis H37Rv. Text files giving positions of Insertions/Dele-
tions and mismatches inferred from the local alignments
between the two strains of E. coli are given as Supplemen-
tary material.

The time taken for finding all local alignments between
pairs of sequences of different sizes is given in Table 1. It
can be seen that the time of execution of the program
depends not only on the length of the sequences, but also
on the degree of similarity between them. For example,
the time taken for comparing M.leprae and M.tuberculo-
sis is much greater than the time taken for comparing M.
bovis and M.tuberculosis even though the sizes of the
genomes are similar. The time taken by this program for
comparing the two E.Coli genomes is 68 seconds while
MUMmer a large-scale sequence alignment tool available
takes only 17 seconds. The emphasis of this paper is on
the theoretical development of the method rather than on
software development and it is possible that with better
programming inputs the implementation can be made
more efficient and faster. The main advantage of this
method comes from the fact that CGR simultaneously

Table I: Computational time chart. Table | shows the computation time taken by the program running on a Pentium IV 2.5 GHz

machine, for comparing various genome sequences.

Organisms Length A

Length B Time (forward Time (reverse complement) in

(In base pairs) (In base pairs) strand) in seconds seconds

HIV vs CIV 9229 98l 1 <I |

P. Abyssi vs P. Horikoshii 1765118 1738505 24 27
E. coli O157:H7 vs E. coli KI2 5498450 4639675 68 156
R. p. Madrid E vs R. c. Malish 7 1111523 1268755 18 24
M. tuberculosis H37Rv vs M. leprae TN 4411532 3268203 119 120
M. bovis AF2122 vs M.tuberculosis H37Rv 4345492 4411532 10 230
M. tuberculosis H37Rv vs M. tuberculosis CDCI1551 4411532 4403662 6 232
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Immunodeficiency virus. Human immunodeficiency virus and Chimpanzee immunodeficiency virus

facilitates other types of sequence comparisons ranging
from visual comparisons of patterns to oligonucleotide
frequency spectrums and genome signatures.

Conclusion

A new algorithm that uses information from chaos game
representation of genome sequences for finding all local
alignments between the sequences has been developed.
Fast comparisons can be made between sequences of meg-
abase size using a Pentium IV machine. As far as the speed
of alignment is concerned, the program, in its present
state does not offer any major improvements over MUM-
mer, but it is possible that the method can be imple-
mented more efficiently through better programming
inputs. Addition of the possibility of large scale sequence
alignment to the existing repertoire of alignment-free
sequence analysis possibilities from chaos game represen-
tation, positions CGR as a powerful quantitative sequence
analysis tool.

Methods

Using CGR points for finding identical segments in two
sequences

In the following we show how the distance between CGR
points can be used to identify sequence identities without
having to match the sequences nucleotide by nucleotide.

Consider the ith nucleotide of one sequence and the jth
nucleotide of the other. Co-ordinates of the CGR points
corresponding to these positions on the two sequences are
given by:

X;=0.5 (Xj+8y) Y;=0.5 (Yi-1+8iy)

X;=0.5 (X 1+8y) Y;=0.5(Y i-1+giy) (2)

The distance between CGR points is defined as

d(i, j) = max(abs(X;- Xj), abs(Y;-Y)))  (3)

If the nucleotides at positions 'i' and 'j' of the first and the
second sequence respectively are equal then g;, = g;,and g;,
= gjy Then from equations (2) and (3) we get,
d(i,j)=0.54d(i-1,j-1) (4)

i.e. A pair of similar nucleotides makes the distance
between the corresponding CGR points, half the distance
between the previous pair of points. Extending this argu-
ment, we can say that if k consecutive nucleotides previ-
ous to positions i and j on the two sequences are identical,
the distance between the CGR points corresponding to i
and j is given by
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Thermococcales. Pyrococcus Abyssi and Pyrococcus Horikoshii

d(i,j) = (0.5)%d(i-k j-k) (5)

As kincreases d (i, j) becomes smaller, i.e. as the length of
identical sequence increases, the CGR points come closer
together.

It must be noted that the closeness of two CGR points is
not a sufficient condition to conclude that there is a length
of similar sequence behind them. d (i, j) can become very
low even when the sequences are very different. Such cases
correspond to points on either side of, but close to, the
borders of the quadrants corresponding to the four nucle-
otides. However if eqn. (5) is satisfied it can be inferred
that the sequence segment (i-k to i) in one sequence is
identical to the segment (j-k to j) in the other sequence.

Taking log on both sides of eqn. (5), we get,

. - log(d(i, j)) —log(d(i — k, j — k)) (6)
log(0.5)

We can get an upper bound for k by putting d(i-k, j-k) = 1
in eqn.(6):

knax = -10g, (d(i j)) -~ (7)

This can be seen to be the same as the length of similar
sequence proposed by Almeida et al. as a measure for
assessing local similarity in two sequences.

Equations 5 and 7 can be used to develop an algorithm for
detection of all identical segments in two sequences based
on the distance between CGR points.

Calculating k. for a pair of positions (i, j) on the two
sequences we can estimate that, at the most, the sequence
segment from i to i- k,,, in one sequence could be identi-
cal to the segment from j to j- k,,,, in the other sequence.
We then check whether eqn. (5) is satisfied for k = k., to
see if these segments are truly identical. If not, we substi-
tute k-1 for k and again check again if eqn.(5) is satisfied
and if not, the procedure is repeated till the condition is
satisfied. Thus starting from (i- k.., j- Ki,.x), the first posi-
tion (i-k, j-k) that satisfies eqn.(5) is determined. This
gives the length k up to which segments prefixed to posi-
tions i and j in the two sequences, are identical. The flow
chart of this procedure is shown in Fig. 1

This method thus identifies identical segments without
having to match the whole segment nucleotide by nucle-
otide. Search can be completely avoided if k. is found to
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Enterobacteriaceae. E.coli K12 and E.coli O157:H7

be less than a threshold and long homologous segments
can be identified by checking only a few points from (i-
K i- Kmax) instead of matching the whole length of the
segment.

Speeding up the algorithm

The disadvantage of the above method is that the compu-
tational cost is of the order of the product of the length of
the two sequences.

In order to speed up the program, we find a way to avoid
computing d(i, j) for all pairs of CGR points of the two
sequences. For this we use information from a resolved
CGR in which the CGR square is divided into grid of size
2n x 20 All CGR points falling in a square denotes the
existence of a particular n-mer prefixed to that position.

The algorithm for comparing two sequences A and B is
described below:

1. The CGR co-ordinates for both the sequences are calcu-
lated

2. The CGR is resolved using a 2" x 2n grid and the CGR
points of sequence B that fall in each square are noted and
stored

3. Starting from the last nucleotide of sequence A, we
identify the square in which the corresponding CGR point
i falls.

3. The CGR points of B that fall in the same square, corre-
spond to the n-mers in B that match the n-mer which is
prefixed to the position i in A

4. We calculate d (i, j) and k,,,, for those CGR points j of
the sequence B, which fall in the same square as the CGR
point i of sequence A.

5. Using d(i, j) and k,,, we determine the length of
matching segments, as described in the last section (Fig.1)

6. The longest matching segment is taken as the best local
alignment at position i

7. The procedure is repeated next for the point i-k in A, k
being the length of the longest matching segment.

We can thus find all the non-overlapping local alignments
between the two sequences. Using this approach, the all-
to-all comparisons of the previous section is reduced to
some-to-some comparisons, which speeds up the algo-
rithm considerably. This technique is similar to the

Page 6 of 10

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:243

http://www.biomedcentral.com/1471-2105/7/243

1400000 - . .
Rickettsiales
1200000 - __/
f/

I~ 1000000 el -
i = /
7]
© //
= 800000 4 P
o -
o -~ ~.
% 600000 - L~
z 7
i —

400000 P

/
/
200000 /
//
0 . . . . , .
0 200000 400000 00000 00000 1000000 1200000
Rickettsia P. Madrid E
Figure 6

Rickettsiales. Rickettsia Prowazekii Madrid E and Rickettsia Conorii Malish 7

anchored alignment method used in other alignment pro-
grams; the difference is that we use information from
CGR, both for finding the anchors as well as for extending
them.

The program yields the list of all local alignments between
the two sequences in the order of their position in the

sequence A. An example list of alignments is shown in
Table 2.

Floating point error

For long identical sequence segments, the distance value
may go below the minimum value possible for a floating
point variable. The distance defined in double precision

Table 2: Sample alignment list.A sample list of all local alignments between two sequences in the order of their position in the

sequence A is shown in Table 2:

Order in A StartA EndA Orderin B StartB EndB Length
0 8127 8158 0 9402 9433 31
| 10846 10920 | 12193 12267 74
2 11125 11158 2 12446 12479 33
3 18260 18296 3 20577 20613 36
4 20041 20109 4 22402 22470 68
5 20923 20975 5 23284 23336 52
6 21233 21284 6 23594 23645 51
7 23591 23622 7 25970 26001 31
8 26750 26835 8 28887 28972 85
9 53377 53437 9 37193 37253 60
10 67041 67072 84 493374 493405 31
I 67200 67231 85 493533 493564 31
12 143809 143840 262 2932826 2932857 31
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Actinobacteria. Mycobacterim Tuberculosis H37Rv and Mycobacterium Leprae TN

variable becomes zero when the length of identical seg-
ment is greater than 64.

Therefore in our implementation, when we encounter
zero value for the distance we jump back by sixty posi-
tions and check distance again; if the distance is again
zero, we jump back another sixty positions and so on until
the distance becomes non-zero. We add all the skipped
positions to the k that we finally calculate with the non-
zero distance value.

Analysing the local alignments for shuffles, mismatches
and insertion/deletions

A local alignment can be defined by the start and end
positions of identical segments in the two sequences. A
pair of local alignments is given in figure 2.

Consider two local alignments L, and L, defined by
(L,.START'A, L, .END.A, L,.START'B, L, .END.B) and
(L,.START'A, L,.END.A, L,.START B, L,.END.B)

(a) Shuffles/Rearrangements

Consider the list of local alignments that are ordered in
increasing order of L.END.A. This list may not be in

increasing order of L.END.B and any disruption of order
in the list with respect to position in Sequence B is indic-
ative of shuffling. By examining the disruption of order in
L.END.B we can estimate the number of shuffles that have
taken place in Sequence B with respect to Sequence A.

(b) Mismatches
Let, AA = abs (L,.START.A - L,.END.A) and

AB = abs (L,.START.B - L,.END.B)

where L, and L, are two consecutive alignments in the
ordered list.

Mismatch length between the alignments can be calcu-
lated as:

Mismatch length = min (AA, AB)
Mismatches between the forward strands of the genomes

of E.coli K12 and E.coli O157:H7 is given as additional
file [see Additional file 1].
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() Insertions/Deletions

Diagonal off-set between two consecutive local align-
ments that are consecutive in Sequence B also, indicate
deletions and insertions and can be calculated as

IN/DEL length = max (AA, AB)-min(AA, AB)

Insertions/Deletions between the forward strands of the
genomes of E.coli K12 and E.coli O157:H7 is given as
additional file [see Additional file 2].

(d) Duplications
Duplications in B can be identified wherever
L,.START.A=L,.START.A and L,.END.A = L,.END.A

(e) Inversions

Inversion of segments is detected by finding local align-
ments between Sequence A and the reverse complement
of Sequence B

Chaining local alignments and filtering background noise
Short spurious alignments or background noise can be
removed by filtering out all alignments below a certain
threshold length. However this carries with it the danger
of filtering out many "true" alignments that are separated
by small mismatches. Therefore before filtering it is better
to chain together the perfect local alignments by allowing
a certain amount of mismatches. We allow for short mis-
matches by chaining together local alignments that are
have no diagonal off-set and differ only by mismatches of
a few nucleotides. We specify the maximum allowable
mismatches per length of the chained alignment. If there
is no diagonal off-set between them i.e. AA = AB, and the
mismatch falls below the threshold value, the two align-
ments are chained together into a single alignment.

Chained alignments having length below a threshold are
discarded to filter out the background noise. Text file
showing matching regions between the genomes of E.coli
K12 and E.coli O157:H7, after filtering background noise,
is given as additional file [see Additional file 3]. Further,
the forward strand of E.coli K12 is compared with the
complementary strand of E.coli O157:H7. The resulting
text file showing the matching regions is given as addi-
tional file [see Additional file 4].

Availability and requirements
The source code for finding matching segments using
CGR is given as additional file [see Additional file 5].

The source code for chaining matching segments and fil-
tering background noise and also showing insertions/
deletions/mismatches is given as additional file [see Addi-
tional file 6]

http://www.biomedcentral.com/1471-2105/7/243

Operating system: Linux
Programming language: Standard C
License: GNU General Public License

Abbreviations
CGR - Chaos Game Representation

FCGR - Frequency Chaos Game Representation
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Additional material

Additional File 1

Text file showing mismatches between the forward strands of the genomes
of E.coli K12 and E.coli O157:H7.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-243-S1.txt|

Additional File 2

Text file showing insertions/deletions between the forward strands of the
genomes of E.coli K12 and E.coli O157:H7.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-243-82.txt]

Additional File 3

Text file showing matching segments in forward strands of both genomes
of E.coli K12 and E.coli O157:H7.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-243-83.txt]

Additional File 4

Text file showing matching segments in the forward strand of E.coli
O157:H7 reverse strand of E.coli K12 (inversions).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-243-84.txt]

Additional File 5

Source code of the program for finding similar sequences in two sequences.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2105-7-243-S5.C]
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