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Abstract

Background: In our previous studies, we found that the sites in prokaryotic genomes which are
most susceptible to duplex destabilization under the negative superhelical stresses that occur in vivo
are statistically highly significantly associated with intergenic regions that are known or inferred to
contain promoters. In this report we investigate how this structural property, either alone or
together with other structural and sequence attributes, may be used to search prokaryotic
genomes for promoters.

Results: We show that the propensity for stress-induced DNA duplex destabilization (SIDD) is
closely associated with specific promoter regions. The extent of destabilization in promoter-
containing regions is found to be bimodally distributed. When compared with DNA curvature,
deformability, thermostability or sequence motif scores within the -10 region, SIDD is found to be
the most informative DNA property regarding promoter locations in the E. coli K12 genome. SIDD
properties alone perform better at detecting promoter regions than other programs trained on
this genome. Because this approach has a very low false positive rate, it can be used to predict with
high confidence the subset of promoters that are strongly destabilized. When SIDD properties are
combined with -10 motif scores in a linear classification function, they predict promoter regions
with better than 80% accuracy. When these methods were tested with promoter and non-
promoter sequences from Bacillus subtilis, they achieved similar or higher accuracies. We also
present a strictly SIDD-based predictor for annotating promoter sequences in complete microbial
genomes.

Conclusion: In this report we show that the propensity to undergo stress-induced duplex
destabilization (SIDD) is a distinctive structural attribute of many prokaryotic promoter sequences.
We have developed methods to identify promoter sequences in prokaryotic genomes that use
SIDD either as a sole predictor or in combination with other DNA structural and sequence
properties. Although these methods cannot predict all the promoter-containing regions in a
genome, they do find large sets of potential regions that have high probabilities of being true
positives. This approach could be especially valuable for annotating those genomes about which
there is limited experimental data.
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Background

As the number of completely sequenced microbial
genomes grows, the need for efficient annotation tools
becomes more acute. Gene-finding programs such as Gen-
eMark or Glimmer [1,2] can predict protein coding
regions at a generally high level of accuracy. However,
there also are genes encoding rRNA, tRNA and small non-
coding RNAs in prokaryotic genomes, which these meth-
ods may not always find. The precise locations of transla-
tion and transcription start sites also need to be identified.
Better understanding of the attributes associated with pro-
moters, in addition to shedding light on the basic mecha-
nisms by which they function, will also assist in
identifying these sites within genomic sequences.

Promoter prediction in prokaryotic genomes presents
unique challenges owing to their organizational proper-
ties. First, gene densities are very high in prokaryotes -
89% of the base pairs in the E. coli genome are in open
reading frames (ORFs). Neighboring genes may have very
short intergenic regions; in some cases their coding
regions even overlap. Further, the operon structure, in
which multiple genes are transcribed as a single transcrip-
tion unit, means that not all genes require their own pro-
moters. In order for bacteria to thrive in different
environments, their genomic sequences are highly adap-
tive within genomes and highly diversified across
genomes. This makes it difficult to detect conserved regu-
latory sites within and across genomes by sequence
homology. These factors have complicated the search for
the determinants of promoter activity in prokaryotes.

Prokaryotic promoters are known to contain conserved
sequence motifs, which may be represented either as con-
sensus sequences or by position-specific score matrices
(PSSMs) [3]. For example, most E. coli K12 promoters
contain approximately conserved sequence elements in
their -35 and -10 regions [4-6]. The -10 motif is essential
for transcription initiation, while the -35 motif is dispen-
sable for some promoters. Other sequence features of E.
coli K12 promoters include the A+T rich UP element
located around position -50 [7]. Most of the promoter
prediction programs thus far developed search sequences
for conserved -10 motifs, and in some cases also include -
35 motifs [8,9]. These methods commonly suffer from
high false positive rates.

Local separation of the DNA duplex within promoter
regions is a critical step in transcriptional initiation for
both prokaryotes and eukaryotes. This step must be highly
regulated, but does not occur as a strictly thermal melting.
Instead, the untwisting torsional stresses imposed on
genomic DNA by in vivo negative superhelicity destabilize
the DNA duplex in specific regions, and thereby facilitate
local strand opening. We have developed statistical
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mechanical methods to analyze this stress-induced DNA
duplex destabilization (SIDD) within complete chromo-
somes. For a specified level of superhelicity, we calculate
two quantities for each base pair - the probability of its
opening, and the incremental free energy G(x) needed to
force it to be always open under these conditions [10,11].
A small number of specific sites in genomic DNA are pre-
dicted by SIDD analysis to have a high propensity to melt
under normal physiological conditions. We have demon-
strated that these SIDD sites in the E. coli K12 genome are
statistically significantly associated with intergenic
regions that are known or inferred to contain promoters.
It is found that many - but not every - documented pro-
moter contains a strong SIDD site. Further, SIDD sites also
occur at frequencies much below expectation in coding
regions [12]. This pattern of SIDD site distribution has
recently been confirmed to occur in many other prokary-
otic genomes [13]. This suggests that SIDD properties may
be used to identify and investigate promoter-containing
regions in prokaryotic genomes.

In this report we show that SIDD is a distinct structural
property of promoter regions that cannot be identified by
sequence conservation. There is no one-to-one corre-
spondence between local attributes of the sequence and
the extent of destabilization, and no unique sequence
motifs are involved. When compared with other known
DNA structural properties and with -10 motif scores,
SIDD properties are found to be the best discriminator for
distinguishing promoters from non-promoters. When
SIDD was either the sole predictor or was combined with
other features in a promoter prediction program, high lev-
els of sensitivity and specificity were achieved. We present
two approaches for annotating promoter locations in
sequenced prokaryotic genomes.

Results and discussion

SIDD is a distinct structural property in promoter regions
that cannot be captured by sequence conservation

We first performed a SIDD analysis of the entire E. coli K12
genome, as described in the Methods section. Then three
sets of regions were selected according to their transcrip-
tional properties, and their SIDD attributes were com-
pared. To construct the first set we randomly selected 500
documented transcription start sites (TSS) from the 927
that are annotated in the Regulon database for the E. coli
K12 genome [14]. For each of these TSSs, we found the
1001 bp sequence centered on that TSS. The regions
immediately upstream from these TSSs were considered to
be promoters, which hence would be contained in these
regions. For comparison we selected two other sets for
analysis, each also containing 500 sequences that are
1001 bp long, that are chosen to contain few or no pro-
moters. Each sequence in the second set starts at one of
the TSSs chosen above, and extends 1001 bp in the direc-
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A. The average value of G(x) at each position in each of the four sets described in the text. Promoter regions in E. coli K12 are
generally more destabilized than are either coding or CON regions. The most destabilized site is at position -49 relative to the
transcription start site (TSS). B. The Shannon entropy is calculated in promoter-containing regions (blue) and in non- pro-
moter-containing regions (red) for E. coli K12. The -10 regions show a slight increase of sequence conservation relative to

other locations.

tion of transcription. This is called the coding set of
sequences. The third set consists of 500 randomly selected
sequences, each 1001 bp long, centered on an intergenic
region separating convergently oriented genes. This set,
which we call CON, may contain parts of ORFs, but is
inferred not to contain promoters. We also constructed a
fourth set of random sequence DNA as follows. We ran-
domly shuffled the entire E. coli K12 genome to preserve
the mononucleotide compositions, and performed a
SIDD analysis on the entire resulting sequence. Then a set
of 500 sequences, each 1001 bp long, was chosen at ran-
dom from this shuffled genome, and their SIDD attributes
were compared with those of the sequences in the other
three sets.

First, for each of these sets we determined the average
value of the destabilization free energy G(x) that occurs at
each position within the 1001 bp sequence. (The destabi-
lization free energy G(x) corresponds to the incremental
free energy needed for the base pair at position x to always
remain open. Highly destabilized sites have low values of
G(x); sites that are open in all low energy states can even
have negative values.) These calculated position-specific
average values are shown in Figure 1A. On average, the
sequences containing promoters are more destabilized
than either the coding sequences or the CON sequences
that may not contain promoters. These results agree with
those from our previous analysis, which showed strong
SIDD sites to be statistically significantly associated with

intergenic regions whose bounding ORFs are either diver-
gently or tandemly oriented, and hence may contain pro-
moters or other transcriptional regulatory elements [12].
The lowest average value of G(x) occurs around position -
49 relative to the TSS, a region previously identified as the
UP element in some E. coli K12 promoters. Statistical
analysis shows the regions between positions -174 and
+57 are significantly destabilized (p < 0.001) when com-
pared with either of the two sets that do not contain pro-
moters, or with the randomly shuffled sequences.

In what follows we designate the 100 bp sequence from
positions -80 to +20 relative to each of the 500 chosen
TSSs as containing a promoter. (This is 100 base pairs,
there being no base pair that is given the position 0.)
These 500 promoter sequences were aligned at their TSSs,
and their sequence conservation was measured by Shan-
non's entropy [15]. The result is shown in Figure 1B. As
expected, a slight entropy decrease (corresponding to
slightly increased sequence conservation) was observed
between positions -7 and -12, which are their -10 regions.
However, there was no significant entropy decrease at the
-35 regions, indicating that on average the local sequence
is not more conserved at this location than elsewhere in
these promoters. It is known that the -35 motif is dispen-
sable for so-called "extended -10" sigma 70 promoters.
Strikingly, the region around -49 bp where the maximal
average destabilization was found also shows no increase
in sequence conservation. This indicates that SIDD prop-
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The probability distributions of destabilization (SIDD) properties are shown for 100 bp long promoter, coding, and CON
regions. We also partition the promoters from all known TSSs into those that are intergenic and those that overlap coding
regions. (A) The SIDD parameter here is the sum over all 100 positions of the destabilization energy G(x); (B) The parameter
used here is the minimum value G,, of G(x). Because the numbers of intergenic and coding promoters are different, these
curves are plotted as probability density functions. In consequence, the area under each curve sums to |, a choice which facili-

tates comparisons between different sized sets.

erties and -10 motifs are fundamentally different
attributes of promoters; one is tied directly to the base
sequence but the other is not.

A recent paper that presented a promoter prediction
method based on thermostability in promoter regions
reported that the region from -20 to -6 was much less sta-
ble than were other, non-promoter locations [16]. It is
possible that the decreased thermostability in this region
was partly due to the conserved -10 sequence motif, which
is A+T-rich.

This result emphasizes the fact that SIDD properties are
fundamentally different from thermostability. SIDD does

not depend only on the local thermal properties of the
DNA sequence. The energies that govern SIDD are the dif-
ferences between the energy cost of strand separation for
the specific base pairs involved, and the energy benefit
from the fractional relaxation of the superhelical stress
this transition provides. The thermal energy only relates to
the cost half of this relationship. Moreover, superhelical
stresses couple together all the base pairs that experience
them, so whether SIDD melting occurs at any specific
location depends on how well that site competes with all
others that feel this stress. This means a site can open at
one level of stress, then re-close coupled to opening else-
where as the stresses are increased. (See Fig 2 of the refer-
ence [11], where both sites have the same thermodynamic
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stability.) This type of complicated, nonlinear behavior
does not occur in thermal melting, and cannot be pre-
dicted only from the thermal properties of the sequence.

Construction of training and test sets

All the analyses that follow used three training sets, each
of which contains 500 sequences that are 100 bp long.
The promoter-containing training set, described above,
consists of sequences spanning positions -80 to +20 rela-
tive to each of the 500 selected TSSs. In each of the 500
CON sequences described above we selected the central
100 bp, which are centered in the middle of their inter-
genic regions. As these regions are short and separate con-
vergently transcribing ORFs, they are inferred not to
contain promoters. Henceforth we describe this as the
CON training set. The third training set consists of the 100
base pair sequences between position +300 and +399
within each of the 1001 bp coding sequences described
above. This set, which is sometimes referred to as the cod-
ing training set, also is inferred not to contain promoters.

We also construct three test sets, each having the same
transcriptional properties as its corresponding training
set. These test sets also contains sequences of length 100
bp, constructed in the same way as were the training sets.
The promoter-containing test set was constructed from
the 427 experimentally characterized TSSs that were not
used to construct the training set. The coding test set con-
sists of the sequences between position +300 and +399
relative to each of these 427 TSSs. The CON test set con-
sists of 427 different 100 bp sequences, each centered in
the middle of an intergenic region that separates conver-
gently transcribing ORFs. These regions were randomly
chosen from among those that were not used to make the
CON training set.

Thus we have three types of training sets of equal size, and
three types of test sets, also of equal size (but a bit smaller
than the training sets). Each of these three set types has
distinct transcriptional attributes. The first contains pro-
moters, the second contains coding sequences but not
promoters, and the third contains terminal intergenic
sequences that also do not contain promoters. Some of
the analyses whose results are described below do not
involve test sets. In those cases the larger, 500 sequence
training sets were analyzed. However, in procedures
where parameters had to be developed, the training sets
were used for that purpose. Then the procedure with those
parameter values was applied to the test sets.

We know the SIDD properties of each sequence in these
sets, as these were determined through the whole genome
SIDD analysis described in the Methods section. Next, we
compare the values of a variety of attributes in promoter-
containing regions to their values in each of the two types
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of non-promoter-containing regions. We describe each in
turn.

SIDD energy levels are bimodally distributed among
promoter sequences

We first examined two SIDD properties of the sequences
in each of these types of regions. These are the sum X of
the G(x) values for the 100 base pairs in each sequence in
the set, and the minimum value G,, attained by G(x) in
that sequence. The probability distributions of these
quantities over each of the three sets are shown in Figure
2. (There being no training involved in this procedure, the
training sets were used in these analyses.) The majority of
the non-promoter sequences have high values of both X
and G,,, indicating that they remain stable under superhe-
lical stress. However, the distributions of both parameters
within promoters are bimodal. It appears that two sub-
populations of promoter sequences can be distinguished
according to their SIDD properties, one group being
highly destabilized and the other less so.

Because we previously showed that strong SIDD sites are
closely associated with promoter-containing intergenic
regions and avoid coding regions [12], we wanted to test
whether this bimodal character could be partially attrib-
uted to promoter location. For this purpose we separated
the full set of 927 experimentally characterized TSSs into
those that are intergenic and those that occur within
OREFs. For each we chose the 100 base pair segments from
positions -80 to +20 as their promoter-containing regions.
We found the ¥ and G,, values for each of these regions,
considering the intraORF-TSS and intergenic-TSS sets sep-
arately. More than 80% of these 927 TSSs are located in
intergenic regions, so these sets have substantially differ-
ent sizes. For this reason we plot in Figure 2 the probabil-
ity distributions of each score for each of these two
additional sets. As shown in the figure, there is some
enrichment of promoters with intraORF TSSs in the non-
destabilized population. But because the number of these
promoters is small, the bimodal character of the inter-
genic-TSS promoter set is not much different from that of
the 500 sequence promoter-containing training set that
contains both types.

The observed bimodal distribution of SIDD properties in
promoters may reflect the complexity of transcriptional
regulation, suggesting that superhelical destabilization
may be needed to initiate transcription from some pro-
moters, but not others. SIDD in highly destabilized pro-
moters may be directly involved in the mechanism of
open complex formation. However, one cannot rule out
the possibility that SIDD also could be involved in regu-
lating more stable promoters. In the present analysis we
confined our attention to the 100 bp sequence from -80
bp to +20 bp. But SIDD sites further upstream are known
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to play central roles in specific mechanisms of transcrip-
tional regulation. An example is the IHF-mediated tran-
scriptional activation of the promoter governing the
expression of the E. coli ilvGMEDA operon [17]. In the

absence of IHF binding, negative superhelicity opens the
SIDD region, which is located upstream from position -
90. IHF binding forces this region back to B-form, so the
superhelical stresses open the next most easily destabi-
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Table I: SIDD is the most distinct variable that differentiates promoter from non-promoter sequences

Coding region

Promoter region
vs.
CON region

SIDD
Curvature
Deformation
Thermo-Stability
-10 motif

1.0308%10-763/ 4,096 |*10-72b
2.4277%10-152/ 5.3737%10-14¢
7.116*%10-¢33/ 1.0000 b
5.5028*10-422/ 0.498] b
1.1882%10-744d

1.0398%10-462/ 2.5736*|0-44b
5.3170%10-52/ 1.5965%10-5 ¢
1.2783*[0-31 2/ 0.8567 b
1.0527*[0-142/ 0.9997 b
2.6299*10-304

Each value in the table is the probability that the two distributions are the same, as found using the Kolmogorov-Smirnov two sample test.
a, sum of the values of the variables in the sequences; b, minimum value of the variable in the sequences; ¢, maximum value of the variable in the

sequences; d, sum of the -10 motif scores of the sequences

lized site, which is in the -10 region. This regulatory mech-
anism involves a binding-induced transmission of
destabilization from the binding site into the promoter.
SIDD clearly plays a central role in this mechanism, even
though the regulatory SIDD site is not at the promoter. A
similar mechanism was also observed to regulate the LeuV
operon, which involved the binding of fis to a SIDD site
[18].

SIDD is more capable than other structural or sequence
properties of distinguishing promoters from non-promoter
sequences in E. coli K12

Other research groups have reported that several other
types of structural parameters also appear to be distrib-
uted differently between promoters and non-promoters.
These include DNA intrinsic curvature, protein-induced
deformability, and thermodynamic stability [19-21]. To
compare these attributes with SIDD properties, we used
published methods to calculate each property for the
entire genome as described in the Methods section, then
examined their values in the test and training sets.

We determined the sums, and the maximum and mini-
mum values, of each of these quantities over each of the
100 bp training sets described above. The distributions of
the sums of these parameters in promoters, and in the
coding and CON non-promoter training sets, are shown
in Figure 3ABC. Overall, promoter regions tend to be
slightly more curved, less flexible for protein binding, and
less stable under thermal fluctuations than are non-pro-
moter regions. However, these feature differences are
much less dramatic than those shown in Figure 2 for SIDD
properties. The corresponding graphs for the maxima and
minima of these parameters are less informative, but
show similar trends. (Data not shown.)

Position-specific score matrices (PSSMs) are frequently
used to represent conserved motifs, such as protein bind-
ing sites. PSSM methods based either on the -10 motif or
on motifs from both the -10 and -35 regions have been
used to find putative sigma factor binding sites, presuma-

bly as signals for promoters [8,9]. By aligning the pro-
moter sequences in the training set at their TSSs, we
derived a log-odds PSSM for the -10 motif (from -6 to -13)
in the promoters, using the method described in [3].
When this PSSM was used to search our promoter and
non-promoter test sequences, we found that promoters
contain higher densities of high-scoring PSSM motifs than
do either the coding or the CON classes of non-promoters
(figure 3D, and other data not shown). However, there are
substantial numbers of these motifs in all three sets. But
the average density of high-scoring PSSM motifs is approx-
imately twice as high in promoter-containing sequences
as in those that do not contain promoters. So the sum of
the motif scores over a window may be a useful discrimi-
nator of promoters. But the exact locations of -10 motifs
alone may not be useful for inferring either transcription
start sites or promoter locations.

We have examined the distributions of each of these five
properties (SIDD, curvature, deformability, thermody-
namic stability, and -10 motif scores) for each set of pro-
moter and non-promoter sequences in each of two cases —
first using the summed variable and then (except for -10
scores) its extreme value in the region. (As promoters are
thought to have high intrinsic curvature we used maxima
of this parameter. For SIDD properties, deformation
energy and thermodynamic stability we used minima.) In
each case the statistical significances of the differences
found between the promoter-containing training set and
each of the two non-promoter containing sets were calcu-
lated using the Kolmogorov-Smirnov test [22]. The results
of these statistical analyses are shown in Table 1. For all
parameters the distributions of the summed variables
show statistically significant differences between promot-
ers and either of the non-promoter sets. Among these, the
SIDD property shows the highest significance level. The
distribution of extreme values remains highly significant
for SIDD, but is much less so for the other parameters. In
fact, only the difference of the maximum values of curva-
ture between promoter and non-promoter sets retains sig-
nificance at the 95% level, while the differences of
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(A) The sensitivity (true positive rate) and specificity (I — false positive rate) achieved in classifying 1000 E. coli K12 sequences
into promoters and non-promoters, based on their sum of G(x) parameters. The graph shows how the sensitivity and specifi-
city depend on the threshold for regarding a sequence as a promoter. Of the 1000 sequences analyzed here, half are promot-
ers and half are not. (B) ROC curves comparing the performance of SIDD vs NNPP at identifying promoters in E. coli K12. (C)
The performance of our SIDD-based promoter discriminator is comparable for sequences in E. coli K12 and in Bacillus subtilis.

minimum values of either deformation energy or ther-  SIDD alone outperforms other parameters in detecting
mostability between promoters and non-promoters are  promoter sequences in E. coli K12 and in Bacillus subtilis
not significant. Thus, among these variables, SIDD is the  In order to determine the values of the SIDD parameters

most informative for differentiating promoters from non- X and G,, that most reliably discriminate promoter from
promoters, followed by -10 motif scores. non-promoter sequences, we first chose a series of values
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spanning the ranges of their distributions. Each value was
regarded as a threshold, so in this analysis a sequence
would be classified as containing a promoter or not, solely
based on whether or not its sum X or minimum value G,,
fell below this threshold. In this way we placed all the 100
bp sequences in the three training sequences in the E. coli
genome into promoter or non-promoter bins, then calcu-
lated the true and false positive rates achieved when that
threshold was used. This was done for each value of X or
G,, in the series, and also for each pair (%, G,,) of values.
Figure 4A shows the sensitivities and specificities as the
threshold of X is varied. (Sensitivity = true positive rate;
specificity = 1- false positive rate.) Similar results are
found for G,, and also for pairs (X, G,,) (Representative
data presented in Supplementary Information [see Addi-
tional file 1].) As this figure shows, the sensitivity
increases monotonically with threshold, while the specif-
icity decreases monotonically. However, the specificity is
essentially unity until a substantial threshold, around X =
280 in this case. In this way a range of threshold values of
the parameters X and G,, were obtained that provide high
true positive rates and low false positive rates.

We note that sensitivities of 25% to 30% can be achieved
with very small false positive rates, but that higher sensi-
tivities have an increasing cost in terms of decreased spe-
cificity. This corresponds to our previous observation that,
although strongly destabilized sites are highly concen-
trated at promoters, not all promoters are destabilized.
This fact also is reflected in the bimodal distributions of
SIDD parameters at promoters that were documented in
Figure 2. However, at this modest level of sensitivity the
specificity is so high that false positives are very few. This
will be shown to be an important attribute for promoter
prediction, as most other methods suffer from high false
positive rates. Moreover, for purposes of comparing meth-
ods the important attribute is the true positive rate versus
the false positive rate, as described below.

We compared the performances on the test sets of these
optimized SIDD predictors with that of the publicly avail-
able NNPP promoter prediction program. Although
NNPP was originally developed to predict core promoter
regions in the Drosophila melanogaster genome [23], it was
also trained on a set of documented promoter sequences
in E. coli K12. (We note that the number of E. coli K12 pro-
moter sequences used to train NNPP was about half the
size of the training set used in our study.) NNPP is a neu-
ral network-based computer program that uses a time-
delay architecture to incorporate structural and composi-
tional properties of promoter sequences. By setting its
stringency between 0.1 and 0.9, we obtained a range of
NNPP predictions regarding whether each sequence in
each of our sets either did or did not contain a promoter.
The true positive and false positive rates achieved were cal-
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culated for each level of stringency. Since our SIDD
method detects promoter-containing regions without pin-
pointing the TSS while NNPP predicts TSSs, care must be
taken to calculate these rates in equivalent manners. If
NNPP predicts that a sequence contains a TSS, no matter
where it is, for the purposes of comparing with the SIDD
results that sequence was considered to contain a pro-
moter.

The performance characteristics of the SIDD predictor and
NNPP were compared using a ROC (receiver operating
characteristic) curve, which graphs the true positive rate vs
the false positive rate achieved by each method for several
values of SIDD parameter thresholds and NNPP stringen-
cies. The results are shown in Figure 4B. The better the pre-
dictor the more the curve moves towards the vertical axis,
having higher true positive rates and lower false positive
rates. At a given false positive rate, SIDD always predicted
more true positives than did NNPP. For example, SIDD
correctly predicted 74.6% of the real promoters with a
false positive rate of 18%. When NNPP correctly predicted
66.4% of the real promoters, it had at 22.4% false positive
rate. The area under the ROC is a convenient way of com-
paring classifiers. If the area under the ROC curve is unity,
the classifier is perfect - it gives a 100% true positive rate
with no false positives. Conversely, a method with no
classifying power will have a diagonal curve with area 0.5
- it cannot distinguish true from false positives, giving
both at the same rates. The SIDD predictor curve in Figure
4B has area 0.831, while the NNPP curve has area 0.785.
By this criterion SIDD has better predictive power than
does NNPP.

The pattern of SIDD distribution found in E. coli K12, in
which strongly destabilized sites are concentrated at pro-
moters and avoid coding sequences, also occurs in other
prokaryotic genomes [24]. So we also applied our meth-
ods to Bacillus subtilis, the only prokaryote from a different
phylum than E. coli that has extensive experimental anno-
tation of promoters. We developed training and test sets
as described above for E. coli, and examined their SIDD
properties as above. (The SIDD properties again were cal-
culated in a whole genome analysis.) In this organism the
most extreme level of average destabilization also occurs
at position -49 relative to the TSSs. The sequences at this
site are not as conserved as that of -10 regions, as was
shown in Figure 1A to occur in E. coli K12. A bimodal dis-
tribution of SIDD properties also is found in Bacillus sub-
tilis promoter regions, just as it is in E. coli K12. (These
results on Bacillus subtilis are presented in the Suppple-
mentary Information [see Additional file |1.) When SIDD
alone was used to differentiate promoter-containing from
non-promoter-containing sequences in B. subtilis, it dem-
onstrated comparable performance to that achieved for E.
coli K12, as is shown in Figure 4C. Despite of the different
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nucleotide compositions of the genomes of E. coli K12
and Bacillus subtilis (the AT/GCratio is 0.968 in E. coli K12,
and 1.298 in B. subtilis), and the large evolutionary dis-
tance separating them, SIDD consistently predicted pro-
moter and non-promoter sequences in both organisms
with comparably high precisions and low false positive
rates. (Precision is the fraction of all positive predictions
that are true.) Thus, SIDD characteristics may be capable
of detecting promoter-containing sequences in many
prokaryotic genomes.

A recent paper that used thermostability as a promoter
predictor also claimed that their method was likely to be
applicable to different microorganisms [16]. Both our
method and theirs have been tested using the same
sources of experimental TSSs from E. coli K12 and Bacillus
subtilis. Since their program was not publicly available, we
tried to compare the performances of both methods by
plotting our figure 4C in a way equivalent to that of their
Figure 9, which showed the precision of their method. The
definitions of precision and sensitivity used in our figure
4C are the same as those defined there. (See the Methods
section for precise definitions.) As the sensitivity of the
thermostability method increased from 20% to 90%, its
published precision decreased dramatically - from about
72% to about 37% for E. coli K12, and from about 82% to
27% for B. subtilis. In contrast, the predicted precisions
achieved by our SIDD-based method at all levels of sensi-
tivity remained higher than 62% for both E. coli K12 and
B. subtilis. Even at sensitivities below 30%, precisions
exceeding 90% were achieved for both organisms. These
high precisions are achieved because the SIDD method
has very low false positive rates. So while it may find only
a fraction of the actual promoters, those it does identify
have high probabilities of being true. As can be seen by
comparing Figure 4C here with Figure 9 in the paper
describing the thermostability method [16], the SIDD
technique significantly outperformed that technique.
These results further support the claim that SIDD is a bet-
ter discriminator of promoter sequences than is ther-
mostability.

SIDD can predict with high confidence the set of
promoters that have strong stress-induced destabilization
properties

A substantial number of experimentally characterized
promoters are required to construct training sequences for
most sequence-based promoter prediction programs. Suf-
ficiently large documented promoter sets are only availa-
ble for the E. coli K12 and B. subtilis bacterial genomes.
One way to circumvent this shortage is to ab initio predict
promoters by also identifying the distinct sequence and/
or structural attributes with which they are associated. In
our previous and current studies we have shown that
strongly destabilized SIDD regions in the E. coli K12
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genome are statistically highly significantly associated
with promoters [12]. Since the SIDD profile of a genome
is directly calculated from its primary sequence, SIDD
properties can be used to predict promoters, even in cases
where training sequences are limited. The following is a
demonstration of how SIDD properties can be used to
estimate the probability that a 100 bp fragment in the E.
coli K12 genome contains a promoter. For this purpose we
use the sum SIDD parameter Z, although similar results
may be obtained with the minimum value G,,. This
approach can be applied to any completely sequenced
bacterial genome, once its SIDD profile has been calcu-
lated.

Figure 4A shows, for any value of the threshold (T) of Z,
the true positive rate for a 100 bp promoter sequence (P)
to have the sum D of its SIDD energies satisfy D <T. This
gives the probability p(D <T |P) that this sum satisfies the
threshold inequality, given that the sequence involved
contains a promoter. From the false positive rate, also
found from Fig 4A, one can determine the probability p(D
<T |~P) that a sequence which is not a promoter (~P) sat-
isfies the inequality D <T. In order to use SIDD for pro-
moter prediction, one must estimate the a posteriori
probabilities that a 100 bp region in the genome either is
or is not a promoter, given that the sum D of its SIDD
energies satisfies D <T. These are p(P| D <T) and p(~P | D
<T), respectively. According to Bayes' theorem, these
quantities can be obtained by

p(D<T|P)p(P)

p(P|D<T)= 2D <T) (1a)
and
_pD<T|~P)p(~P)
p(~P|D<T)= D<) (1b)
respectively.

For the purposes of this calculation we consider 100 bp
segments in the E. coli K12 genome, and seek the proba-
bilities that they contain promoters, given their SIDD
properties. The number n; of DNA segments having D <T
can be calculated directly from the SIDD profile of the
genome. The number n, of segments that contain promot-
ers is not known, so illustrative calculations can be made
using various values for this quantity. Then the probabili-
ties p(D <T) and p(P) can be estimated as the fractions of
base pairs in the genome that lie in these two types of
regions. These are

pPD<T)=

(2a)

IOOnd
N 7

Page 10 of 15

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:248

http://www.biomedcentral.com/1471-2105/7/248

Table 2: Correlation coefficients between structural parameters, -10 motif scores in promoter sequences

Sum of G(x) (%) Curvature Deformability Thermo-stability - 10 motif scores

Sum of G(x) (%) -0.0847 0.5194 0.3009 -0.5652

Curvature -0.0847 -0.1499 -0.0207 0.1873

Deformability 0.5194 -0.1499 0.5317 -0.7546

Thermo-stability 0.3009 -0.0207 0.5317 -0.4175
-10 motif scores -0.5652 0.1873 -0.7546 -0.4175

100m, N .
and p(P) = , ( zb) promoter-containing region, we find for this genome that

N

where N is the number of base pairs of the genome. Also,

p(P) =1 -p(P).

The E. coli K12 genome analyzed here has length N =
4639221 bp and approximately 4400 annotated genes.
Assuming each gene has at least one promoter, and that
all promoters for a gene lie in one 100 bp segment, we
estimate the probability p(P) that a randomly chosen 100
bp segment contains a promoter to be p(P) = 0.095, so
p(~P) = 0.905.

Next we need to find threshold values T that give accepta-
ble values for the probabilities p(P | D <T) and p(~P | D
<T). One wants the probability p(P | D <T) to be as large
as possible, while keeping p(~P | D <T) small. As shown
in Eqns 1a and 1b, these probabilities depend on the esti-
mated number of promoter-containing and non-pro-
moter-containing segments, and on the probabilities p(D
<T | P) and p(D <T | ~P). Values for the latter probabilities
can be found for the case of the summation SIDD param-
eter from the information in Figure 4A. There one sees
that a threshold sum of T =308.5 gives a substantial prob-
ability p(D <T | P) that a promoter satisfies the threshold
and a very small probability p(D <T | ~P) that a non-pro-
moter does. Using this value one finds from the figure that
p(D < 308.5 | P) = 0.236. From the SIDD profile of the
whole genome we find there are 1356 regions where the
sum X of the SIDD energies is less than 308.5. Thus, from
Eqn 2a one finds that p(D < 308.5) = 1356*100/4639221
= 0.029. If we assume as above that there are 4400 pro-
moter-containing regions, one for each gene, then Eqn 2b
gives p(P) = 0.095. Substituting into Eqn 1a, we calculate
that a 100 bp DNA fragment whose sum X of SIDD ener-
gies is less than 308.5 has probability of being a promoter
p(P | D <308.5) = 0.236*0.095/0.029 = 0.773. Similarly,
we find in this case that p(D < 308.5 | ~P) = 0.01, so the
probability of such a region not being a promoter is p(~P
| D <308.5) =0.01*0.905/0.029 = 0.312.

We also performed similar calculations on the B. subtilis
genome, which has length N = 4214630 bp, and approxi-
mate 4226 genes. Assuming again that each gene has one

p(P) =4226*100/4214630 = 0.1003. When we choose the
threshold value T = 316.5, we calculate that p(D < 316.5)
=1575 *100/4214630 = 0.0374. p(D <316.5 | P) =0.304
and p(D < 316.5 | ~P) = 0.008. Using these values in Eqns
la and 1b, we find that the probability of a region being a
promoter, given that it satisfies the threshold condition, is
p(P | D <316.5) = 0.815; and the probability of it being a
non-promoter is p(~P | D <316.5) = 0.193.

It is interesting to notice that the thresholds for the SIDD
summation parameter are almost identical for E. coli K12
and B. subtilis. This seems unlikely to be a coincidence
since these organisms are in different phyla, and have
quite distinct genomic compositions, gene sets and envi-
ronmental niches.

Two points must be borne in mind when interpreting
these results, which are intended only to be illustrative.
First, the values computed for these probabilities depend
on an estimate for the number of promoters in the given
genome. Because prokaryotic genes are often arranged
into co-transcribing operons, it may not be correct that
every gene has its own promoter. However, some genes in
E. coli are known to have multiple promoters. And second,
not all promoters are strongly destabilized. Because the
SIDD method presented here has a small false positive
rate, it can reliably find those promoters that are destabi-
lized, but will not find those that are not.

SIDD and -10 motifs together predict promoter and non-
promoter sequences with high accuracy

As was described above, several types of DNA structural
parameters, as well as -10 motif scores, have been sug-
gested to differentiate promoters from non-promoter
sequences, at least to some degree. One strategy for
improving promoter predictions could be to combine
together different variables that may not be highly corre-
lated. We have calculated the correlation coefficient for
each pair of these attributes over the entire collection of
three training sets. Table 2 shows the results of this analy-
sis. SIDD is moderately positively correlated with deform-
ability and low thermostability, and moderately
negatively correlated with -10 motif scores. High curva-
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Figure 5

Schematic representation of a promoter region annotation strategy for microbial genomes.

ture is seen not to correlate with any other parameters
used in this study.

We developed a linear classification function for discrim-
inating promoter from non-promoter sequences in E. coli
K12 that combines together multiple parameters [25]. (A
description of how this was done is presented in the Meth-
ods section.) When all these variables were combined
together, the resulting classifier achieved an accuracy of
more than 82% on our test sets. However, a linear dis-
crimination analysis that only included the SIDD sum
parameter X and the -10 motif scores performed almost as
well, attaining an accuracy of about 80%. Similar results
were obtained when linear classifiers were developed for
B. subtilis. (Data not shown.) The small loss of predictive
accuracy that results when the other parameters are omit-
ted indicates that, of the parameters examined here, SIDD
and -10 motif scores are the two most effective attributes
for differentiating promoters from non-promoters.

Sequence-based methods (including the PSSM techniques
applied to -10 motif scores that were used here) are
known to suffer high false positive rates. The high accu-
racy achieved by the linear classification functions devel-
oped here largely resulted from a dramatic decrease in the
false positive rate that occurred when SIDD properties
were included. Similar result were found for a eukaryotic
promoter prediction program McPromoter [26]. There a

combination of sequence information with several physi-
cal properties achieved a 30% reduction of false positives,
when compared with the sequence model alone.

Annotating promoter regions in microbial genomes using
SIDD, either alone or combined with sequence motifs

The procedure schematically described in Figure 5 has
been developed to annotate promoter regions in sample
microbial genomes. Complete genomic sequences of
more than 240 prokaryotic and archaeal organisms have
been downloaded from the NCBI web site, and their SIDD
profiles have been calculated. These SIDD profiles can be
accessed through our database at [13]. To annotate the
promoter regions in a given genome, our program calcu-
lates the sum of the SIDD energies and the minimum
energy over a 100 bp window. This window is moved
along the genome with an offset of 1 bp, and parameter
values are calculated for each position. For those genomes
that have enough experimentally characterized promoter
sequences, we will additionally build PSSMs for the con-
served motifs embedded in these sequences. The sum of
the motif scores of the promoter sequences and non-pro-
moter sequences are then calculated using these PSSMs.
These scores, together with their correspondent SIDD
scores (X and/or G,,), are used as training sets for the lin-
ear classification function kernel to predict new promoter
regions in the whole genome. Post-processing includes
combining overlapping 100 bp potential promoter-con-
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taining regions into a single site prediction, and identify-
ing potential transcriptional start sites. For those genomes
that have insufficient experimental data to generate a
meaningful PSSM, we will use SIDD as a sole predictor for
discriminating promoters. Although the promoters pre-
dicted in this way may represent only a fraction of all the
possible promoter regions in the genome, the present
results suggest that they have high probabilities of being
true.

We tested these approaches using the E. coli K12 genome.
When SIDD scores were combined with -10 motif scores,
844 out of the 927 document TSSs were found to occur in
the predicted 5272 potential promoter regions. When
SIDD was used as a sole predictor and a threshold for X of
T = 250 was used (this is a higher level of stringency than
that used in the above Bayesian estimation), 340 docu-
mented TSSs were found in the predicted 1145 promoter
regions. While the number of potential promoter regions
was much smaller when SIDD was the sole predictor, the
fraction of the predicted sites with experimentally docu-
mented TSSs doubled. Using either predictor, several
instances were observed where multiple TSSs were located
in a single predicted region. We expect the identification
of these potential regulatory regions could enable further
bioinformatics and experimental studies.

Conclusion

In this report we show that the propensity to undergo
stress-induced duplex destabilization (SIDD) is a distinc-
tive structural attribute of prokaryotic promoter
sequences. SIDD is not directly related to primary
sequence alone, nor equivalent to the thermostability of
the DNA double helix. Comparisons with other impor-
tant DNA structural properties, and with conserved -10
motifs, show that SIDD is the best discriminator between
promoter and non-promoter sequences in test sets derived
from the E. coli K12 genome.

We have developed methods to identify promoter
sequences in prokaryotic genomes that use SIDD either as
a sole predictor or in combination with other DNA struc-
tural and sequence properties. The inclusion of SIDD
properties is shown to greatly reduce the false positive pre-
diction rates of predictions. So, for any given false positive
rate, the true positive rate is higher when SIDD is included
than when it is not. When applied to E. coli K12 and to
Bacillus subtilis, the two experimentally best annotated
bacterial genomes, our methods achieved comparably
high levels of accuracy for both, and outperformed other
published promoter prediction methods.

Because these organisms are from different phyla and
their genomes have different nucleotide compositions, we
suggest that this approach might be useful for other
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prokaryotes, for which experimental information may not
be available. In all the microbial genomes we have inves-
tigated to date, strong SIDD sites have been found to be
preferentially located in those intergenic regions that are
known or inferred to contain promoters. The SIDD-based
methods presented here have been implemented in a pre-
liminary strategy for annotating promoter regions in com-
plete microbial genomes. Although these methods cannot
predict all the promoter-containing regions in a genome,
they do find large sets of potential regions that have high
probabilities of being true positives. These lists of pre-
dicted promoter-containing sites can be used as targets for
experimental verification or further bioinformatic investi-
gation. This approach could be especially valuable for
those genomes about which there is limited experimental
data.

Methods

Sequences

The E. coli K12 genome analyzed in this study is version
M54, containing 4639221 base pairs. The locations of 927
experimentally characterized transcriptional start sites
(TSS) were obtained from the Regulon Database [14]. The
Bacillus subtilis genome analyzed here is the version sub-
mitted on 29 July, 2004, and containing 4214630 base
pairs. Positions of 480 experimentally characterized TSSs
in this organism were obtained from DBTBS [27]. In our
analysis, the promoter regions were represented by the
100 base pair DNA fragments between positions -80 bp
and +20 bp relative to a TSS. (This is 100 base pairs
because in this scheme no base pair is given the number
0.) The promoter training set for E. coli K12 consisted of
promoter regions of this size taken from 500 randomly
chosen documented TSSs. The rest of the 427 promoter
regions were used as a test set. The promoter training set
for B. subtilis consisted of promoter regions from 250 ran-
domly chosen documented TSSs. The rest of the 230
known TSSs were used to construct a promoter test set.
The set of coding regions were selected as 100 base pair
DNA fragments starting from +300 bp relative to (i.e.
downstream from) the TSSs. The CON regions were cho-
sen as 100 base pair DNA fragments centered in the mid-
dle of intergenic regions separating convergently
transcribing ORFs. The coding and CON data sets each
consisted of 500 randomly chosen regions of these types.

Curvature calculations

The predicted values of DNA curvature were calculated for
complete genomic sequences using the CURVATURE pro-
gram [28], which creates a curvature map of the entire
genome. For each base pair the curvature value (in curva-
ture units, cu) corresponds to the curvature of the calcu-
lated path of a 121 bp segment centered at that base pair.
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Protein-induced deformability calculations

Values of the local protein-induced deformability were
calculated complete genomic sequences using the dinu-
cleotide model developed by Olson et al [29]. For each
base pair in the genome, the deformability value is calcu-
lated as the average of the conformational volumes cov-
ered by its two neighboring DNA dimers in protein-DNA
complexes.

Thermostability calculations

The thermodynamic stability profiles of complete
genomic sequences were calculated using the nearest-
neighbor (NN) thermodynamics presented by SantaLucia
et al. [30]. For each base pair in the genome, the value for
its thermostability is calculated as the average of the open-
ing energies for the two dinucleotides that contain it.

SIDD profile calculations

The predicted values of the destabilization energy G(x)
were calculated for complete genomic sequences using the
method of Benham and Bi [11]. A superhelix density of o
= -0.06 was assumed. The destabilization free energy G(x)
associated to the base pair at position x is the difference
between the ensemble average free energy and the average
free energy of those states in which base pair x is open. So
it approximately corresponds to the incremental free
energy needed to guarantee that this base pair is always
open under the assumed superhelicity.

DNA sequence conservation and position specific score
matrix (PSSM) calculation

The conservation of multiple aligned sequences can be
evaluated using the Shannon entropy of information the-
ory [15]. Sequence motifs or conserved sequences are here
evaluated using position-specific scoring matrices
(PSSMs) calculated using the method of Durbin [3]. To
calculate the sum and the number of high-scoring motifs
in the training sequences, we used a threshold equal to the
mean (-0.695) plus one standard deviation (1.214) of
motif scores sampled in the randomly shuffled genomic
sequence. About 55.2% of the documented -10 motifs in
the promoter training set have their scores higher than
this threshold, as compared with about 15.5% of the ran-
dom sequences. Here, we consider the high-scoring motifs
to be those whose scores are higher than the above thresh-
old.

Probability density estimation and statistical tests

The distributions of DNA structural properties or -10
motif scores in promoter regions, coding regions and
CON regions were represented by their probability densi-
ties. The density for each property and type of region was
evaluated using a normal kernel smoother at 100 equally
spaced points covering the range of the data. The compar-
ison of two distributions was made using the Kol-

http://www.biomedcentral.com/1471-2105/7/248

mogorov-Smirnov two-sample test [22]. The null
hypothesis for this test is that the two compared datasets
are from the same continuous distribution.

Linear discrimination analysis

We combined DNA structural properties (destabilization
free energy, curvature, or thermostability) with -10
sequence motif scores into a linear discrimination model
according to the method of Johnson and Wichern [25].
Because promoter identification is a two-class classifica-
tion, it is implemented using Fisher linear discriminant
analysis. This procedure finds a linear combination of the
measures that provides maximum discrimination, in our
case between promoter and non-promoters. It assumes
that the training sets are normally distributed. To generate
a score, we first let w = S *(; - 44,). Here S is the pooled
covariance matrix of the parameters, and y; and g are the
sample mean vectors of parameters for the positive and
negative data sets, respectively. The vector w maximizes
the ratio of inter-class variation of score to intra-class var-
iation of score. The scores of a data point (vector) x asso-
ciated to a member of a test set is calculated as the dot
product D = x-w'. A data point is classified into class 1 if
its score is D = ¢, or into class 0 if its score is D > ¢; where

C=w* (4 - 1p)"/2.

All the calculation relative to statistical tests and linear dis-
crimination analysis were carried out using MATLAB 6.0.

The true positive rate, false positive rate, accuracy and pre-
cision are defined as follows (where TP = true positives, FP
= false positives, TN = true negatives and FN = false nega-
tives):

P
True positive rate = ————; False positive rate =
TP + FN
FP TP+ TN
——— ; Accuracy = ;
IN + FP TP + FN +TN + FP
Precision = ————— . Sensitivity = true positive rate, and
TP + FP

specificity = 1 - (false positive rate)
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