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Abstract
Background: It is one of the ultimate goals for modern biological research to fully elucidate the intricate
interplays and the regulations of the molecular determinants that propel and characterize the progression of
versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and
recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data
is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-
engineering problem of time-delayed gene regulatory networks.

Results: In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene
expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted
in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN
(Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s)
of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene
regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied
the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying
time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably
consistent with the current knowledge on phase characteristics for the cell cyclings.

Conclusion: We established a usable and powerful model-free approach to dissecting high-order dynamic trends
of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly
available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this
unified approach can also be used to study the complex gene regulations related to the development, aging and
progressive pathogenesis of a complex disease where potential dependences between different experiment units
might occurs.
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Background
With the completion of sequencing entire human
genomes, the focus of modern biology has gradually
shifted to functional genomics [1]. Many important bio-
logical processes (e.g., cellular differentiation during
development, aging, disease aetiology etc.) are very
unlikely controlled by a single gene instead by the under-
lying complex regulatory interactions between thousands
of genes within a four-dimension space [2]. With advance
of molecular biology techniques, it has now become pos-
sible to measure the gene expression levels (mRNA levels)
of most, if not all, of the genes of an organism simultane-
ously. The goal of this study was to reversely engineer the
underlying gene regulation networks of arbitrary time
frames from the temporal gene expression profiling,
which would greatly expand our knowledge for complex
biological process like disease pathogenesis and eventu-
ally provide a clear picture of gene life to locate effective
drugs or unknown molecular targets [3,4].

The time-delayed gene regulation pattern in organisms is
a common phenomenon [2,5] so that it can be conceived
that multiple-time delayed gene regulations are the norm
and the single-time delayed ones are the exception. For
example, there is a gene (say g1) whose inhibitory effect
(say on gene g2) depends on an inducer (say g3) that has
to be bound first in order to be able to bind to the inhibi-
tion site on g2. Therefore, there can be a significant delay
between the expression of the inhibitor gene g1 and its
observed effect, i.e., the inhibition of gene g2. In addition,
in the reconstruction of gene regulatory networks based
on the gene expression profiles, there is also a time-
delayed phenomenon in gene regulations because not all
the genes that influence the expression level of a gene are
necessarily observable in one microarray experiment. For
instance, assume that genes g1, g2, …, gn are the genes
under study. Suppose that gene g1 regulates gene gu. It is
quite possible that gu is not among the genes that are being
monitored in the experiment, or its function is currently
unknown. Suppose that gene gu in turn controls gene g2.
Since the expression of gu is not observed in the expression
profiles, there can also be a significant delay between the
expression of g1 and g2. Even if all the genes are monitored
in an experiment, the unknown factor denoted by gu may
stand for a non-genetic environmental factor that leads to
a delayed gene regulation based on the expression profiles
[2]. Furthermore, self-degradation of mRNA or gene prod-
uct can be modelled as a time-delayed interaction [6] and
such a regulatory rule is not identifiable using conven-
tional approaches if priori knowledge of kinetic parame-
ters, particularly the degradation rate constant, is lacking
[7].

At present, there are different approaches to gene network-
ing, for example, Boolean models [8-10], Best-fit models

[4,11], Bayesian networks [12-15], Genetic algorithm
[16,17], Support vector machines [18], Association rules
[19], Neural networks [17,20], Tree models [21] and
dynamic models [6,22,23]. Generally, most methods only
consider the static (at the same time point) gene expres-
sion profiles, so they cannot be used to interpret the time-
delayed phenomena of gene regulations. Although several
authors [21,24] have well recognized the issue for the
time-delayed gene regulations, they merely dealt with the
gene networks delayed one unit of time (the interval of
two time points in one experiment). Using a Boolean
model, Silvescu et al. [2] considered the regulation
delayed multiple units (T) of time apart, but the Boolean
model was restricted to logical (Boolean) relationships
between variables and relies on the assumption that the
expression of a gene is likely to be controlled by a rela-
tively small number (say k) of genes [8,9,25]. Neverthe-
less, such a biologically meaningful value of k is often
unknown prior to a detailed investigation [2]. Recently,
several investigators have addressed genome duplication
as the evolution force for creating new genes in genomes
and for gene regulatory network growth [26-29].

The exponential increases of the amount of massive time-
series data have provided good opportunities to uncover
causal gene-gene or gene-phenotype relationships and to
characterize the dynamic properties of the underlying
molecular networks for various biological processes. Time
series data structure offers a necessary (although not suffi-
cient) condition – time lag to infer a cause-effect relation-
ship [30]. However, in order to fully exploit the power
and value of computational networking approaches to
systematically dissecting the dynamic mechanisms of the
intricate molecular interplays, solutions to several signifi-
cant challenges remain to be solved. Nowadays, several
delicately developed dynamic models (for example, Prob-
abilistic Boolean Networks (PBN) [31]; Dynamic Baye-
sian Networks (DBN) [30]; Hidden Markov Model
(HMM) [32] and Kalman filters [33]) for reconstructing
longitudinal regulatory networks are model-based in the
sense that an explicit mathematical model is required.
When the model of the system is unknown, the network-
ing problem becomes intractable. It is perceived that
model-based approaches are more powerful to distil the
studied biological process and behaviours into a set of
compact mathematical equations given that the correct
models (e.g. the error model and the network architec-
ture) for the studied complexities can be precisely speci-
fied. However, it has been suggested that the results of
model-based methods can be compromised if the under-
lying model is wrongly assumed. An recent study for mod-
elling CDC2/APC network in cell cycling [34] explored
the potential of using a cell-cycle oscillator differential-
equation model to uncover the role of positive- and nega-
tive-feedback loops in the CDC2/APC system. The authors
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found that there are significant discrepancies between the
model-based learnt results and the true networking archi-
tectures. The authors thus believe that the cell-cycle peri-
odical oscillator mechanisms are resulted from the
synergic actions of both positive and negative feedbacks,
which are however hard to be depicted precisely by any
mathematical model.

The scientific values of robust model-free approaches (e.g.
many data mining algorithms) for probing the unknown
space and complexities of dynamic molecular networks
have been increasingly recognized. Because most of gene
networks are hard to be mapped precisely by any parsimo-
nious mathematical model, data mining approaches, a
way to compute control actions directly from the input/
output data without first creating any model at all, have
received increasing attentions. Remondini et al. [35] stud-
ied the dynamics of a gene expression time series network
(specifically, the regulatory network for c-Myc-activated
genes) based on the correlations of gene expressions.
Compared with a linear Markov model, the network built
by the model-free method demonstrates global dynamic

properties that emerge after cell state perturbation. In this
paper, we described a novel model-free approach for
reconstructing time-delayed gene regulatory networks. We
focused on the dependencies between the activities of
genes that span more than one unit of time. The method,
called TdGRN (Time-delayed Gene Regulatory Network),
allows the expression of a target gene at time t + 1 to be
interacted with other genes at time frames {t, t - 1, …, t -
(T - 1)}. For each target gene, we constructed its time-
delayed gene expression profiles. Then, we used a decision
tree to discover the time-delayed regulations that modu-
late the activities of the target gene. In our method, we nei-
ther assumed any arbitrary threshold for discretisation nor
the definition of the number of regulating genes, k, nor
the network structure. We uncovered the regulations
between genes empirically from the decision tree analysis
of temporal gene expression profiles. In order to avoid
false positives, we used a conservative method to filter the
constructed decision trees. Only trees that had adequate
classification accuracy (called confident tree and putative
tree; see Methods for definitions) were kept for the follow-
ing gene networking. We have explored the behaviours

Gene expression during the yeast cell cycleFigure 1
Gene expression during the yeast cell cycle. In this figure, each gene corresponds to a row, and the time point for each 
column is denoted. The magnitude of mRNA expression ratio for each gene is represented by different colours. Red indicates 
mRNA abundance; green indicates a dearth; and gray indicates absence of the data. The colours at the top bar distinguish the 
cell cycle phases (M/G1, yellow; G1, green; S, purple; G2, red; M, orange).
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and properties of the novel method by analyzing two pub-
licly available datasets for Saccharomyces cerevisiae and
human HeLa cell cycles, respectively.

Results
Description of the two datasets
We report the results from analysis of two well-known
datasets for yeast cells and human HeLa cells, respectively.
The yeast cell cycling dataset is from the microarray data
analyzed initially by Spellman et al. [36] and Cho et al.
[37], who obtained the genome-wide transcriptions from
the Saccharomyces cerevisiae cell cultures that were synchro-
nized by three different methods: cdc15, cdc28 and alpha-
factor. We chose the cdc15 synchronized dataset for train-
ing and used the remaining datasets (cdc28 and alpha-fac-
tor) for testing. To facilitate the interpretation of
underlying time-delayed regulations, we only used adja-
cent equidistant measurements at the equal units of time
(i.e. several time points for the data sets namely cdc15
were truncated). Thus, there were 19, 17 and 18 available
time points for the synchronizations (cdc15, cdc28 and
alpha-factor), respectively (figure 1). All major transitions
in the budding yeast cell cycle are regulated by cyclins via
the associated cyclin-dependent kinase (CDK) activity
[21]. For the purpose of a numeric demonstration, we
chose 20 yeast cyclin genes: CLN1, CLN2, CLN3, CLB1,
CLB2, CLB4, CLB5, CLB6, CDC28, MBP1, CDC53,
CDC34, SKP1, SWI4, SWI5, SWI6, HCT1, CDC20, SIC1
and MCM1. These genes have been known to be involved

in the cell-cycle regulations and their temporal activities
are exhibited on Figure 1, based on the paradigm of Eisen
et al. [38].

In the second explored dataset, the genome-wide pro-
gramming of gene expressions during the cell cycling of a
human cancer cell line (HeLa) was characterized using
cDNA microarrays. We used part of the microarray dataset
obtained from HeLa cells that were synchronized by dou-
ble thymidine blocking (e.g. Thy-Thy2 and Thy-Thy3) and
thymidine-nocodazole blocking (Thy-Noc) [39]. Again,
we chose 20 genes for this analysis. Figure 2 displays the
temporal profiles for the 20 genes. To learn the regula-
tions, we performed an n-fold cross-validation on the Thy-
Thy3 dataset (47 time points), and then used the datasets,
Thy-Thy2 (26 time points) and Thy-Noc (19 time points),
for testing.

In two numerical applications, we considered five units of
time delay (T = 1, 2, 3, 4, 5). The accuracy of a classifier
was estimated through three different ways: by 10-fold
cross-validation of cdc15 (Thy-Thy3), and using the test
datasets of cdc28 (Thy-Thy2) and alpha-factor (Thy-Noc).
The threshold for the accuracy α, which corresponds to a
Type I error of 0.05, was obtained by a permutation
approach described later in the Methods section and was
used to filter and to define the degrees of certainty for the
extracted decision trees: confident, putative or random
(see the Methods section for definitions).

Gene expression during the HeLa cell cycleFigure 2
Gene expression during the HeLa cell cycle. Each gene corresponds to a row, and the time point (minutes) for each col-
umn is denoted. The magnitude of mRNA expression ratio for each gene is represented by different colours. Red indicates 
mRNA abundance; green indicates a dearth; and gray indicates absence of the data. On the top bar(s), S phase and the time of 
mitoses (the arrows) are indicated, which was estimated by flow cytometry and BrdU (bromodeoxyuridine) labeling previously.
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Identification of the time-delayed regulations for yeast cell 
cycling
The accuracies of the classifiers for all the three estima-
tions are given in Additional file 1. The translated gene
regulations are given in Table 1. According to the identi-
fied regulations, we constructed the graphs of the time-
delayed gene regulatory networks (figure 3). To elaborate
the longitudinal regulations we defined the following lan-
guage (see Methods for detail): '+A(t)' indicates that gene
A is 'upregulated' at time t; '-A(t)' indicates that gene A is
'downregulated' at time t; The symbol '=>' represents a
directional relationship between genes. For instance, +
A(t) - B(t - 1) => - C(t + 1) means that C is 'downregulated'
at time t + 1 when A is 'upregulated' at time t while B is
'downregulated' at time t - 1.

To verify the biological meanings for the identified genetic
relations, we further investigated whether the expression
patterns of the genes and the regulation rules are consist-
ent with the phase characteristics of the cell cycle: G1, S,
G2, M, M/G1. Yeast cells replicate and divide their genetic
material in two distinct but coordinated processes. The S
phase is characterized by that the DNA molecule in each
chromosome is precisely replicated to form two identical
sister chromatids that are held together by cohesions
(tethering proteins). During M phase, the cell builds a
mitotic spindle, condenses its replicated chromosomes,
aligns them on the midplane of the spindle, and then, at
anaphase, removes the cohesions and separates sister
chromatids to opposite poles of the spindle [22]. The cell
divides into two daughter cells shortly after anaphase.

Table 1: List of the identified time-delayed gene regulations for yeast cell cycling. In the bold style are the rules extracted from 
confident trees and in the regular style are the rules extracted from putative trees.

Gene name Peak phase Time Delayed

One-unit time Two-unit time Three-unit time Four-unit time Five-unit time

CLN1 G1 +SWI5(t) => -
CLN1(t+1)

-SWI5(t) => 
+CLN1(t+1)

-SWI5(t) => 
+CLN1(t+1)

-SWI5(t) => 
+CLN1(t+1)

CLN2 G1 +CLB1(t) => -
CLN2(t+1)

-SIC1(t-1) => -
CLN2(t+1)

-SIC1(t-1) => -
CLN2(t+1)

-SIC1(t-1) => -
CLN2(t+1)

-SIC1(t-1) => -
CLN2(t+1)

CLN3 M +CDC53(t) => -
CLN3(t+1)

CLB1 M +CLB6(t) => -
CLB1(t+1)

+CLB6(t) => -
CLB1(t+1)

+CLB6(t) => -
CLB1(t+1)

-CLB5(t-4) => -
CLB1(t+1)

CLB2 M +CLB6(t) => -
CLB2(t+1)

+CLB6(t) => -
CLB2(t+1)

+CLB6(t) => -
CLB2(t+1)

-CLB5(t-4) => -
CLB2(t+1)

CLB4 G2 -CLN1(t) => -
CLB4(t+1)

-CLN1(t) => -
CLB4(t+1)

-CLB4(t-4) => 
+CLB4(t+1)

CLB5 G1
CLB6 G1 -SWI5(t) => 

+CLB6(t+1)
+CLN3(t-3) => 
+CLB6(t+1)

-CDC20(t-4) => -
CLB6(t+1)

MCM1
SIC1 M/G1 +CLN3(t) => 

+SIC1(t+1)
+CLB2(t-1) => 
+SIC1(t+1)

-CLN2(t-2) => 
+SIC1(t+1)

+CLB1(t-3) => 
+SIC1(t+1)

SWI6 -SKP1(t)-CLN2(t) => 
-SWI6(t+1)

CDC28 -MBP1(t) => 
+CDC28(t+1)

-CLB6(t-4) => 
+CDC28(t+1)

CDC53
MBP1 +MCM1(t-1) => -

MBP1(t+1)
-SKP1(t-3) => 
+MBP1(t+1)

CDC34 -CDC34(t-2) => 
+CDC34(t+1)

-CDC34(t-4) => 
+CDC34(t+1)

SWI5 M +CLB1(t) => 
+SWI5(t+1)

-SIC1(t-1) => 
+SWI5(t+1)

-SIC1(t-1) => 
+SWI5(t+1)

-SIC1(t-1) => 
+SWI5(t+1)

-SIC1(t-1) => 
+SWI5(t+1)

SKP1 -SWI6(t-1) => -
SKP1(t+1)

+MBP1(t-2) => 
+SKP1(t+1)

SWI4 M/G1 +CDC28(t) => 
+SWI4(t+1)

+CLB2(t-2) => 
+SWI4(t+1)

+CLB2(t-2) => 
+SWI4(t+1)

-CLB5(t-4) => 
+SWI4(t+1)

CDC20 M -CLB1(t) => -
CDC20(t+1)

+CLB1(t-1) => 
+CDC20(t+1)

+CLB1(t-1) => 
+CDC20(t+1)

-SWI6(t-3) => -
CDC20(t+1)

-SWI6(t-3) => -
CDC20(t+1)

HCT1
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The time-delayed gene regulatory networks for yeast cell cyclingFigure 3
The time-delayed gene regulatory networks for yeast cell cycling.
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There are usually two gaps (G1 and G2) that separate S
and M phases. After the M phase, the cell enters the G1
phase and a cell cycle is completed. It has been docu-
mented that four classes of elements control the yeast cell-
cycle network: cyclins (e.g., CLN1-3, CLB1-2 and CLB4-6);
the inhibitors, degraders, and competitors of the cyckin/
CDC28 complexes (e.g., SIC1 and CDC20); transcription
factors (e.g., MCM1 and SWIs) and checkpoints (the cell
size, the DNA replication and damage, and the spindle
assembly) [6].

The rules extracted from the confident trees are perfectly
consistent with the current knowledge for the cell-cycle
gene expression patterns. For examples, we identified the
following two rules: +CLB6(t) => -CLB1(t + 1) and
+CLB6(t) => -CLB2(t + 1) (Table 1 and figure 3), which
were also found in a previous molecular experiment [40].
Strikingly, a protein-protein networking provided evi-
dence of these relations at protein level [6]. Gene CLB6,
which promotes progression of cells into S phase [41], is
expressed periodically throughout the cell cycle and is
most abundant during late G1 [36,41]. Genes CLB1 and
CLB2 both promote cell cycle progression into mitosis
[42] and their transcripts accumulate during G2 and M,
but their activities are repressed at the end of mitosis
[22,36,43,44]. The relation of +CLB1(t) => +SWI5(t + 1)
(Table 1 and figure 3) was also documented previously
[40], where SWI5 encodes a transcription factor that acti-
vates transcription of genes expressed at the M/G1 bound-
ary and in G1 phase of the cell cycle [45-47]. SWI5 itself is
transcribed in G2 phase [48] and has a maximal expres-
sion in G2/M [49,50]. Again, this regulatory rule was iden-
tified at protein level previously [6].

Some confident trees and putative trees implicate the
same or similar relations. For instances, from confident
trees, we identified two relations that regulate genes CLB1
and CLB2: +CLB6(t) => -CLB1(t + 1) at T = 1, 3; and
+CLB6(t) =>-CLB2(t + 1) at T = 1, 2 (Table 1 and figure 3).
The same relations were identified from putative trees (at
T = 2 for CLB1 and T = 3 for CLB2). Many rules extracted
from putative trees (Table 1 and figure 3) also have clear
biological explanations and evidence. For example, the
relation of -SWI5(t) => +CLN1(t + 1) was identified previ-
ously [40], where CLN1 encodes the yeast cyclins involved
in the G1 to S phase transition and the transcription for
CLN1 is G1 specific [22,44]. The rule of -SIC1(t - 1) => -
CLN2(t + 1) is in good agreement with the current knowl-
edge for yeast phase characteristics. The maximum of SIC1
transcriptions are in M/G1, whereas CLN2, which encodes
a G1 cyclin, has the peak expression in G1 [51].

The TdGRN modeling is robust to variation of T, which is
in agreement with the previous result that the yeast cell-
cycle network is rather stable against perturbations [6].

We can draw the same conclusion when we change the
value of T. For instance, when T = 1, 2, 4, 5 we identified
the same rule, -SWI5(t) => +CLN1(t + 1). At T = 3, we
could also extract this regulation at a lower accuracy. If
some regulations were predominating at certain time
points, we could still identify the rest at other time points.
Take CLN2 as an example. When T = 1, we identified
+CLB1(t) => -CLN2(t + 1) but -SIC1(t - 1) => -CLN2(t +
1) was identified at T = 2, 3, 4, 5,. We speculate that in the
scenario of one unit of time delayed, CLB1 repressed the
transcription of CLN2 while the activation of SIC1 to
CLN2 was dominative when T was larger than one. How-
ever, there may be other reasons for a same regulation
being identified repeatedly as increasing the range of T:
(1) it might be related with the high periodicity of the
involved genes or with the long-lasting behaviours of the
regulation; (2) it might be due to a number of shortcom-
ings that arise with the approach used or for that matter
any approach; (3) most of the data generated was not uni-
formly sampled so although we used only time-points
that are equidistant there is no easy way to check if we
have data for the right control points when a regulation
happens; and (4) a further explanation could be that we
see such interactions because the underlying process is not
stationary as the cell-cycle has many phases. However this
would happen for time-points that are more spread out.

Several genes (CLB5, MCM1, CDC53 and HCT1) did not
generate any meaningful rules. There are several possible
reasons for the results. One obvious limitation of the
microarray technology is that it gives us information
about gene regulations only at the level of transcription.
Nevertheless, some regulatory interactions between genes
may be at protein level, which cannot be revealed directly
using miroarray experiments. For example, Li et al. [6]
identified several regulatory rules for CLB5 and MCM1 at
protein level. Furthermore, mRNA extractions in the cdc15
experiment were made every 10 minutes during three cell
cycles, which may not be frequent enough to observe all
the events.

Additional file 2 and Figure 4 give a brief summary from
comprehensive biological support analysis of the identi-
fied gene regulations for Yeast cell cycling. In total, we
identified 32 statistically significant multiple-time-
delayed gene regulations for the studied 20 genes
involved in Saccharomyces Cerevisiae cell cycling. Then, we
subject these gene-gene relationships to biological verifi-
cations using the knowledge pools of KEGG [52], SGD,
and CYGD [53] databases. For this purpose, we defined
three categories of biological evidence: supportive if there
is explicit and direct experimental evidence demonstrat-
ing presence of such a regulatory relationship; predictive
if previously documented evidence implies the possibili-
ties of the regulatory interplays between the genes as
Page 7 of 20
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defined in the multiple-time-delayed gene regulations,
but the exact time-delayed mechanism(s) remains to be
experimentally verified; and new hypothetical if the bio-
logical knowledge for the regulation is totally lacking so
far. After performing the comprehensive knowledge
searching, we found that 72% of 32 uncovered relations

(11 in supportive category and 12 in predictive category)
are biologically sounding and documented previously,
and the remaining 9 new hypothetical ones lack knowl-
edge so far (see Table S2 in Additional file 2 for detail).
However, we might miss some important biological evi-
dence such as documented in other languages, and

The degree of biological support for yeast cell cyclingFigure 4
The degree of biological support for yeast cell cycling.
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Table 2: List of the identified time-delayed gene regulations for human Hela cell cycling. In the bold style are the rules extracted from 
confident trees and in the regular style are the rules extracted from putative trees.

Gene Name Peak phase Time Delayed

One-unit time One-unit time Three-unit time Four-unit time Five-unit time

PCNA G1/S +E2F1(t-
1)+CCNA2(t-1)-
CDC20(t-1) => 
+PCNA(t+1)

NPAT G1/S -CDC2(t-1) => 
+NPAT(t+1)

E2F1 G1/S +BUB1B(t) => -
E2F1(t+1)

+BUB1B(t) => -
E2F1(t+1)

CCNE1 G1/S +CDC2(t)-
CDC25B(t) => 
+CCNE1(t+1)

+CDC2(t-
1)+CDC20(t-1) => 
+CCNE1(t+1)

+CDC2(t-
1)+CDC20(t-1) => 
+CCNE1(t+1)

+CDC2(t-
1)+CDC20(t-1) => 
+CCNE1(t+1)

-CCNF(t)-CDC20(t-
4) => -CCNE1(t+1)

CDC25A G1/S -CCNE1(t)-
CCNE1(t) 
+CDC20(t) => -
CDC25A(t+1)

-CCNE1(t)-BUB1B(t-
1) => 
+CDC25A(t+1)

-CCNE1(t)-STK15(t) 
=> +CDC25A(t+1)

CDKN1A G1/S -CDKN1A(t)-
DHFR(t) => 
+CDKN1A(t+1)

-CDKN1A(t)-
DHFR(t-1) => 
+CDKN1A(t+1)

-CDKN1A(t)-
BRCA1(t-2) => 
+CDKN1A(t+1)

-
CDKN1A(t)+CDC20
(t-3) => 
+CDKN1A(t+1)

-
CDKN1A(t)+CDC20
(t-3) => 
+CDKN1A(t+1)

BRCA1 S
DHFR S +BUB1B(t-

1)+CDC25A(t-1) 
=> +DHFR(t+1)

TYMS S
CCNF G2 +CDC2(t) -

BUB1B(t) => -
CCNF(t+1)

+CDC2(t)-STK15(t-
1) => -CCNF(t+1)

-
CDC2(t)+CDC25C(t
) => +CCNF(t+1)

+CDC2(t) => 
+CCNF(t+1)

+CDC2(t) => 
+CCNF(t+1)

CCNA2 G2 -CDC2(t)+STK15(t) 
=> +CCNA2(t+1)

+CDC2(t)-STK15(t-
1) => -CCNA2(t+1)

+CDC2(t) => 
+CCNA2(t+1)

+CDC2(t) => 
+CCNA2(t+1)

CDC20 G2/M -STK15(t)-CKS2(t) 
=> -CDC20(t+1)

-
STK15(t)+CDC20(
t-1) => 
+CDC20(t+1)

-
STK15(t)+CDC20(
t-2) => 
+CDC20(t+1)

-CKS2(t)-CDC20(t-3) 
=> +CDC20(t+1)

+CCNE1(t)+TYMS(t) 
=> +CDC20(t+1)

STK15 G2/M -CCNF(t)-
CCNE1(t) => 
+STK15(t+1)

-CCNF(t)-
CCNE1(t) => 
+STK15(t+1)

+CDC2(t-
1)+CDC20(t-1) => 
-STK15(t+1)

-CDC2(t-1) => -
STK15(t+1)

-CCNF(t) => -
STK15(t+1)

BUB1B G2/M +CDC2(t-
1)+CDC20(t-1) => -
BUB1B(t+1)

+CDC2(t-
1)+CDC20(t-1) => -
BUB1B(t+1)

+CDC2(t-
1)+CDC20(t-1) => -
BUB1B(t+1)

CKS2 G2/M -CCNF(t)-
PCNA(t) => 
+CKS2(t+1)

+CCNA2(t-1)-
BRCA1(t-1) => -
CKS2(t+1)

+CCNA2(t-1)-
BRCA1(t-1) => -
CKS2(t+1)

+CCNA2(t-
1)+CKS2(t-3) => -
CKS2(t+1)

-STK15(t) => -
CKS2(t+1)

CDC25C G2/M +CDC2(t)+TYMS(t)-
CDKN1A(t-1) => 
+CDC25C(t+1)

+CDC2(t)+TYMS(t)-
CDKN1A(t-1) => 
+CDC25C(t+1)

+CDC2(t)+TYMS(
t)+PCNA(t-3) => 
+CDC25C(t+1)

+CDC2(t)+CDC25
A(t-4)-CDC20(t-3) 
=> +CDC25C(t+1)

PLK G2/M -STK15(t)-
CCNF(t) => -
PLK(t+1)

-STK15(t)-
CCNF(t) => -
PLK(t+1)

-STK15(t)-
CCNF(t) => -
PLK(t+1)

-STK15(t)-
CCNF(t) => -
PLK(t+1)

-STK15(t)-CKS2(t-
4) => +PLK(t+1)

CCNB1 G2/M
CDC25B G2/M -CKS2(t)-

CDKN1A(t)-
BUB1B(t) => -
CDC25B(t+1)

-CKS2(t)+PCNA(t-1) 
=> +CDC25B(t+1)

-CKS2(t)-
CDC20(t-2) => 
+CDC25B(t+1)

-CKS2(t)-CDC20(t-4) 
=> +CDC25B(t+1)

CDC2 G2/M -CDC2(t) => -
CDC2(t+1)

-E2F1(t-4) => -
CDC2(t+1)
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unpublished results performed by individual labs. The
knowledge for most of supportive relationships is mainly
derived from and cross-verified by multiple sources (arti-
cles and databases). For example, for the mechanism that
gene CLB1 inhibits gene CLN2, we found multiple lines of
evidence in SGD database and PUBMED articles to sup-
port that the G2 cyclins CLB1P, CLB2P, CLB3P, and
CLB4P inhibit CLN1 and CLN2 transcription.

Identification of the time-delayed regulations for human 
HeLa cell cycling
The human HeLa cell cycling dataset used in this study
was part of a large-scale genome-wide program of gene
transcriptional profiling during the cell division in a
human cancer cell line [39]. The purpose of the previous
study was to identify genes periodically expressed in the
human cell cycle and to provide a comprehensive catalog
of cell cycle regulation genes that can serve as a starting
point for functional discovery. Thus, in some sense, our
analysis can be considered to be a further work of the pre-
vious study — to identify their functional relations
between the cell cycle regulation genes. Using spotted
cDNA microarrays, containing 22,692 elements repre-
senting ~16,322 different human genes or containing
43,198 elements representing ~29,621 genes (estimated
by UNIGENE clusters), Whitfield et al. [39] identified a
list of the periodically expressed genes based on the esti-
mates of "periodicity score". They found that most of
these periodically expressed genes had previously been
reported to correlate with the proliferative state of tumors.
As the method of periodicity score that Whitfield et al.
[39] used in their analysis has conceptually the same or
similar basis as the one we proposed here for networking,
i.e., to capture the temporal trends of the cell cycle regu-
lated genes, comparison of our results with the previous
ones produced many interesting consistencies. Our results
for the learnt classifiers' accuracies and the extracted gene
regulations are given in Additional file 3 and Table 2,
respectively. The derived time-delayed gene regulatory
networks for 20 Hela cell cycling genes are shown in Fig-
ure 5.

The most striking consistency are our discoveries of the
highly confident regulations for STK15 and PLK (see
Tables 2 and Figure 5), the top two cell cycle regulated
genes with the highest periodicity scores of 58.8 and 56.0,
respectively [39]. Both genes had peak expression at the
phase G2/M and had been together mapped onto a sepa-
rate mitotic cluster [39]. Lengauer et al. [54] showed that
the two genes have roles in centrosome duplication,
whose improper expression is a potential cause of tumor
aneuploidy. It is fully logical that we could discover the
highly confident gene regulations at all the time spans
explored for both genes. It is worth to note that the activity
of STK15 was negatively regulated by genes CCNF and

CCNE1, whose peak expression was at G1/S and G2,
respectively. The temporally sequential nature of the iden-
tified regulations might well establish a causal relation-
ship between the regulating genes and the regulated gene.
At all the time spans, we found that PLK was regulated by
STK15 and/or CCNF. The interactions between the three
genes can be seen clearly on the integrated topology as
shown in Figure 5.

We also obtained interesting results for gene BRCA1, for
which no single putative or confident regulation was iden-
tified (Table 2 and Figure 5). Although BRCA1 may be a
cell cycle regulated gene based on its periodicity score
(5.17), the G1 and/or S phase gene showed heterogene-
ous expression in tumours, suggesting that the regulation
of the gene is more complex than simple restriction of
transcription to a particular phase of the cell division cycle
[39]. However, the result that no single putative or confi-
dent regulation for CCNB1 (cyclin B1) was identified is
not expected because based on its periodicity score (24.3)
it was considered to be one of representative cell cycle
genes [39]. Interestingly, Whitfield et al. [39] also failed to
assign this gene by cell cycle phase because CCNB1 fell
just outside one of three identified mitotic clusters. A
recent study [55] suggests that high expression of cyclin
B1 predicts a favourable outcome of patients with follicu-
lar lymphoma. We thus conceive that this cell cycle regu-
lated gene may have a role in maintaining normal
proliferation of human cells, but is not responsible for the
aberrant duplication behaviours in cancer cells

Because of the scope of the paper, we only highlight a few
of the identified gene regulations for human HeLa cell
cycles. The first groups to be highlighted are the regula-
tions of +CDC2(t) +- other genes => +CDC25C(t+1)
(Table 2 and Figure 5), which were identified from confi-
dent trees and/or putative trees. CDC2 (cell division cycle
2) is a member of the Ser/Thr protein kinase family. This
protein is a catalytic subunit of the highly conserved pro-
tein kinase complex known as M-phase promoting factor
(MPF), which is essential for G1/S and G2/M phase tran-
sitions of eukaryotic cell cycle. CDC25C (cell division
cycle 25C) is a tyrosine phosphatase and belongs to the
CDC25 phosphatase family. It plays a key role in the reg-
ulation of cell division. Cyclin B-Cdc2 can phosphorylate
and activate CDC25C, forming a positive feedback loop
that contributes to the abrupt transition from G2 into M
phase [56,57]. These previous facts have convincingly val-
idated our networking results.

The second highlight is gene E2F1, which was identified
to be a regulator for PCNA and CDC2: +E2F1(t - 1) +-
other genes => +PCNA(t + 1) and -E2F1(t - 4) => -CDC2(t
+ 1) (Table 2 and Figure 5). Strikingly, both regulations
were demonstrated using Northern blots assays [58].
Page 10 of 20
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The time-delayed gene regulatory networks for the human HeLa cell cyclingFigure 5
The time-delayed gene regulatory networks for the human HeLa cell cycling.
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Many of genes expressed at G1/S and S phase are known
E2F target. A study of the cell cycle and the E2F transcrip-
tion factors in mouse embryo fibroblast, using microar-
ray, identified both G1/S and S phase genes, as well as
genes expressed at G2 and M phase, as targets of E2F [59].
The protein encoded by E2F1 is a member of the E2F fam-
ily of transcription factors. The E2F family plays a crucial
role in control of the cell cycling. The protein encoded by
PCNA was found in the nucleus and is a cofactor of DNA
polymerase delta. The encoded protein acts as a homot-
rimer and helps increase the processivity of leading strand
synthesis during DNA replication. Many of the genes that
encodes S-phase-acting proteins, including DNA polymer-
ase alpha, thymidylate synthase, proliferating cell nuclear
antigen, and ribonucleotide reductase, are in fact induced
by E2F1. In addition to the S-phase genes, several genes
that play regulatory roles in cell cycle progression, such as
the cdc2, cyclin A, and B-myb genes, are also induced by
E2F1 [58].

Strong experimental evidence can also be established for
the regulation of CDC20: -STK15(t) +CDC20(t - 1) =>
+CDC20(t + 1) (Table 2 and Figure 5). CDC20/fizzy fam-
ily proteins are involved in activation of the anaphase-
promoting complex/cyclosome, which catalyzes the ubiq-
uitin-dependent proteolysis of cell cycle regulatory pro-
teins such as anaphase inhibitors and mitotic cyclins,
leading to chromosome segregation and exit from mito-
sis. Aurora2/Aik (STK15), a member of the aurora/Ip11
family of kinases, was implicated previously in the path-
ways regulating chromosome segregation. In HeLa cells,
CDC20 is associated with the kinase aurora2/Aik because
this enzyme could regulate the function of CDC20 that
often act as a targeting subunit for aurora2/Aik [60]. The
finally highlighted gene regulation is +CDC2(t) =>
+CCNA2(t + 1) (Table 2 and Figure 5), where CCNA2
(cyclin A2) belongs to the highly conserved cyclin family,
whose members are characterized by a dramatic periodic-
ity in protein abundance through the cell cycles. Yam et al.
[61] presented evidence from in vitro and in vivo assay
systems that the degradation of human cyclin A can be
inhibited by kinase-inactive mutants of CDC2.

Additional file 4 gives a brief summary from comprehen-
sive biological support analysis of the identified gene reg-
ulations for 20 Hela cell cycling genes. Totally, we
extracted 58 time-delayed gene regulations. By consider-
ing 24 overlapping ones, there are 44 unique gene-gene
relationships. The detailed explanation for each time-
delayed regulation is given in Table S4 in the additional
file. We annotated our results with PUBMED, Entrez
Gene, BIND [62] and KEGG databases. Based on the
degree of biological support, 18 time-delayed regulations
are supportive, 10 predictive and 16 new hypothetical.
Therefore, 64% of the uncovered relations (18 supportive

and 10 predictive) are biologically sounding and docu-
mented previously.

Overall, in most cases, the extracted rules for both yeast
and human HeLa cell cycling confirm the current knowl-
edge about their gene regulations, while hitherto a few
newly discovered ones can be treated as the novel hypoth-
eses to be verified and may define novel genetic pathways.

Discussion
In this paper, we have introduced the TdGRN method
(Time-delayed Gene Regulatory Network) to address
genetic dependencies with the time frames over more
than one unit of time. We used a decision tree to discover
the time-delayed regulations between the underlying
genes. The main advantages of the proposed method are
as follows. First, it can be efficiently used to unravel the
gene regulations delayed T units of time apart without pri-
ori discretisation of the continuous gene expression data
to circumvent the information loss. Essentially, it is free
from the problem associated with definition of the
number of regulating genes, k, which is often arbitrarily
determined. Second, the regulations are extracted in par-
allel with construction of decision trees. It thus enjoys the
merit of easy interpretation. Third, time series data are not
the only type of data to which our method is applicable.
It is straightforward to use the novel algorithm to explore
various cases where potential dependencies between dif-
ferent experimental units might occur, for example, to
identify the regulations related to the development, aging,
and the progressive pathogenesis of a complex disease at
molecular levels.

However, several issues for the proposed method are war-
ranted further investigations. Although the empirical
threshold for prediction accuracy, determined by permu-
tations, provides a robust measure of statistical signifi-
cance for a regulation rule, directly working on a large
feature gene set of thousands of genes can be computa-
tionally high demanding. Nevertheless, use of our newly
proposed ensemble approach for dimensional reduction
and for mining the target-relevant genes can efficiently
solve this issue [63]. Alternatively, before reversely engi-
neering the underlying gene networks, one may consider
using "periodicity score" method to identify periodically
expressed genes [36,39]. Our proposed method has some
analogies to the "periodicity score" method. The latter was
mainly used to capture the temporal characteristics of an
individual gene by modelling the time series trends of the
genes using a known function such as a Fourier transform
although the gene expression profiles of many cell cycle
genes do not precisely match sine and cosine curves. In
fact, this kind of data reduction approach is similar to the
use of summary measures (mean, slope and principal
components) of multiple longitudinal data in repeated
Page 12 of 20
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measure analysis [64]. Recently, hidden Markov models
have been increasingly applied to analysis of temporal
gene expression data such as for yeast cell cycling [32,65]
and can be considered being used for both identification
of periodically expressed genes and gene networking
because additional time series correlations within and
between cell cycling genes can be taken into properly.

Identification of cell cycling feature genes provides a com-
prehensive list of cell cycle regulation genes for exploring
the more involved gene-gene interactions. In some sense,
to unravel their functional relations between the cell cycle
regulation genes can be considered to be a continual work
and is a focus in modern functional genomics. For the
purpose of demonstration, we applied to 20 genes for
each of the two publicly available datasets. Nevertheless,
larger gene sets would not impose a difficulty in applica-
tion of the proposed algorithm as tree models used in this
study has been demonstrated to be robust to a dimension
curse [63]. Despite this fact, directly networking genes
using the raw expression data of thousands of genes is not
a recommended strategy as this analysis strategy may
introduce noises in the gene networks and significantly
increases the computing load. Therefore, an ideal way is to
extract the optimal regulating (and the regulated) gene
subset beforehand, e.g. using a robust global search algo-
rithm such as a hybrid between genetic algorithm and
support vector machines that we developed recently [66].
In the proposed method, we built gene regulations for
each target gene separately. To deduce larger gene-interac-
tion networks, one can combine the results for all the tar-
get genes to construct larger networks of gene inter-
relationship by connecting genes by directed edges
according to the identified regulations, as done in Figures
3 and 5. It should be noted that a globally optimal gene
network for a biological mechanism may not be accom-
plished using a single dataset (or experiment). However,
the proposed TdGRN model can easily accommodate new
data acquired further to accumulate our knowledge for the
gene-gene interplays gradually till the fully elucidated
genetic architecture is obtained.

Regarding which, a model-based or model-free approach,
is more efficient for dissecting the dynamic mechanisms
of the longitudinal gene-gene regulations, the debates will
perhaps continue. In our own opinions, instead treating
the two types of approaches as competitors, integrating
their respective merits is expected to be more helpful in
probing the mysteries of the underlying gene networking
mechanisms. Based on theories of statistical inference, it
can be proved that the elegant model-based dynamic
models with a solid distribution-theory basis are mathe-
matically more sounding and more powerful than model-
free approaches without relying on the support. However,
before a powerful model-based approach is applied to a

practical forum, one has to assure that the underlying
complexities can be depicted fairly accurately by the
model, which would remain to be a challenging issue
prior to accumulation of sufficient knowledge about the
biological system or one can consider using a less strict
model-free approach as a first-cut networking mining
tool. In our recent study for exploring modes of gene-gene
relations for Hela cell cycling (brief results are given in
Additional file 5), we found that the gene-gene relations
almost equal-likely follow three common modes (paral-
lel, time-shifted and inverted), identified by a local align-
ment algorithm [67]. We observed that the relationships
for the gene pairs that are expressed in parallel or time-
shifted manner are only obvious in the same or the neigh-
bouring cell cycle phases, while for the gene pairs that are
of the inverted relationship, their transcriptional activities
span at least one phase apart. These data have two impor-
tant implications for computational gene networking.
First, the traditional static networking approaches (i.e.
without modelling the time-delayed effects) are limited
for analyzing such time-series data. Second, the mixture of
three relation modes would impose additional difficulties
in precisely mathematical modelling. Consequently, a
robust time-delayed gene networking (against both intrin-
sic noise in the microarray data and inherent biological
complexities) is highly demanding.

Our proposed TdGRN can be rendered a well-conceived
model-free approach that attempts to learn the underlying
regulatory rules without relying on any model assump-
tions (e.g. the network architecture, the number of regu-
lating genes, and so on). Although we have seen several
published methods for exploring the time trends of tran-
scriptional activities on per gene basis, to our knowledge,
we are among the pioneering groups to formalize a sys-
tematic model-free approach to explore the dynamic
properties and behaviours of multiple-time-delayed gene
regulations. Because of the very nature of the method, we
would rather consider TdGRN as a tactful analysis strategy
whose major goal is to transform massive biological data
into a simple mechanistic understanding. In addition, we
have performed a comprehensive biological support anal-
ysis for the identified time-delayed regulations by match-
ing various knowledge databases such as Entrez Gene,
PUBMED, KEGG, BIND, SGD and CYGD. The knowledge
mining has demonstrated that most of the gene regula-
tions identified by TdGRN enjoy good biological evidence
support. We found that 72% of 32 uncovered regulations
for Yeast and 64% of 44 uncovered regulations for Hela
cells are biologically sounding and evidence-based. These
results have well established the robust bioinformatics
toolbox as a promising and feasible computational
approach to generating a working blueprint for mapping
the dynamic mechanisms of time-delayed gene regula-
tions.
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The exponential increases of the amount of massive time-
series data have offered rich opportunities to uncover
causal gene-gene or gene-phenotype relationships. Time
series data structure offers a necessary (but not sufficient)
condition – time lag to infer a cause-effect relationship
[30]. Despite its fundamental importance in modern bio-
medicine, to uncover cause-effect relationships is yet a
very challenging topic for computational biologists. From
a methodological view, many computational tools are
"correlation-" or "association-" based. Strictly speaking,
such models are not able to reveal causal gene-gene or
gene-phenotype relationships. The identified relation-
ships are of bi-directions or no direction at all. The typical
algorithms are various clustering approaches and distance
measures that are motivated by the hypothesis that genes
with similar expression profiles are likely to be co-regu-
lated. Thus, a high gene-gene correlation (or anti-correla-
tion) measured by these approaches can be due to the fact
that (1) gene A regulates gene B; or (2) gene B regulates
gene A or (3) genes A and B are being co-regulated by a
third gene C; or (4) accidental. The proposed TdGRN
method attempts to identify the relationship between the
genes whose activities can be delayed by multiple time
points. A gene at time t + 1 is potentially regulated (trig-
gered) by the genes at previous (not later) time points {t,
t - 1, …, t - (T - 1)}. This longitudinal configuration for the
regulated gene and the regulating genes meets the neces-
sary condition (time lag) for a cause-effect relationship to
occur. The decision-tree learning core for TdGRN makes
multiple-layer decisions at the recursive partitions to cap-
ture both the individual effects of a regulating gene gA and
its synergic effects with other attributed genes that are
imposed on the activity states of the target gene gi. Then,
we employed very strict accuracy criteria to remove any
accidental "cause-effect" relationship. Thus, we believe
that the time-delayed gene-gene relationships identified
by TdGRN are more likely to be causal. Nevertheless, it
should be cautioned that the proposed model-free
approach cannot distinguish well between a causal gene-
gene regulation and the scenarios where genes A and B are
being co-regulated by a third gene C, which can be further
elaborated using a suitable model-based approach or a
well-designed molecular experiment.

Conclusion
In summary, we have described a novel model-free
approach for reconstructing the time-delayed gene regula-
tory networks. We have applied the proposed method to
yeast cell cycling and human HeLa cell cycling and have
discovered most of the underlying time-delayed regula-
tions that are supported by multiple lines of experimental
evidence and that are remarkably consistent with the cur-
rent knowledge on phase characteristics for the cell
cyclings. The regulations extracted from confident trees
are perfectly consistent with the current knowledge for the
cell-cycle gene expression patterns. This novel approach
can be efficiently used to unravel the gene regulations
delayed T units of time apart without priori discretisation
of the continuous gene expression data and is robust to
variation of T. Furthermore, the regulations are extracted
in parallel with construction of decision trees. It thus
enjoys the merit of easy interpretation.

Methods
Constructing the time-delayed gene expression profiles 
(TdE)
Gene expression profile can be represented as an n × m
matrix, E = (eij), where each row represents a gene and
each column represents expression values measured
under different experimental conditions, or different
physiological and developmental stages, or the data
obtained by monitoring the expression levels of a gene at
different time points involved in a biological process (e.g.,
cell cycles). The element eij in row i and column j of the E
matrix denotes the expression level of gene gi in the j th
measurement. In the TdGRN model, a gene at time t + 1 is
potentially regulated by the genes at previous time points
(say, time points t, t - 1, …, t - (T - 1)), where T is the max-
imal time span explored). We thus reshaped the E matrix
into TdE to elucidate the time-delayed effects.

The method to construct TdE is given as follows. Assume
that the gene expression profile E is an n × m matrix. TdE
will then be an (m - T) × (n × T) matrix, where each T-col-
umns block in the n × T columns represents the activities
of each of the n (regulating) genes at time points t, t - 1,
…, t-(T - 1) and each row is therefore an (n × T)-dimen-

Table 3: The Di = (TdE Ci) matrix for the target gene gi. g1, …, gn are the putative regulating genes to be assessed. dkl values are the 
temporal transcriptions of these genes. Cidenotes the phenotype (state) vector for the target gene gi at the temporal point (T + 1, ..., 
m).

Gene\t + 1 g1 … gn Ci

t - (T - 1) … t - 1 t t - (T - 1) … t - 1 t

T + 1 d11 … d1(T-1) d1T … dn1 … dn(T-1) dnT Ci(T+1)
T+2 d12 … d1T d1(T+1) … dn2 … dnT dn(T+1) Ci(T+2)
… … … … … … … … … … …

T + (m - T) d1(m-T) … d1(m-2) d1(m-1) … dn(m-T) … dn(m-2) dn(m-1) Cim
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sion vector. As the value of t changes from T to m - 1, the
time window moves from the first time point to the m - T
time point, it produces m - T such vectors or called m - T
samples. Next, we set up the corresponding phenotype
(label) for each sample, which was determined by the
states of the target (regulated) gene (gi). The completed
data for the time-delayed gene expression profiles for the
target gene were denoted by Di = (TdE, Ci), where Ci is a
column vector of states for gene gi. In our method, we
assumed that the transcription machinery of gene gi can be
in a finite number of different states, and that the expres-
sion of the gene is determined by its state. The flexibility
of the approach is that we can explore different interpreta-
tions of states. For simplicity, we only reported the sce-
nario for two states, i.e., 'upregulated' or 'downregulated'
here. More precisely, we defined a state function σi for
gene gi such that given its real expression value eik (at time
point k = T + 1, T + 2, ..., m) it returns a value (Cik) from a
discrete domain. Let us assume that σi is a function that
returns '1' if gene gi is 'downregulated' and '2' if it is 'upreg-
ulated'. As the expression values in the analyzed datasets
were the log ratios, we therefore chose the zero as the
threshold to distinguish the two different states. Thus, in
this particular case, σi (eik) ∈ {1, 2}. Given the expression
value eik of gene gi, and the σi function, we defined the
state of the target gene as:

The Di = (TdE, Ci) matrix for the target gene gi is given in
Table 3.

TdGRN method
The goal for the TdGRN modelling was to unravel the
time-delayed gene regulations. The basic idea is that for
the target gene gi we seek for the interacting attribute gene
gA that regulates the expression of gene gi. The inputs for
TdGRN are Di and T (the maximal time span explored),
while the outputs are the relations between the regulating
genes and the target regulated gene. Thus, in some sense,
this modelling can be conceived to be the search of the rel-
evant biological decision rules. We defined a classifier, I,
as a function that maps a sample of TdE to a discrete value.
In this study, we applied a decision tree as the learner [63].
Identification of biological regulatory rules parallels with
the construction of an inverse tree, starting from root and
ending with leaves (terminal nodes) or till a stopping rule
for tree growth was satisfied.

Evaluating the learnt regulations
In order to identify significant and meaningful regulations
between genes, we filtered out the adequate decision trees
first. For this purpose, we defined three degrees of cer-
tainty for a tree. If a decision tree achieved accuracies

higher than a specified threshold (α) in all evaluation
datasets (either different experimental datasets or a cross-
validation permutated replicate), we deemed it to be a
confident tree. If a decision tree achieved accuracies
higher than a specified threshold (α) in some evaluation
datasets but not in others, we conceived it of being a puta-
tive tree. If the accuracies of a decision tree in all evalua-
tions were lower than α, we defined it to be a random tree.
In order to minimize the risk of extracting some false pos-
itives occurring by chance, we discarded those random
trees. We used permutations to identify the threshold at
the Type I error of 0.05. The detailed procedures for per-
mutation are given in the next section.

In a decision tree, each path from root to a leaf defines a
regulatory rule. The rule +CLB1(t - 1) => +CDC20(t + 1)
in Figure 6 is straightforward and can be interpreted in
terms of 'upregulated' or 'downregulated' because there is
only one branch in this direction ('CLB1(t -1) > 0.4' impli-
cates that expression of CLB1 at time t - 1 is absolutely
upregulated). Therefore, we can infer that the upregula-
tion of CDC20 at time t + 1 is resulted from the rising of
CLB1's expression level at time t - 1. However, the other
branches are more difficult to be interpreted. The fact that
CLB1(t - 1) ≤ 0.4 does not unambiguously imply regula-

C e
upregulated if e

downregulated otherwiseik i ik
ik= =

>
σ ( )

( )
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2 0

1
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Decision tree for gene CDC20 as an example for extraction of regulatory rulesFigure 6
Decision tree for gene CDC20 as an example for extraction 
of regulatory rules.
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The graphic algorithm flow of the TdGRN methodFigure 7
The graphic algorithm flow of the TdGRN method.
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tions of 'upregulated' or 'downregulated' (the trend that
the value changes from 0 to 0.4 is 'upregulated' or vice
versa 'downregulated'). Nevertheless, this branch does not
mean that the genes are irrelevant and more explicit rules
are required to clarify the ambiguity.

Identifying the accuracy threshold (α) by permutations
We used permutations to identify the accuracy threshold
(α) corresponding to a specified Type I error rate for the
null hypothesis of no such a rule(s). First, we fixed the per-
centage of samples in every class (i.e., a state of the target
gene). We then randomly shuffled the phenotypes (labels
for the expression states of the target gene) of the samples
contained in Di = (TdE, Ci). The permuted Di is thus a ran-
domized replicate (ranDi), on which we built a recursive
partition tree. We repeated the same permutation proce-
dure 500 times and defined the 95% quantile as the
empirical threshold that corresponds to the Type I error of
0.05. We determined the threshold for every delayed time
point for each gene separately (the data are given in Addi-
tional files 6 and 7).

Computational algorithms
The numeric algorithm for the TdGRN model, organized
step-by-step, is described below and graphically depicted
by Figure 7. All the subroutines have been realized on the
MATLAB platform. The corresponding programming
codes are available upon written request to the authors.
The topological graphs of the time-delayed gene regula-
tory networks were drawn with the Graph Editor Toolkit
of the Tom Sawyer Software Series [68].

Step 1: Building the time-delayed gene expression profiles
(TdE):

1. Define a time window size of T and set the target gene
at the time T + 1. Organize expression data for each of n
genes in the order of time points 1, 2, …, T. Therefore, for
n genes, it is an n × T-dimension vector. We call this vector
the first sample of TdE.

2. Shift the time window to next time point (and now the
target gene is at the time T+2). Again, organize expression
data for each of n genes in the order of time points 2, 3,
…, T + 1. We called the n × T-dimension vector for n genes
the second sample of TdE.

3. The remaining sample vectors can be built similarly
until the right window margin reaches the time point of
m-1 (and now the target gene at the last time point
explored). The last sample vector consists of the expres-
sion data for n genes at time points m - T, m-T + 1, …, m -
1. Thus, there are totally m - T sample vectors (or samples
for short) in matrix TdE.

Step 2: Assigning a phenotypic label for each sample and
building up the training dataset Di (for the target gene gi):

1. If the expression level (the log ratio value) of the target
gene at a time point (T + 1, ..., m) is bigger than zero (i.e.,
upregulated), the phenotypic label for the corresponding
sample is '2'. Otherwise (i.e., downregulated), it is
assigned with the label '1'.

2. The labels for m - T samples are organized with an m -
T-dimension column vector, called phenotypic or state
vector. The resulting matrix Di, obtained by merging from
sample vectors and phenotypic vector, has dimensions of
(m - T) × (n × T + 1) and is used as the basic analysis unit
for discovery of multiple time-delayed regulatory net-
works (for a target gene).

Step 3: Identifying time-delayed regulatory rules by grow-
ing a decision tree on Di

1. As in the conventional usages of machine learning, each
row and column in TdE are termed a sample and a feature
vector, respectively. That is, there are totally m - T samples
and n × T features (columns).

2. At an internal node or at the root node of a tree, per-
form a recursive partition (for detail, see [63]). In brief, at
tree node ri(i = 0, 1, …), rank in descending order the val-
ues for each feature of TdE, say dkl (k = T + 1, T + 2, …, T +
(m - T)) for the expressions of the feature dl (l = 1, …, n ×
T) (i.e., a gene at a specific delayed time point). For feature
dl, its corresponding partition cutoff was determined by
the midpoints of two-ordered values, bkl = dkl + (dk + 1, l -
dkl)/2. Determined by its dl value, a sample was mapped
into w (here, w = 2) discrete values (i.e., assigning a
trained state for the target gene). Then, we repeated the
same procedures and computed an information gain for
each (gene) feature to identify the best at the node that
can achieve the maximum of the information gain. The
(gene) feature having the biggest information gain was
considered to be the best attribute to splitting. The infor-
mation gain (Gain (Ci, gA)) of the attribute feature gA (i.e.,
a gene at a previous time point) to the state set (Ci) of the
target gene gi was defined as:

where,  and Values (gA)

include all w discrete values of gene gA and Sv is a sample

subset consisting of the samples whose discrete values are

v (v ∈ Values (gA)). |Ci| and |Sv| are the norms for the sets
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Ci and Sv, respectively. ph is the proportion of the gene

states which are h ∈ σi in Ci. In this step, we identified not

only the best regulatory gene but also its regulating time.

Next, we used the best gene to bifurcate node r into two
child nodes, r1 and r2, on which we repeated the binary
partition analysis until a stopping rule for tree growth was
satisfied (i.e. a terminal node contains observations from
only one class or has the maximum allowed instances at a
node). A decision tree may contain multiple regulatory
rules defined by a path from the root node to a terminal
node. We thus extracted a path(s) that can unambigu-
ously implicate a gene regulation and abandoned the
remaining paths.

Step 4: For each grown tree, we used n-fold cross valida-
tion or external independent datasets to evaluate its accu-
racy for predicting the activity state of the target gene and
to define its degree of certainty as a regulatory rule.

Step 5: A random permutation procedure was imple-
mented independently for each of evaluation datasets to
provide an accuracy threshold at a specified Type I error
rate (e.g., 0.05) that can be a statistical measure for evalu-
ation of a putative decision tree, identified in Step 4.

Step 6: For the target gene gi, its multiple-time delayed
regulations were discovered using the procedures
described in Steps 1–5. We repeated the same procedures
for each of the target genes whose regulations to be sought
for.

Step 7: Based on the gene regulations extracted for the tar-
get genes, we construct the larger gene regulation net-
works according to different time-delayed frames. We
combine the data for all the target genes to construct larger
networks of gene inter-relationship by connecting genes
by directed edges.

List of abbreviations used
Time-delayed Gene Regulatory Network (TdGRN), Time-
delayed gene expression profiles (TdE), Cyclin-dependent
kinase (CDK), Thymidine (Thy), Nocodazole (Noc).
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