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Abstract
Background: Algorithms that locate evolutionarily conserved sequences have become powerful
tools for finding functional DNA elements, including transcription factor binding sites; however,
most methods do not take advantage of an explicit model for the constrained evolution of
functional DNA sequences.

Results: We developed a probabilistic framework that combines an HKY85 model, which assigns
probabilities to different base substitutions between species, and weight matrix models of
transcription factor binding sites, which describe the probabilities of observing particular
nucleotides at specific positions in the binding site. The method incorporates the phylogenies of
the species under consideration and takes into account the position specific variation of
transcription factor binding sites. Using our framework we assessed the suitability of alignments of
genomic sequences from commonly used species as substrates for comparative genomic
approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae
and related species by examining all possible six base pair DNA sequences (hexamers) and
identifying sequences that are conserved in a significant number of promoters. By combining similar
conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of
previously unidentified motifs. We tested one prediction experimentally, finding it to be a
regulatory element involved in the transcriptional response to glucose.

Conclusion: The experimental validation of a regulatory element prediction missed by other
large-scale motif finding studies demonstrates that our approach is a useful addition to the current
suite of tools for finding regulatory motifs.

Background
The central assumption of comparative genomics is that
functional sequences evolve under constraints while non-
functional sequences evolve neutrally. This simple
assumption underlies several useful algorithms that iden-
tify coding genes [1,2], non-coding RNAs [3-5], and cis-
regulatory sites [6-11]. However, current methods for
detecting cis-regulatory sites could be enhanced signifi-
cantly by addressing two major issues. First, most tran-

scription factor binding site (TFBS) analyses treat the
species under consideration as independent, ignoring the
underlying phylogeny that connects the species with each
other. Second, comparative genomic analyses should
incorporate known information about how functional
sequences evolve. For example, gene finders have specific
models for coding regions, splice donor and splice accep-
tor sites. Similar models of TFBS evolution should be
incorporated into motif finders. We therefore developed a
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method to find TFBS in the genomes of related species
that accounts both for the evolutionary relationships
between the species under consideration and provides an
explicit model for TFBS evolution based on weight matrix
models [12] of known cis-regulatory motifs.

Three algorithms that incorporate phylogenetic informa-
tion have recently been presented [13-15]. A major differ-
ence between the three methods is the underlying
evolutionary model used to take into account the phylo-
genetic relationships of the species under consideration.
EMnEM [14] uses a Jukes-Cantor model [16] in which the
substitution rate inside the regulatory element is fixed
ignoring the positional variation of the motif. PhyME [13]
and PhyloGibbs [15] use an evolutionary binding site
model proposed by Sinha et al. [17] which is similar to
Felsenstein's molecular evolution model [18]. This model
combines binding site specificity into the substitution
rates. As a natural progression we use a more detailed
HKY85 model [19], which allows us to incorporate bind-
ing site specificities as well as differences in transition and
transversion rates.

Another property that separates motif finding algorithms
is how they search the space of possible motifs. EMnEM
and PhyME use Expectation-Maximization to find an opti-
mal binding site, while PhyloGibbs uses a Gibbs sampling
approach. Both motif search methods are designed and
most commonly used to analyze sets of co-regulated
genes. However not all TFBS can be found in this way
because we lack sets of co-regulated genes for every tran-
scription factor. Our method uses an exhaustive search
technique that does not require an enriched set of genes
and is therefore well suited to look for regulatory elements
across all intergenic regions in the genome, without addi-
tional information on co-expression, functional annota-
tion, or DNA:protein interactions.

Other comparative genomics methods, including those
proposed by Cliften et al. [11] and Kellis et al. [10], have
been implemented that search the genome exhaustively
for regulatory elements. Our approach adds new informa-
tion by considering the underlying phylogeny while
exhaustively searching all hexamers for conserved
sequences across all intergenic regions. By combining
these hexamers we created putative regulatory motifs. We
experimentally tested one motif prediction and found it
to be a regulatory element that activates gene expression
in response to glucose.

Results
Evaluating binding site conservation
Sequences that match TFBS are often preserved in the pro-
moters of closely related species simply because there has
not been enough time for the sites to decay, and not

because they are functional. Therefore it may be beneficial
to weight the significance attributed to conserved
sequences in proportion to the phylogenetic distance
between the species in which the sequences are found. To
create a probability-based method that incorporates the
evolutionary relationships among species, we applied
molecular evolution models.

Molecular evolution models are used to analyze base sub-
stitutions between related species. For any given sequence
in a multiple alignment taken from different species we
determine whether the pattern of substitutions better fits
a neutral model of evolution or a conserved model of
TFBS evolution. An HKY85 [19] nucleotide substitution
model underlies both our neutral and conserved models
of TFBS evolution. The two models are identical except
that in the neutral model genomic base frequencies are
used as the equilibrium base frequencies whereas in the
conserved TFBS model position specific base frequencies
derived from weight matrix models of specific TFBS are
used. In concept, substitutions in a conserved motif are
allowed to occur at the neutral rate as long as they do not
disrupt the TFBS. By comparing likelihoods between the
two models over the entire binding site we determine
whether the conserved model is a significantly better fit
than the neutral model [20]. Likelihood ratio tests have
been used effectively in a number of diverse situations and
remain a powerful tool for testing simple hypotheses [21-
24]. Our comparison of likelihoods, which is similar to a
likelihood ratio test, enables us to incorporate phyloge-
netic distances and position specific motif variation into a
probabilistic framework.

Properties of the method
To determine the properties of this new approach we per-
formed searches for conserved sequences in simulated
intergenic regions. We simulated groups of orthologous
promoters from different numbers of species at different
evolutionary distances, which contained either conserved
or neutral instances of a binding site (see Methods). We
simulated over one million neutral binding sites in a total
of over one billion base pairs. We used the Chi-Squared
distribution as an approximation to our expected distribu-
tion of likelihood comparisons and set the significance
cutoff at an FDR of 0.1% (see Methods). Using these crite-
ria we did not observe a single false positive, an instance
of a neutral binding site being called significantly con-
served by the likelihood comparison. The results from
these simulated data suggest that the method has high
specificity with a false positive rate less than 1 in 106.

The sensitivity, or ability to find conserved binding sites,
of the method is affected by the number of species under
consideration as well as the evolutionary distance
between them, measured in substitutions per site. The
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addition of species and an increase in evolutionary dis-
tances both add to the sensitivity of the method. In Figure
1, some commonly compared organisms are plotted to
demonstrate the theoretical sensitivity of these different
data sets. For instance, with the Saccharomyces genomes
under consideration in this study we achieve a sensitivity
of 97%. Notably, alignments of human, mouse and rat do
not contain enough statistical power to determine signifi-
cantly conserved binding sites with high specificity. Most
of the occurrences of TFBSs in these alignments are
expected to be selectively neutral making the identifica-
tion of those under purifying selection difficult. Addition
of the chicken genome adds the resolution necessary to
detect regulatory elements in human-mouse-rat align-
ments. These results are in good agreement with the theo-
retical analysis of Eddy [25]. One caveat of these
simulations is that we assume perfect alignments at every
evolutionary distance. In practice increasing the evolu-
tionary distance between species increases the chances of
generating faulty alignments that would decrease the sen-
sitivity of the method. Since our results suggested that the
method should work on the related yeast species, we
decided to determine if our approach could be used to

identify functional regulatory elements shared among
these genomes.

We first determined whether our method of scoring con-
served sequences identifies functional instances of known
motifs. Using the likelihood comparison on intergenic
alignments [10] we classified all occurrences of MCB sites
as either neutral or conserved. MCB sites are bound by the
transcription factors Mbp1 and Swi6 which activate gene
expression in the G1 phase of the cell cycle [26]. We plot-
ted the expression levels, during a cell cycle time course
[27], of genes whose promoters contained MCB sites that
fit the neutral (Figure 2A) or the conserved (Figure 2B)
models. Genes with neutral MCB sites showed random
expression through the cell cycle while genes with con-
served MCB sites displayed a strong expression pattern
with two peaks corresponding to activation in the G1
phase of the cell cycle. These results suggest that our
method may be able to distinguish functional from non-
functional occurrences of TFBS.

We compared the output of our algorithm using either the
true MCB weight matrix or a matrix in which the columns
of the MCB model had been randomly shuffled. Although
this shuffled model contains the same base frequencies
and the same information content as the true MCB model,
it does not represent any known TFBS. Using the true MCB
site greatly enriched for positive log likelihood ratios (Fig-
ure 2C) (>70% of instances), indicating a better fit to the
conserved model than the neutral model, while the ran-
dom DNA motifs had more variation in log likelihood
ratios with more negative log ratios. The observation that
true regulatory elements have a very different distribution
of log likelihood ratios than random DNA motifs led us to
investigate whether the likelihood comparisons could
identify novel transcription factor binding sites.

Significantly conserved hexamers
To find new regulatory elements we decided to take an
exhaustive approach in order to efficiently search the
whole genome for regulatory elements. We therefore
tested all six base pair DNA sequences (hexamers). For
any particular hexamer, we identified all instances of that
sequence in intergenic alignments and tested them using
the likelihood comparison. We recorded the number of
significantly conserved sites and the number of neutral
sites for each hexamer to identify sequences in which a
high fraction of the occurrences were scored as conserved.
The assumption is that hexamers that are conserved often
are likely to be part of a transcription factor binding site.
The percentages of conserved sites for each hexamer are
plotted in Figure 3. The mean fraction conserved was
0.0697 with a standard deviation of 0.0447. This suggests
that most intergenic sequences are not significantly con-
served; however, there is large variability in the amount of

Sensitivity of the likelihood comparison on simulated dataFigure 1
Sensitivity of the likelihood comparison on simulated data. 
Colors represent method's sensitivity with different numbers 
of species at different evolutionary distances (measured in 
substitutions per site). Letters represent approximate place-
ment of commonly compared organisms. A: Yeast species 
used (96.964 % sensitivity) B : Human – Chimp (0 %) C : 
Human – Mouse – Rat (0 %) D : Human – Mouse – Rat – 
Chicken (83.489 %) E : Human – Mouse – Rat – Chicken – 
Dog (89.536 %) G : T. nigroviridis – T. rubripes – D. Rerio 
(68.372 %) H : C. elegans – C. brigssae – C. remanei (86.561 %) 
F : Human – Baboon – Cat – Dog – Cow – Pig – Mouse – Rat 
(98.761 %) I : D Melanogaster – D. simulans – D. yakuba – D. 
psuedoobscura (98.564 %).
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conservation between hexamers. The three most often
conserved hexamers (CGGGTA, CCGGGT, GGGTAA) all
match the Reb1 binding site showing that the most con-
served intergenic sequences are indeed cis-regulatory sites.

We used a Chi-squared test (see Methods) to determine
which hexamers were conserved in a higher fraction of
intergenic regions than expected by chance. The resulting
list consisted of 218 hexamers whose number of con-
served instances differed from expected with P < 0.001
(shown in red in Figure 3) (see Additional file 1). There is
no strict percentage cutoff corresponding to highly con-
served hexamers. This is due to the variability in the
number of intergenic occurrences for each sequence. Of
these 218 conserved hexamers, 124 (57%) matched
known binding sites, leaving 94 hexamers that were not
correlated with known motifs.

We used a simple alignment approach (see Methods) to
combine significant hexamers into motifs. From the start-
ing 218 hexamers we derived 66 alignments correspond-
ing to possible transcription factor binding site matrices.
A total of 33 alignments matched 17 different known
binding sites. This indicates that the false positive rate of

our motif reconstruction method is at most 50%. How-
ever, this estimate assumes that all of the motif predic-
tions that do not match known binding sites are incorrect,
which is unlikely to be the case. None of the other 33
alignments (see Additional file 2), that did not match
known motifs, matched previous predictions made by
Kellis et al. [10], Cliften et al. [11] or Harbison et al. [28];
all recent high-throughput searches for cis-regulatory
motifs based on comparative genome analyses and
genome-wide chromatin immunoprecipitation (ChIP)
data.

To maximize the power of our approach we used each of
the 66 new weight matrix models, we derived by combin-
ing conserved hexamers, in genome-wide searches for
conserved sequences. For each of the 66 new weight
matrices we constructed a corresponding HKY85 model
and used it to search for sequences with positive log like-
lihood scores. To focus our attention on the most promis-
ing binding site predictions we looked for functional
enrichment of genes with conserved motifs present in
their promoters. The most promising motif (shown in fig-
ure 4A), based on being found upstream of genes with a
statistical over representation in a functional class, was
significantly over represented in the promoters of genes
involved in carbohydrate utilization (P = 2.63 × 10-5). In
figure 4B a subsection of the glucose utilization pathway
in yeast is shown along with the number of conserved
binding sites present upstream of each gene.

The motif acts as a regulatory element
These findings lead us to hypothesize that our putative
motif is a regulatory element important in modulating
expression in the presence of different carbon sources. To
test this hypothesis we inserted a 19 base pair sequence
(shown in figure 5C) containing two conserved instances
of the motif upstream of a HIS3 reporter gene. We also
inserted a mutant version of the 19 base pair sequence
(figure 5C) in front of a HIS3 reporter gene. To determine
if our motif regulates expression we compared the growth
of a strain containing the wild type sequence versus the
mutant sequence in the presence of 3AT (3-amino tria-
zole), an inhibitor of the HIS3 gene product. When plated
on media containing glucose a substantial growth advan-
tage was observed in the strain carrying a plasmid with the
motif insert as compared to the strain carrying a plasmid
with the mutant insert (figure 5A,B as well as compared to
a strain carrying a plasmid with no insert (data not
shown). However, when plated on media containing ace-
tate as the sole carbon source the growth advantage is no
longer observed. These results suggest that this motif acti-
vates expression of the reporter gene in the presence of
glucose, but not in the presence of acetate. We conclude
that this motif is a cis-regulatory element that responds to
different carbon sources.

Cell cycle expression profiles for genes with (a) negative log likelihood ratio (better fit to the neutral model) MCB sites and (b) positive log likelihood ratio MCB sites in their pro-moterFigure 2
Cell cycle expression profiles for genes with (a) negative log 
likelihood ratio (better fit to the neutral model) MCB sites 
and (b) positive log likelihood ratio MCB sites in their pro-
moter. The x-axis represents experimental timepoints 
through the cell cycle, and the y-axis represents relative gene 
expression levels (Z-scores). (c) Log likelihood ratios of the 
true MCB motif (blue) and shuffled MCB motifs (purple).
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Discussion
As the power of comparative genomics to find functional
DNA elements becomes more apparent it is important to
create practical statistical methods for describing evolu-
tionary conservation. To this aim we developed a statisti-
cal test to assess transcription factor binding site
conservation. The method takes into account the posi-
tional variation of explicit binding site models and
weights significance in proportion to the evolutionary dis-
tances of the species under consideration. Based on simu-
lations, the approach should be sensitive and specific
when applied to commonly used sets of related species. In
practice, the approach led to the discovery and subse-
quent validation of a functional regulatory element, thus
proving the utility of the new approach on real data.

By defining an explicit model of TFBS evolution, we have
taken an approach that is fundamentally different from
recent large-scale studies in the field. We believe this is the
primary reason why none of our motif predictions match
the numerous predictions made by Kellis et al. [10], Clif-
ten et al. [11] and Harbison et al. [28]. The motifs we have
predicted are different from those identified in previous
studies, but, are of high quality as shown by our experi-
mental validation of a regulatory element. Therefore this

method will be useful in conjunction with other com-
monly used computational approaches.

In this study we presented a whole genome motif finding
algorithm that incorporates phylogenetic information.
Other motif finding methods that incorporate phylogeny
have used either expectation maximization or Gibbs sam-
pling. We performed an exhaustive search to look for reg-
ulatory elements across the whole genome. By searching
exhaustively we have omitted position specific variation
in the first step of motif finding thus limiting the space of
sequence patterns evaluated. There is a tradeoff between
searching exhaustively and incorporating position specific
variation. In this study, we decided to search exhaustively.
It would be interesting to expand our method to incorpo-
rate degeneracy into the search algorithm.

The regulatory motif we identified does not match any
entries in the widely used SCPD [29] or Transfac [30]
databases. The motif is also not correlated with any motifs
identified in large scale comparative genomic studies
[10,11] or high-throughput Chromatin Immunoprecipi-
tation studies [28,31] of yeast transcription factors. How-
ever, after the completion of this work an extensive
literature search revealed one study in which a regulatory
motif similar to the one we identified was identified by
site-directed mutagenesis of the PDC1 promoter [32]. In
agreement with our results this study also demonstrated
that the motif is responsive to changes in carbon source
and likely regulates the expression of genes involved in
glycolysis. Our findings support the conclusion that this
motif is indeed an important regulatory element, and war-
rants the inclusion of this cis-regulatory element in com-
monly used databases of known, validated regulatory
motifs.

Conclusion
We have developed a motif discovery method based on
the principle that functional DNA sequences evolve in a
different pattern than selectively neutral sequences. The
approach is applicable to whole genome sequences and
takes into account the specific phylogeny of the species
under consideration. While half of the motif predictions
made by our method match known regulatory elements,
the novel motif predictions made by our algorithm are
unique. We validated one motif prediction experimen-
tally, showing that it is responsive to different carbon
sources. The combination of the computational and
experimental results suggests that our motif discovery
method is a useful addition to the current suite of tools for
finding regulatory elements.

Histogram of percentage of significantly conserved occur-rences for each hexamerFigure 3
Histogram of percentage of significantly conserved occur-
rences for each hexamer. Hexamers with an unexpectedly 
high fraction (χ2 ≥ 10.828, P ≤ 0.001) of conserved instances 
are shown in red.
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Methods
Sequence data
The alignments used in this study were constructed from
the intergenic regions of the species S. cerevisiae, S. para-
doxus, S. mikatae, and S. bayanus [10]. To avoid using
regions that were missing sequence data, or were of low
quality, we only considered alignments that contained
less than 50% indels in every species. This removed
approximately one quarter of the total intergenic regions.
To obtain the synonymous rate tree we used the PAML
package[33] to perform a maximum likelihood estima-
tion of the transition/transversion ratio, the branch
lengths and the unrooted tree structure based on five ran-
domly selected genes.

Binding site matrices
The previously identified binding site matrices were
obtained from the AlignACE[34,35] homepage [36]. The

alignments obtained from the AlignACE homepage were
converted into position specific count matrices.

HKY85 model
In the HKY85 nucleotide substitution model, different
equilibrium base frequencies are allowed, and transitions
and transversions can occur at different rates [19]. The
probability of observing a substitution from base i to base
j at time t is:

where πj represents the background or equilibrium fre-
quency of base j, μ is the mutation rate, and θj represents
the total purine or pyrimidine frequency depending on
base j (for instance, if j = G then θj = πG + πA). A is equal to
θj(κ - 1) + 1, where κ is the ratio of transitions to transver-
sions. An HKY85 model has 4 parameters to estimate (3
base frequencies and κ).

Parameter estimation for the conservation model
In order to model the conservation of a TFBS while incor-
porating position specific motif variation as well as phyl-
ogenetic information we apply a position specific HKY85
model of evolution. In this case the equilibrium frequen-
cies match the frequencies of a particular position of a
motif matrix after a small pseudocount is added. The neu-
tral substitution rate (μt) (see Additional file 3) and the
transition/transversion ratio (κ = 4.71) used in this model
are estimated from synonymous sites and thought to be
close to the true neutral substitution rate and transition/
transversion ratio.

This model assumes that if the functionality of a binding
site is preserved, then mutations are only tolerated in
degenerate positions of the motif. Implicit in this assump-
tion is that the amount of conservation and the impor-
tance for functionality are correlated at each position in
the motif, which has been examined and supported in
[37]. In some instances, such as the Swi5 binding site (G/
T)GCTG(A/G)[29], there are only a few tolerated muta-
tions at somewhat degenerate positions. By using a model
that allows for these mutations, we can accurately assay
the conservation of a binding site.

Parameter estimation for the neutral model
To query a binding site for conservation, we compare how
well the orthologous sequence fits a neutral (null) model
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Sequence logo [41] of putative regulatory motifFigure 4
(a) Sequence logo [41] of putative regulatory motif. (b) Sub-
section of the glucose fermentation pathway. Numbers rep-
resent the occurrences of the putative motif in the gene's 
promoter.
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and a conserved model. In the case of the neutral model
an HKY85 model is used with the equilibrium frequencies
equal to the background genomic frequencies (p(A) =
p(T) = 0.31). Again the neutral substitution rate and the
transition/transversion ratio used in this model are esti-
mated from synonymous sites.

Likelihood comparison
To assess the fit of the conserved model versus the neutral
model we perform a likelihood comparison, which is very
similar to a likelihood ratio test. The difference being that
a likelihood ratio test requires maximum likelihood esti-
mates of each model's parameters, while in our likelihood
comparison the parameters are treated as input and not
optimized. To perform the comparison, the likelihood
function of the sequence alignment is calculated for the
conserved model and the neutral model. The likelihood

function L is calculated at each internal node that is con-
nected to two leaves of the phylogenetic tree as:

where Xi and Yi are the observed bases at position i in the
motif alignment from different species, Ab is the unob-
served ancestral base, w is the length of the motif and
P(Ab) is the probability that the ancestral sequence is Ab
which is equal to the equilibrium base frequencies. The
probabilities P(Xi | Ab, πi) come from the HKY85 model
described above. This setup is extended to cover the entire
tree using Felsenstein's pruning algorithm [18].

Threshold determination for likelihood comparison
The statistic calculated for the likelihood comparison is:

Under certain assumptions for a likelihood ratio test, the
quantity 2 ln(λ) is approximately Chi-squared distributed
under the null (neutral) hypothesis [20]. The number of
degrees of freedom for the Chi-squared distribution is
equal to the difference in the number of free parameters
of the two models. Since κ is the same for each model, the
conserved model has 3 free parameters, referring to the
base frequencies, at each column of the binding site,
where the neutral model has three free parameters for the
entire binding site. Therefore the number of degrees of
freedom for the Chi-squared distribution is equal to 3 *
(w - 1).

Since the base frequencies for both the neutral and con-
served models are treated as input and not optimized, we
are performing a likelihood comparison and not a likeli-
hood ratio test. For the likelihood comparison there is no
expected distribution under the null model. To empiri-
cally determine a cutoff we simulated every hexamer neu-
trally evolving 1000 times using the phylogeny for the
yeast species under consideration (see Additional file 3).
For each simulated sequence we calculated ln(λ), and
combined every observation to create an overall null dis-
tribution for ln(λ) (see Additional file 4). We determined
the 0.1% false positive rate cutoff for ln(λ) to be 17.71.
This cutoff is similar to the cutoff calculated for a likeli-
hood ratio test (18.84) using a Chi-squared distribution
as the null distribution for 2*ln(λ). We performed the
same analysis for all pentamers (five base pair sequences)
and heptamers (seven base pair sequences) (see Addi-
tional file 4). In each case the empirically determined cut-
off is similar to and slightly lower than the Chi-squared
calculated cutoff (14.61 vs. 16.45 for pentamers, 18.01 vs.
21.16 for heptamers). Based on these simulations we
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Activation of the reporter gene through the putative motifFigure 5
Activation of the reporter gene through the putative motif. 
(a) Growth on glucose containing 2 mM 3AT with the wild 
type motif (left) and the mutant motif (right) upstream of the 
reporter. (b) Growth on acetate containing 0.5 mM 3AT 
with the wild type motif (left) and the mutant motif (right) 
upstream of the reporter. (c) Sequences used for the 
reporter assay. Motifs are shown in red and mutations are 
shown in blue.
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decided to use the Chi-squared estimate for significance,
as is done with likelihood ratio tests, because it is gener-
ally applicable to motifs of different sizes and is a conserv-
ative measure of significance.

Motif conservation simulations
Simulations to determine the sensitivity and specificity of
the likelihood comparison were performed as follows. An
ancestral intergenic sequence of 1000 base pairs was con-
structed which contained one instance of the motif. For
the simulations we made the simplifying assumption that
the underlying phylogeny had a star topology with equal
branch lengths. For the non-motif sequence, substitutions
were introduced according to the neutral model described
above. For the conservation simulations, the conserved
model was used to introduce substitutions into the motif.
For the non-conserved simulations the first species cre-
ated was constrained to retain the motif, while in the
other species the motif section evolved under the neutral
model. For each set of parameters (number of species and
evolutionary distance), five known motifs were used
(Rgt1, Rap1, Cbf1, Abf1 and Leu3). For each motif and set
of parameters 1000 different sequences were simulated.
After simulating the sequences, we used the program Pat-
ser [38] with the automatically calculated cutoff to find all
instances of the motif and then tested these sites using the
likelihood comparison described above with a 99.9%
confidence cutoff. To determine the evolutionary distance
of commonly used organisms, we added up the branch
lengths of synonymous rate trees and then divided by the
number of species.

Testing hexamers
In order to determine which six basepair sequences are
significantly conserved we tested all hexamers for having
a significant number of conserved sites. For each hexamer,
each instance was found in the intergenic regions of the S.
cerevisiae genome and the likelihood comparison was per-
formed as described above with a 99.9% confidence cut-
off. For the likelihood comparison, the conserved model
used a binding site matrix with 100.25 counts for the cor-
rect base at a particular position and 0.25 for the incorrect
base at a particular position. Using this method the total
number of instances and the number of conserved
instances were calculated for each hexamer. Then a Chi-
squared test was performed with one degree of freedom,
where the expected number of conserved instances was
equal to the overall frequency of conserved hexamers
(6.97%) times the total number of instances for each hex-
amer. A 99.9% confidence level was chosen as significant.
Hexamers were considered to match known motifs if they
had a correlation coefficient of greater than 0.7 (com-
puted using CompareACE [35]).

Combining significant hexamers
To create motifs from significant hexamers, we tried to
align each pair of hexamers in the best way possible. We
seeded an alignment with one hexamer and combined
every hexamer that matched at 4 positions or more to the
alignment seed. After each significant hexamer had seeded
an alignment, we compared the alignments using Compa-
reACE [35] and combined any alignments that had a cor-
relation coefficient greater than 0.7.

Reporter assay
For the reporter assays, we used PJ69-4α (MATα trp1-901
leu2-3,112 ura3-52 his3-200 gal4 gal80 LYS2::GAL1-HIS3
GAL2-ADE2 met2::GAL7-lacZ) to carry the reporter plas-
mids [39]. In order to create the reporter plasmids a HIS3
reporter plasmid pBM4429 (backbone CEN plasmid with
URA3, [9,40]) was cut with Spe1 and Xho1 and gel-puri-
fied for gap repair with the double stranded motif
(sequences shown in figure 5C). Cells carrying the plas-
mid were grown on restrictive media to an OD600 = 1.0
and 10 fold dilutions were subsequently plated on media
containing either 2% glucose or 2% potassium acetate
and varying concentrations of 3AT.
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