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Abstract
Background: The automation of many common molecular biology techniques has resulted in the
accumulation of vast quantities of experimental data. One of the major challenges now facing
researchers is how to process this data to yield useful information about a biological system (e.g.
knowledge of genes and their products, and the biological roles of proteins, their molecular
functions, localizations and interaction networks). We present a technique called Global Mapping
of Unknown Proteins (GMUP) which uses the Gene Ontology Index to relate diverse sources of
experimental data by creation of an abstraction layer of evidence data. This abstraction layer is used
as input to a neural network which, once trained, can be used to predict function from the evidence
data of unannotated proteins. The method allows us to include almost any experimental data set
related to protein function, which incorporates the Gene Ontology, to our evidence data in order
to seek relationships between the different sets.

Results: We have demonstrated the capabilities of this method in two ways. We first collected
various experimental datasets associated with yeast (Saccharomyces cerevisiae) and applied the
technique to a set of previously annotated open reading frames (ORFs). These ORFs were divided
into training and test sets and were used to examine the accuracy of the predictions made by our
method. Then we applied GMUP to previously un-annotated ORFs and made 1980, 836 and 1969
predictions corresponding to the GO Biological Process, Molecular Function and Cellular
Component sub-categories respectively. We found that GMUP was particularly successful at
predicting ORFs with functions associated with the ribonucleoprotein complex, protein
metabolism and transportation.

Conclusion: This study presents a global and generic gene knowledge discovery approach based
on evidence integration of various genome-scale data. It can be used to provide insight as to how
certain biological processes are implemented by interaction and coordination of proteins, which
may serve as a guide for future analysis. New data can be readily incorporated as it becomes
available to provide more reliable predictions or further insights into processes and interactions.
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Background
Advances in DNA sequencing technology in recent years
has seen the completion of a large number of genomes,
with the completion of many more planned for the future.
However, the generation of a DNA sequence map is only
the first step in obtaining an understanding of an organ-
ism or species. One of the main goals of the post-genomic
era is to obtain knowledge of genes and gene products,
such as the biological roles of proteins, their molecular
functions, localizations and their interaction networks in
living organisms.

In the past, protein function would be determined by an
experimental investigation of activity and quantification
of abundances in specific locations. However, with the
sheer quantity of data awaiting processing, this method of
classification alone is no longer sufficient and more auto-
mated large scale methods of experimental analysis are
required. Examples of these techniques include microar-
ray gene expression profiles [1-4], protein interactions
revealed by yeast two-hybrid system [5,6] and protein
complexes identification by mass spectrometry[7,8].
While these methods have all been successful in the char-
acterization of biological systems, they have in turn gener-
ated additional large quantities of data which also require
analysis to extract useful information. Many software
tools have been developed to aid the scientist in mining
these data to identify features and defining characteristics.
The existing genome-scale protein function prediction
methods currently in use can be (roughly) grouped into
three categories:

1. Methods based on sequence or protein characteristics.
The most common of these are tools such as FASTA [9]
and PSI-BLAST [10]. Several non-homology-based meth-
ods have also been introduced, e.g. the Rosetta Stone
[11,12], the phylogenetic method [13], the chromosomal
proximity method [14] and the combined method [15].

2. Methods based on mining single types of genome-scale
data. Examples of this data includes microarray gene
expression profiles, yeast two-hybrid systems and protein
complexes using established techniques such as clustering
analysis [16,17], or alternative methods such as the short-
est-path approach [18], the method based on overlapping
transcriptional clusters [19] and temporal gene expression
patterns [20].

3. Methods based on integration of heterogeneous data
formats. Since valuable information also exists in rela-
tionships between aspects of data existing in different
datasets, several data integration and mining methods
have been introduced to utilize these relationships when
predicting proteins function. These include formal Baye-
sian reasoning [21], e.g. Bayesian statistical methods com-

bined with a Boltzmann machine and simulated
annealing [22,23] and a Hopfield network approach to
integrate gene expression and protein interaction data
[24,25].

While many of the analytic methods outlined in classifica-
tions 1 and 2 have been successfully applied to identify
unknown functions for protein, it is the third classifica-
tion of analysis techniques which has the most potential
for identification of function (and possibly novel relation-
ships) for unknown proteins. This is because these meth-
ods collate experimental information from an eclectic
range of sources before making any predictions. However,
two of the major complications faced by this type of anal-
ysis are the (i) variation in terminology that exists
between different datasets and (ii) the differences in stor-
age format. These disparities can make discoveries of even
simple correlations a formidable challenge and may result
in important relationships being overlooked.

The Gene Ontology Consortium (GO) [26] attempts to
address these types of problems by providing a method by
which different datasets may be related via a common set
of definitions. The GO defines a number of vocabularies
to allow classification of gene properties with a degree of
precision that may be defined by the end user. For exam-
ple, a gene involved in a cellular process may simply be
defined in these terms, or, if more information is known,
a more specific definition might be given as "cellular proc-
ess->cellular physiological process->cellular metabolism". Thus,
data from two different sources which relate to the cellular
process may be linked via this vocabulary and used
together to permit a more detailed analysis or definition
of the process. Within the GO, gene properties may be
defined via three vocabularies which specify biological
process (BP), molecular function (MF) and cellular com-
ponent (CC). Thus, the GO provides a means of correlat-
ing data from a wide range of sources to generate a much
broader data set for function prediction.

Here we propose a method which addresses many of these
issues by firstly relating a broad range of experimental
data sets via the GO index and secondly by using a neural
network to mine the combined information to imply
novel protein function through identified relationships
(Fig. 1a). We have demonstrated the capabilities of this
method by applying it to several experimental data sets
associated with the yeast genome and have identified sev-
eral novel relationships between unknown proteins and
annotated protein complexes.
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Results
Model evaluation by applying cross-validation on known 
annotations
Our training and evaluation data was generated from a set
of 6167 yeast ORFs with known GO and SGD annotation

in the ratio of 9: 1. After network training we evaluated the
precision of the network predictions using the evaluation
data. Since the evaluation data also consisted of ORFs
with known function we were able to evaluate the consist-
ency of the predictions with the original annotation and
the trade-off between precision and the sensitivity of pre-
dictions. This data could also provide useful feedback for
improving the prediction performance of the neural net-
works (see METHODS – Model Validation and Parameter
Optimization). We also compared the performance of the
network when using Aggressive Prediction and Normal
Prediction (Fig. 1b, See METHODS – Prediction Model for
a description of the differences between these prediction
models). For each different GO vocabulary (biological
process, molecular function and cellular component), we
trained and validated two neural networks; one for
Aggressive Prediction mode and one for Normal Predic-
tion mode (to create a total of six neural networks).

Compared with aggressive prediction, normal prediction
returned a consistently better prediction performance in
almost all subcategories (Fig. 2). This is not unreasonable
since this method assigns function according to higher
level, less specific nodes on a GO graph which tend to be
statistically more reliable.

The best predictions were achieved for two closely related
subcategories: the structural constituent of the ribosome
(molecular function) and the ribonucleoprotein complex
(cellular component). This prediction is consistent with
the results both from analyses of gene expression data [2-
4] and from other studies involving the integration of
additional datasets [21]. This is possibly because the
expression results for the ribosome consist of clusters of
highly correlated genes which are readily identified by the
network.

We also examined the ability of the network to predict
function using only a single data source. While the com-
plexity of the network topology obviates such a simplistic
analysis of the contribution of each data source to the
final prediction, it does provide some indication of the
bias of the information within each set. It was found that
the best results were achieved with three types of MIPS
data [27]: physical interaction, genetic interaction and
complex (Fig. 3), which are commonly considered by the
yeast research community to represent the most reliable
data sets. For gene expression profile data, three evidence
sources: cell-cycle data, the Rosetta Compendium, and
MAPK data, demonstrated that mRNA co-expression data
have greater ability to predict cellular component and bio-
logical process than to predict molecular function. This is
in agreement with many previous genome-wide analyses,
which demonstrated that mRNA transcript expression pat-
terns or co-regulation are similar for groups of function-

A schematic illustration of prediction rationale applied in GUMPFigure 1
A schematic illustration of prediction rationale 
applied in GUMP. (A) Overview of the data integration 
and the validation process. (B) GO structure and the defini-
tion of normal prediction and aggressive prediction. Normal 
Prediction seeks matches to less specific nodes (such as node 
c) whereas Aggressive Prediction seeks more specific nodes 
further down the graph (such as node b). Less specific nodes 
selected by Normal Prediction are generally more reliable 
since more data is associated with these nodes.
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Validation of predictions using known annotations in diverse subcategories in GOFigure 2
Validation of predictions using known annotations in diverse subcategories in GO. The prediction performance is 
shown here on a total of 27 GO subcategories: 14 for BP, eight for MF, and five for CC subcategories (see Methods). In each 
panel, the title is the name of GO subcategory with a label prefix "P", "F", or "C" to denote biological process, molecular func-
tion, or cellular component, respectively. The number in parentheses indicates the total number of ORFs annotated in each 
GO subcategory. A plot of precision (y-axis) as a function of sensitivity ratio is shown for all unknown ORFs (x-axis), as defined 
in Methods. In such plots, the upper right corner corresponds to a perfect predictor because of the larger area under the pre-
cision–sensitivity curve.
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ally related genes and subcellular protein localizations
[23,28,29].

Using the model to predict GO annotation of unknown 
proteins
Once we had trained and optimized the network, we
applied it to a set of previously un-annotated yeast ORFs.
Based on the trade-off between precision and sensitivity of
the predictions shown in Fig. 2, we selected a precision
threshold of 0.3 as an acceptable level for predictions.
Using this threshold, we produced predictions for 2304,
2932, and 2169 un-annotated ORFs in the BP [see Addi-
tional file 6], MF [see Additional file 7], and CC [see Addi-
tional file 8] annotation categories and made 1980, 836,
and 1969 predictions respectively (Fig. 4, see also METH-
ODS – Prediction of Uncharacterized Genes). The Sensitivity-
Precision curve for all the predictions is shown in Figure
4a. A complete list of all the predictions is available [see
Additional file 5]. A graph of the genes with the most pre-
dictions and their associated precision is shown in Figure
4b. The cellular component categories that have the most
predictions and best precision (greater than 80%) are the
cytoplasm and nucleus. For biological process, nucleic
acid metabolism, protein metabolism, and biosynthesis
all principally occur in the cytoplasm and are also well
represented in the predictions. Once again, this is also
consistent with other systematic analyses of gene expres-
sion profiles and cellular processes related to metabolism
in the cytoplasm [2-4].

The MIPS database provides information such as func-
tional category, protein classification, and localization
category, which are similar to the biological process,
molecular function, and cellular component, respectively,
in the GO index. We therefore compared our predictions
with annotations within the MIPS database. We found
that our predictions generally agreed with those from
MIPS (Table 1, [see Additional file 1] for the complete list
and [see Additional file 5] for detailed description). We
found that our predictions generally agreed with those of
previous studies aiming to predict GO annotations
[19,25]. However, our results generally provide more
detailed information for protein function. Also, in many
cases, we had multiple predictions to nodes that were
related by a parent-child relationship. In these situations
the more specific predictions of the child node were sup-
ported by the related parent assignments which further
improved the confidence of our predictions.

In addition, we made 472 higher quality predictions (pre-
cision >= 0.8) corresponding to 154 ORFs which have
been assigned new or updated GO annotation in the latest
SGD release [see Additional file 9]. We compared our 472
predictions with their corresponding GO annotation by
calculating the shortest distance on the GO graph from
our prediction to the GO node assigned in the release. We
found that GMUP was particularly successful at predicting
ORFs with functions associated with the ribonucleopro-
tein complex, protein metabolism and transportation [see
Additional file 4]. Based on this, we made a cautious pre-
diction for the function of several of the remaining un-
annotated ORFs, which gave 624 predictions for 232
ORFs at an acceptable precision level (>= 0.6, [see Addi-
tional file 10]).

Generating a glimpse of how biological processes are 
implemented by the interactions of proteins
To demonstrate the application of GMUP to the discovery
of unknown ORF function, we ran a query to fetch
assigned unknown ORFs that are predicted to have a role
in RNA processing (biological process annotation), and
found a number of proteins with interaction or co-exist-
ence relationships with complexes that have been identi-
fied to contribute to RNA processing (Fig. 5). We
identified STP3 as having a strong interaction with the
tRNA-intron endonuclease complex (cellular component)
and a role in the tRNA splicing process (biological proc-
ess). This agrees well with its MIPS annotation and SGD
description: "involved in pre-tRNA splicing and in the uptake
of branched-chain amino acids". Another example was IFH1,
which was annotated to the nucleus [30,31] by the evi-
dence string "inferred from direct assay (IDA) in SGD".
However, our results indicate its more precise localization
as a component (transient or consistent) of the ribonucle-
ase mitochondrial RNA processing (MRP) complex and

The relative contribution of different evidence sources to prediction performanceFigure 3
The relative contribution of different evidence 
sources to prediction performance. This figure shows 
the contribution from individual data sets when input individ-
ually to the neural network. The plot axes are the same as 
Figure 2. The most reliable predictions come from MIPS 
data corresponding to physical interaction, genetic interac-
tion and complex and gene expression profile data (cell-cycle 
data, the Rosetta Compendium, and MAPK data).
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small nucleolar ribonucleoprotein complex. Because the
MRP complex is a ribonucleoprotein complex that per-
forms the first cleavage in rRNA transcript processing, this
prediction is consistent with one of its biological process
annotations, rRNA processing [32], and the MIPS descrip-
tion on cellular complexes: "rRNA splicing". Compared
with previous annotations to the cellular component cat-
egory, our prediction descended two levels and identified
the leaf node (nucleus-nucleolus-ribonuclease MRP com-
plex). Recently, the component annotation of IFH1 was
also assigned to nucleolus [31], which confirmed our
results which were derived independently.

Discussion
We have proposed a universal knowledge discovery
framework to generate hypotheses for protein function
annotation to the Gene Ontology biological process,
molecular function and cellular component hierarchies in
an automated fashion through mining of genome-scale
data. Compared with previously published methods on
protein function prediction, our method is distinctive in
the following aspects:

(i) Flexibility in Prediction. Un-annotated proteins can be
assigned to less specific or more precise annotations in all
three hierarchies of the GO. A conservative estimation of
precision for each prediction is also provided with these
comprehensive descriptions of unknown protein func-
tion. This is in contrast to most other methods, in which
proteins were assigned to a limited number of function
categories [19,33] such as the MIPS or YPD (Yeast Pro-
teome Database) [34], which are less detailed than GO, or
to a single GO biological process hierarchy [21,22]. The
universal and flexible characteristics of our protein func-
tion prediction, as demonstrated, for example, by aggres-
sive prediction and normal prediction in this report, is
significantly different from methods which use abstract
categories in GO [24,25]. Although our results were con-
sistently better using Normal Prediction, this was a reflec-
tion of the limited size of the data sets. As more data is
accumulated, the statistics associated with Aggressive Pre-
dictions will improve and this prediction method will
become more valuable.

(ii) Integration of Evidence Data. GMUP combines a
much wider range of experimental data than previous
analyses. This provides the opportunity to make new pre-
dictions based on more complex relationships. This strat-
egy is universal to protein function prediction on any
branch of GO and, in theory, it could be applied to other
types of hierarchical ontologies beyond the Gene Ontol-
ogy. Furthermore, it might also be used as an evaluation
tool to study reliability and prediction capabilities of var-
ious data sources.

Gene Ontology predictions for previously un-annotated ORFs in yeastFigure 4
Gene Ontology predictions for previously un-anno-
tated ORFs in yeast. (A) Trade-off between anticipated 
conservative precision and sensitivity. The anticipated con-
servative precision (y-axis) and the expected number of pre-
viously un-annotated ORFs with predictions (x-axis) are 
plotted by modulating parameters such as k (see Methods). 
(B) Normal predictions for previously un-annotated ORFs 
are shown for 31 subcategories for which validations indicate 
a conservative precision of ≥ 0.3. The subcategories (vertical 
axis) were sorted by descending number of predictions for 
conservative precision is larger than 0.3. The colour map 
reflects the conservative precision of predictions made in 
each GO subcategory. Red indicates more reliable predic-
tions, yellow represents less reliable predictions. The 
number in parentheses indicates the total number of predic-
tions made in each subcategory.
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(iii) Architecture of the Model. We have made our predic-
tions based on 16 sources of evidence data. However,
since the evidence-pair database provides the abstraction
layer by which all datasets can be related to each another,
our method can easily accommodate additional datasets
as they become available. For instance, nucleic acid
sequence order information might provide specific contri-
butions to the prediction of molecular function category
in the GO.

Conclusion
In summary, we have described a universal mapping strat-
egy, in which protein-pair generation serves as a bridge
from heterogeneous experimental evidence to knowledge
representation. We have successfully applied the tech-
nique to make a number of novel predictions for genes
associated with ribosomal function and which provide
some insights into the mechanism and modes of interac-
tions that are taking place. As more experimental evidence

Table 1: Comparison of our predictions on gene function with their MIPS description ([see Additional file 1] for full data set)

ORF/Gene Ontology Prediction MIPS description

ASC1 BP Biosynthesis PROTEIN SYNTHESIS\ribosome biogenesis; PROTEIN 
SYNTHESIS\translation

ASC1 CC cytosolic small ribosomal subunit; ribonucleoprotein 
complex

Cytoplasm

ASC1 MF structural constituent of ribosome GTP-binding proteins\trimeric GTP-proteins\beta subunits
YGL068W BP fatty acid metabolism; protein metabolism BIOGENESIS OF CELLULAR COMPONENTS\mitochondrion; 

PROTEIN SYNTHESIS\ribosome biogenesis\ribosomal proteins
YGL068W CC mitochondrial large ribosomal subunit; 

ribonucleoprotein complex
Mitochondria

These ORFs were selected from among the 78 predictions which have their equal annotation in MIPS database and their anticipated precision are 
larger than 80%.

Schematic representation of proteins contributing to RNA processing and their interaction networkFigure 5
Schematic representation of proteins contributing to RNA processing and their interaction network. Proteins 
previously annotated to certain protein complexes and that have a role in RNA processing are shown in blue, and proteins 
assigned in this report are white, outlined in red. The protein-pair identified by protein–protein interactions are represented as 
black lines, and those identified by their co-existence in a protein complex as dashed black lines. New assigned proteins or 
ORFs were fetched by a query using a conservative precision ≥ 0.7. For figure clarity, the count of protein-pair between two 
proteins is not shown here (one protein-pair is often supported by multiple evidences in our dataset).
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accumulates, the system can generate more comprehen-
sive insights of how a certain biological process is imple-
mented by the coordination of a group of proteins. This
implementation is demonstrated by showing where the
protein exists (cellular component and complex), in what
manner it operates (molecular function), and with what
components it collaborates (protein-protein interaction).
The ongoing development of knowledge representation
systems such as hierarchical ontology and their interac-
tion with high-throughput experiments are becoming
increasingly important in modern biology. The signifi-
cance of these systems is not only in their ability to bridge
gaps between hypotheses and the supporting data, but is
also based on the potential to model complex biological
systems based on well-structured hierarchical ontologies.
The architecture of GMUP readily lends itself to the inclu-
sion of additional data sources and we propose to add
more features and datasets for optimizing the predictive
performance. Additionally, we plan to investigate improv-
ing the accuracy of predictions by replacing the Neural

Network with a Support Vector Machine (SVM). SVMs
often obtain a greater success rate for this type of classifi-
cation problem and can be easier to analyze theoretically.
Finally, we also plan to incorporate weighting of GO
assignments to reflect the accuracy of such assignments.
The GO uses a series "evidence code" to represent the dif-
ferent source of annotation, such as "IDA: Inferred from
Direct Assay", "IEA: Inferred from Electronic Annotation"
etc. In the current study we used all such evidence without
regard to source. By incorporating this data, we can filter
the annotation data according to evidence-code and set
criteria to adapt different reliable part of GO annotation
to investigate its effects on protein prediction precision
and sensitivity.

Methods
Selection and preparation of evidence data
We collected sixteen different biological evidence data
from various types of high-throughput studies as follows.
(i) Gene expression profiles from cell-cycle progression

Steps in the creation of the evidence vector for input to the neural networkFigure 6
Steps in the creation of the evidence vector for input to the neural network. Pairs are created within each dataset 
(see Methods). Once the complete set of pairs have been generated and input to the pairs database, a query may be run for 
each ORF to identify the associated pairs and create an Evidence Vector for input to the neural network. Since the data com-
prises 16 distinct sets, this will create a 16 element vector.
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[1], the Rosetta Compendium [2], and MAPK signal trans-
duction [3]. These data were downloaded from the
ExpressDB RNA Expression Database [35]. (ii) Protein
interaction data included physical and genetic interaction
data in the MIPS database [36], Ito's data [37], Uetz's data
[38], and interactions integrated in the Database of Inter-
acting Proteins [39]. (iii) Protein complex data including
the Biomolecular Interaction Network Database [40],
MIPS complex data [41], and the High-Throughput Mass
Spectrometric Protein Complex Identification (HMS-PCI)
data [8]. (iv) Other in-silico analysis results, such as func-
tional links between proteins generated by analysis of
gene fusions and phylogenetic patterns in the Predictome
database [42] were also included. Another data source was
the co-expression data measured at the mRNA level ("Syn-
Express"), computationally predicted interactions ("In-
silico"), and genetic interaction data ("Genetic") identi-
fied by C. Von Mering [43]. Datasets which do not have
URLs listed in the references were obtained by submitting
an enquiry directly to the original authors or download-
ing from the supporting web site for Deng's paper [44].
We use genes and proteins interchangeably. ORF naming
is according to the SGD Gene Nomenclature Conventions
[45].

We referred to these data as the evidence data. The selected
data were chosen to represent experimental and predictive
evidence from a diverse range of perspectives, as opposed
to a data from a single related source of evidence.

To prepare the data for use with the network, we repre-
sented them as interacting pairs of ORFs in the format
(ORFi, ORFj, Predicted GO Node, Evidence Source). Some
data sources, such as the Protein Interaction Data, were
already in the form (ORF1 interaction with ORF2) so evi-
dence data could be formed directly from this informa-
tion. We prepared the remaining evidence as follows (Fig.
6):

Gene expression data
The raw data was in the form of an n by m matrix which
represents the response of n ORFs to m conditions, with
each row in the matrix corresponding to the expression
data for one ORF. For each gene expression dataset such as
Rosetta, we calculated the Pearson coefficient of pairwise
combination of any two ORFs over the m conditions, then
took the 30,000 highest scoring pairs in each gene expres-
sion dataset.

Protein complex data
The raw data is in the form Complex (ORF1, ORF2, ORF3).
We generated evidence data from all possible pair combi-
nations from each complex.

All other data sources
Format was the same as for protein interaction data, so we
formed evidence data in the same manner.

Once we had converted the data to evidence format, we
stored it in a SQL "Evidence-Pair" database to simplify the
process of integrating the evidence data with the annota-
tion data (Table 2, see Consolidation of Data Sources
below).

Preparation of yeast ORF data
The number of hypothetical open reading frames (ORFs)
for protein encoding genes in strain S288c of the yeast
genome, including verified, uncharacterized and dubious,
is currently estimated to be 6569. Of these, there are 6167
ORFs which have both a standardized name according to
the SGD nomenclature and at least one associated anno-
tation in the 21/4/2004 release of the GO index. Within
this set of 6167 ORFs, there were 3863, 3235 and 3998
ORFs which had a valid annotation in the Biological Proc-
ess, Molecular Function and Cellular Components sub-
categories respectively.

Consolidation of the data sources
Each generated evidence pair (ORFi, ORFj) represents sup-
port for a particular annotation for ORFi (Table 3). For
example, if we have predictions (ORFA, ORFB) and
(ORFA, ORFC) where both ORFB and ORFC share the
same GO annotation G, then we have two pieces of evi-
dence which support the mapping of ORFA to GO anno-
tation G. The evidence vector was generated for each ORFi
as follows. From each data source Dd (d = 1 to 16) we
selected all occurrences of ORFi within each dataset to
generate the evidence count for that source. We then com-
bined the resulting 16 sums into a 16 element vector
which served as input to our neural network (Fig. 6). As a
consequence, some ORFs will have multiple potential
function assignments/predictions, which refer to different
evidence counts. We generate and validate each of these
multiple predictions in turn to generate a set of predic-

Table 2: Illustration of protein-pair with evidence source

ORF1 ORF2 Evidence source

YAL001C YBL002W Pearson correlation @ MAPK microarray
YAL001C YBR123C complex @ MIPS
YAL001C YBR123C protein interaction @ DIP
YAL001C YBR160W Pearson correlation @ MAPK microarray
YAL001C YDR362C complex @ MIPS
YAL001C YDR362C genetic interaction @ MIPS
YAL001C YDR362C physical interaction @ MIPS
YAL002W YAL011W Pearson correlation @ cell cycle microarray
YAL002W YBL030C complex @ BIND
YAL002W YBL030C HMS-PCI complex
YAL002W YBL094C Pearson correlation @ cell cycle microarray
YAL002W YBL096C Pearson correlation @ cell cycle microarray
YAL002W YKR026C protein interaction @ DIP
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tions for that ORF. If these multiple prediction points to
GO node which have parent relationship in GO graph, it
would strengthen the reliability of either predictions thus
our precision estimation is conservative.

For each of the 6167 ORFs with both SGD and GO anno-
tation we ran a SQL query to collect all the associated data
from our Evidence Database. This evidence was then com-
bined into an evidence vector for that ORF. An excerpt
from a protein-pair table with the evidence summary for a
single ORF is shown in Table 4. Each row in the table cor-
responds to a protein pair prediction with the associated
GO annotation and its evidence source (Fig. 6, and [see
Additional file 2]).

Prediction model
To train the neural network we used the fact that each of
the three vocabularies defined in the GO index may be
represented by a directed acyclic graph. Any node in any
of the three graphs represents a functional assignment –
the broadest assignments are at the top of the graph and,
as additional nodes are traversed through subsequent lay-
ers, a progressively more precise functional assignment is
obtained. For the purpose of matching GO assignment
between ORFs, we defined Aggressive Prediction and Nor-
mal Prediction modes as our two methods of assigning pro-
tein function (Fig. 1b). In Aggressive Prediction mode, we

seek the most specific assignment possible, i.e., we seek a
match between nodes at the lowest possible level, repre-
senting more explicit definition of function. Conversely,
in Normal Prediction mode, we seek a match between
higher level (less explicit) nodes. In this prediction mode,
function assignments may not be so precise but two ORFs
may be shown to belong to the same functional family.
Although a match at a higher level node provides less spe-
cificity in a match it pools more assignment information
to provide a (statistically) more reliable prediction.

To rate the quality of a GO function match between two
ORFs i and j, we defined a scoring model called Inherited
Node Scoring. This model was based on the Variant Dis-
tance VD defined as the distance between the predicted
node, and the true node (i.e. the GO assignment in the
SGD database). The Inherited Node Scoring model is
shown in Fig. 1a. In this model, if the predicted node NP
was the same as the assigned node NA then VD = 0. If NP
is an ancestor of NA then we also set VD = 0 (based on the
assumption that any protein associated with one node is
implicitly associated with every ancestor of it). For other
predictions such as "NP is a child of NA" (see Fig. 1a,
nodes a and c) or "NP is a sibling of NA" (see Fig. 1a,
nodes a and d) VD was assigned a positive value equal to
the minimum distance between the two nodes. In this
scoring scheme, VD can take any positive integer, but to

Table 4: Illustration of evidence combination vector

ORF Predictive GO term Evidence combination

Cell cycle Rosetta MAPK MIPS physical MIPS complex ...

YAL001C RNA polymerase III transcription factor activity 0 0 30 1 4 ...
YAL001C transcription factor TFIIIC complex 0 0 30 1 4 ...
YAL001C transcription initiation from Pol III promoter 0 0 60 2 8 ...
YAL002W late endosome to vacuole transport 18 0 0 0 0 ...
YAL002W membrane fraction 3 0 0 0 0 ...
YAL003W Ribosome 44 28 0 6 10 ...
YAL003W translation elongation factor activity 44 28 0 6 10 ...
YAL003W translational elongation 44 28 0 6 10 ...
YAL005C ATPase activity 16 1 2 4 0 ...
YAL005C cell wall (sensu Fungi) 16 1 2 4 0 ...

Table 3: Excerpt from protein-pair database sorted by unknown ORF

ORF1 Predictive GO term Evidence source ORF2

YGL068W protein biosynthesis complex @ MIPS YBL038W
YGL068W protein biosynthesis complex @ MIPS YBR122C
YGL068W protein biosynthesis complex @ MIPS YBR268W
YGL068W 35S primary transcript processing In-silico interaction data @ C. Von Mering et al YHR148W
YGL068W aerobic respiration complex @ MIPS YDR116C
YGL068W fatty acid metabolism complex @ MIPS YEL050C
YGL068W fatty acid metabolism In-silico interaction data @ C. Von Mering et al YEL050C
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reduce the network to a two state classification system any
positive value of VD was set to 1. This also had the effect
of producing more conservative predictions since the net-
work was trained to only recognise ancestral relationships
between nodes sharing the same leaf of a graph as accept-
able true matches.

Neural network topology and training
We created a three layer back propagation neural network
using MatLab. The Input Layer consisted of 16 nodes, one
for each evidence source, and we prepared data as
described above (see Selection and Preparation of Evidence
Data). For training, we scored the quality of an ORF pair
using the Inherited Node Scoring model with a score tak-
ing the value 0 or 1. For evaluation and prediction, the
single output for the neural network was the variable
nnout which could take a non integer value between 0 and
1. We calculated the variant distance VDij between the two
ORFs specified in the Evidence Vector according to
whether nnout was greater than a threshold k, which could
be adjusted from 0 to 1 at run time and controlled the pre-
cision and number of predictions made by the network.
For example, a value of k close to 1 would exclude all but
the most reliable predictions but provide very little infor-
mation regarding function prediction. On the other hand,
a value of k close to 0 would yield more predictions but
with less reliability.

To evaluate network performance we followed the
method of Kohavi [46] and defined the confusion matrix
[see Additional file 12].

Where

a (TN, true negative) is the number of correct predictions
that an instance is negative,

b (FP, false positive) is the number of incorrect predictions
that an instance is positive,

c (FN, false negative) is the number of incorrect of predic-
tions that an instance negative

d (TP, true positive) is the number of correct predictions
that an instance is positive.

We then calculated the Precision and Sensitivity according
to

Precision = d/(b+d)

Sensitivity = d/(c+d)

and plotted a graph of Precision vs Sensitivity by varying
the threshold k. We optimized the network by seeking a
maximum value for the area Az under the Precision/Sen-
sitivity curve.

We used the Levenburg-Marquardt algorithm [47] for
training and the matlab Tansig and Poslin functions as the
transfer (activation) functions for the input and output
layers respectively.

Model validation and parameter optimization
Within this set of 6167 ORFs, there were 3863, 3773 and
3998 which had a valid annotation in the Biological Proc-
ess, Molecular Function and Cellular Components sub-
categories respectively. We used a different network for
each of the three GO vocabularies and one for each pre-
diction model so that a total of 6 networks were trained,
optimized and tested. For training and evaluation of our
network, we randomly divided this entire set of annotated
ORFs into training and evaluation categories in the ratio
of 9:1. Thus the greater portion of the known annotation
was used for training the network. We repeated this proc-
ess 20 times to generate additional random datasets
which could be used to investigate network behaviour.

The area Az under the Precision-Sensitivity curves was
used as an evaluation of the network performance (see
Neural Network Topology and Training above). Network
performance can be affected by issues such as imbalanced
data and the configuration of the network. To try and eval-
uate the impact of these effects we used cross-validation to
compare the performance of the network with different
parameters.

To compensate for imbalanced output data we applied a
set of correction parameters P which scaled the data either
by under-sampling (for overrepresented data) or over-
sampling (for underrepresented data). For example, to
correct for underrepresented data, we would oversample
that set by a factor P. Conversely, overrepresented data
would be undersampled by a factor 1/P. To find the opti-
mal scaling factor, the network was retrained for a set of
scaling parameters (P = 2n; n = 1, 2, 3 .. 6) to identify the
value of P which produced the best network performance.
The source codes for cross validation, neural network

Table 5: Fragments of data sources from functional links 
between proteins in Predictome database

ORF A ORF B METHOD NAME

YER103W YJL073W Phylogenetic Pattern
YER103W YMR161W Phylogenetic Pattern
YER065C YIR031C Phylogenetic Pattern
YPR189W YPL157W Gene Fusion
YPR198W YBR041W Gene Fusion
YPR193C YHR074W Gene Fusion
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training and random data sampling were also supplied
[see Additional file 11].

We also investigated the effect of adjusting NH, the
number of nodes in the hidden layer, and retrained the
network for 4 <NH < 16 to examine the effect on network
performance. We found that the optimal network per-
formance was obtained for 8 nodes in the hidden layer
[see Additional file 3].

Modification of GO ontologies
The topology of the GO graphs is extensive and the yeast
ORF data only maps to a small portion of any graph. In
the Normal Predictions Model, in order to improve the
statistics of the evidence vector we "pruned" the GO
graphs to keep only the nodes that were highly repre-
sented by the evidence data. We defined the root node of
each graph to be level 1, the subsequent layer as level 2
and so on. After pruning we had a total of 195 nodes con-
sisting of 71 nodes (level 4) in the BP category, 84 nodes
(level 3) in the MF category, and 40 nodes (level 4) in the
CC category and these were used as the targets of normal
predictions.

For presentation of the results in figure 2, we selected the
nodes which had the greatest number of associated pre-
dictions for gene function to get the top 30 nodes in the
list for the BP, MF, and CC categories. If two of these
nodes had a parent-child relationship, we deleted the par-
ent node from the list. This left 14 BP nodes, 8 MF nodes,
and 5 CC nodes. Finally, we reordered the evidence data
of all the ORFs that were annotated into these nodes as
independent datasets and calculated their precision-sensi-
tivity curves (Fig. 2) Applying a standard tenfold cross val-
idation was repeated 20 times to calculate the mean of the
area under the curve.

Prediction of uncharacterized ORFs
To assign functions to uncharacterized ORFs, we input the
associated ORF-evidence vector to the parameter-opti-
mized neural network, and calculated the corresponding
nnout. To calculate the precision associated with each pre-
diction, we selected one set of the high-level parent nodes
(the same set as used in the normal prediction model) and
generated the nnout-precision function curve for each node
in the set. This was done by adjusting the threshold value
k and iterating through the predictions associated with
that node to see how the predictions were classified. For
each point in the curve, we incremented k and repeated
the iteration. (see Neural Network Topology and Training
Above). We then fitted a polynomial of degree 6 to the
resulting curve. To ensure robustness, we selected GO
nodes that contained more than 50 positive predictions.
The fitted nnout-precision curve was then used to calculate

the corresponding precision of a candidate prediction
assigning protein to GO node.
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