
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Noise-injected neural networks show promise for use on
small-sample expression data
Jianping Hua1, James Lowey1, Zixiang Xiong2 and Edward R Dougherty*1,2

Address: 1Computational Biology Division, Translational Genomics Research Institute, Phoenix, USA and 2Department of Electrical and Computer
Engineering, Texas A&M University, College Station, USA

Email: Jianping Hua - jhua@tgen.org; James Lowey - jlowey@tgen.org; Zixiang Xiong - zx@ece.tamu.edu;
Edward R Dougherty* - edward@ece.tamu.edu

* Corresponding author

Abstract
Background: Overfitting the data is a salient issue for classifier design in small-sample settings.
This is why selecting a classifier from a constrained family of classifiers, ones that do not possess
the potential to too finely partition the feature space, is typically preferable. But overfitting is not
merely a consequence of the classifier family; it is highly dependent on the classification rule used
to design a classifier from the sample data. Thus, it is possible to consider families that are rather
complex but for which there are classification rules that perform well for small samples. Such
classification rules can be advantageous because they facilitate satisfactory classification when the
class-conditional distributions are not easily separated and the sample is not large. Here we
consider neural networks, from the perspectives of classical design based solely on the sample data
and from noise-injection-based design.

Results: This paper provides an extensive simulation-based comparative study of noise-injected
neural-network design. It considers a number of different feature-label models across various small
sample sizes using varying amounts of noise injection. Besides comparing noise-injected neural-
network design to classical neural-network design, the paper compares it to a number of other
classification rules. Our particular interest is with the use of microarray data for expression-based
classification for diagnosis and prognosis. To that end, we consider noise-injected neural-network
design as it relates to a study of survivability of breast cancer patients.

Conclusion: The conclusion is that in many instances noise-injected neural network design is
superior to the other tested methods, and in almost all cases it does not perform substantially
worse than the best of the other methods. Since the amount of noise injected is consequential, the
effect of differing amounts of injected noise must be considered.

Background
Classifier complexity and overfitting
The small-sample problems with microarray-based classi-
fication have long been recognized [1]. The potential
number of features (variables) upon which a classifier can

be based is extremely large, the potential features consist-
ing of all the gene-expression levels measured on a micro-
array (20,000 or more), and the sample size being the
number of microarrays in the study (usually less than 100
and often less than 50). When the number of features is

Published: 31 May 2006

BMC Bioinformatics 2006, 7:274 doi:10.1186/1471-2105-7-274

Received: 03 January 2006
Accepted: 31 May 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/274

© 2006 Hua et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/274
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16737545
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
large in comparison to the sample size, classifier design is
hampered by the designed classifier tending to overfit the
sample data, which means that the designed classifier may
provide good discrimination for the sample data but not
for the general population from which the sample data
have been drawn.

Classifier design involves choosing a classifier from a fam-
ily of classifiers on the basis of the data by means of some
algorithm. In this paper we restrict our attention to the
case of two classes. Classification involves a feature vector
X = (X1, X2,..., Xd) on d-dimensional Euclidean space ℜd

composed of random variables (features), a binary ran-
dom variable Y, and a function (classifier) ψ: ℜd → {0, 1}
to serve as a predictor of Y. The values, 0 or 1, of Y are
treated as class labels. The error of ψ is the probability,
P(ψ(X) ≠ Y), that the classification is erroneous. Classifier
error depends on the probability distribution, fx, y(x, y),
called the feature-label distribution, of the feature-label pair
(X, Y), in particular, the class conditional distributions, fx|0(x)
and fx|1(x). Since in practice we do not know the class con-
ditional distributions, a classifier is designed from sample
data.

A classifier is optimal in a family G of classifiers if its error,
εG, is minimal among all classifiers in G. Since a designed
classifier depends on the particular sample, it is random
relative to random sampling. We would like the expected
error, εG, n, of the designed classifier, n denoting sample
size, to be close to εG. If G and H are families of classifiers
such that G ⊂ H, then εH ≤ εG; however, for designed clas-
sifiers, it may be that εH, n > εG, n. That is, the designed clas-
sifier may partition the feature space well relative to the
sample data but not relative to the full distribution. This
phenomenon, called overfitting, is widespread in studies
with small sample sizes. To mitigate overfitting, one can
choose from smaller classifier families whose classifiers
partition the feature space more coarsely. Using G instead
of H, where G ⊂ H, reduces the design cost, εG, n - εG, relative
to εH, n - εH at the expense of introducing a constraint cost,
εG - εH. For a fixed sample size n, consider a collection of
classifier families, G1 ⊂ G2 ⊂ G3 ⊂ The increasing size of
the families means increasing classifier complexity. While
the smaller families extensively reduce design cost, their
constraint is excessive thus creating a situation in which
the expected errors of the designed classifiers fall as we uti-
lize increasingly large families but then begin to increase
when the design cost grows too much.

While overfitting is often thought of as applying to the
complexity of functional structure of a classifier, it also
applies to the number of features composing a classifier.
A feed-forward neural network classifier with one hidden
layer, d features and k hidden nodes, is an operator on d
dimensional Euclidean space ℜd, as is a linear classifier.

Their difference in complexity is that the linear classifier
partitions ℜd into two classes via a hyperplane, whereas
the neural net more finely partitions the space, thereby
reflecting greater complexity. Another way to increase
complexity is to increase the number of features. In this
way a linear classifier on d + 1 features is more complex
than a linear classifier on d variables because the former
reduces to the latter by setting one of the variables equal
to 0. In this vein, if we consider a sequence, x1, x2, ..., xd,
..., of features, we often first observe a decrease in expected
error as d increases and then subsequently an increase in
error for increasing d. While this description is idealized
and the situation can be more complex, it describes the
peaking phenomenon.

In light of the peaking phenomenon, a natural question
arises: given a set of potential features, what is the optimal
number of features one should use for classifier design
[2]? The question is complicated because it depends on
the classification rule, feature-label distribution and sam-
ple size. Figure 1 illustrates peaking in terms of sample
size n and the number d of features. The surface gives the
average error of designed LDA classifiers in terms of d and
n based on two Gaussian class conditional distributions
possessing the same covariance matrix. The features are
slightly correlated and we see that peaking occurs with
very few features for sample sizes 30 and below, but then
exceeds 30 features for sample sizes above 90. A much
more serious situation for LDA is presented in Fig. 2,
where the situation is the same except that the features are
highly correlated. With a sample size of 80, large for most
microarray studies, the optimal number of features is 3.
Even with a sample size of 200, the optimal number of
features is only 8.

In our preceding examples, we knew the distributions and
were able to order the features so as not to have to con-
sider all possible feature sets; in practice, the features are
not ordered, and a good feature set must be found from
among all possible feature subsets. This involves the use
of a feature-selection algorithm, which is part of the clas-
sification rule. Feature selection yields classifier con-
straint, not a reduction in the dimensionality of the
feature space relative to design. For instance, if there are d
features available for linear discriminant analysis (LDA),
when used directly, then the classifier family consists of all
hyperplanes in d-dimensional space. But, if a feature-
selection algorithm reduces the number of variables to m
<d prior to application of LDA, then the classifier family
consists of all hyperplanes in d-dimensional space con-
fined to m-dimensional subspaces. The dimensionality of
the classification rule has not been reduced, but the new
classification rule (feature selection plus LDA) is con-
strained.
Page 2 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
A standard way of measuring classifier complexity is via
the VC (Vapnik-Chervonenkis) dimension of a family of clas-
sifiers [3]. The VC dimension is defined in the Methods
Section; here we note that it provides a measure of the
degree to which a classifier can separate points, the greater
the separation ability the higher the VC dimension and
the lower the separation ability the lower the VC dimen-
sion. High VC-dimension classifiers have a greater ability
to discriminate complex class interaction, at the cost of a
greater potential to overfit, than do low VC-dimension
classifiers. The VC dimension of a linear classifier with d
features is d + 1, whereas the VC dimension of a feed-for-
ward neural network with one hidden layer, d features and
k hidden nodes, exceeds d(k - 1) [4]. Depending on the
number of nodes in the hidden layer, this can greatly
exceed the VC dimension of a linear classifier.

The potential for overfitting is exhibited by a classical
bound on the expected design error. For sample size n, the
expected design cost of a classifier chosen from a family G
via the empirical-error rule, which chooses the classifier in
G that makes the least number of errors on the sample
data, can be bounded via the VC dimension of G,

where VG is the VC dimension of G and c0 is a constant
independent of G and n [4]. To make the bound small the
sample size must greatly exceed the VC dimension. While
providing a cautionary warning concerning high VC-
dimension classifiers, the bound of Eq. 1 is not the end of
the story when it comes to classifier design. First of all, the
bound applies to all possible distributions, and therefore

ε εG n G
Gc V n

n,
log

− ≤ ()0 1

Peaking phenomenon for LDA with slightly correlated featuresFigure 1
Peaking phenomenon for LDA with slightly correlated features.
Page 3 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
can be very loose. Second, and directly to the point of the
present study, the design error depends on the classifica-
tion rule, not only the family from which the classifier is
chosen.

Given a very large sample, one might pose the rule of
thumb that a more complex distribution requires a more
complex classifier. The overfitting problem strikes at this
rule of thumb when samples are insufficiently large. The
rule is not reversed; rather, it breaks down. The VC dimen-
sion, or any other measure of classifier complexity, can
only provide a loose guideline in the context of a warning
against overfitting. The efficacy of a classifier design strat-
egy depends not only on the complexity (VC dimension)
of the classifier family, but also on the complexity of the
feature-label distribution, or the difficulty of the classifica-

tion problem. The latter can be rigorously approached by
defining a measure of distributional complexity and cal-
culating classifier performance as a function of distribu-
tional complexity [5]. In that case, when samples are
small, as expected we observe that simple classifiers work
best for low-complexity distributions, but we also often
observe that, when a complex classifier performs well, the
distribution is also of low complexity and a simple classi-
fier could just as well do the job. This is why in microarray
studies one should use high-complexity classifiers with
caution.

The point of this paper is that one should not give up on
complex classifiers, in particular, neural networks. As we
will see in the current investigation of neural-network
design, using an appropriate design strategy can yield

Peaking phenomenon for LDA with highly correlated featuresFigure 2
Peaking phenomenon for LDA with highly correlated features.
Page 4 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
good results in a small-sample setting, even for a high VC-
dimension classifier. Specifically, neural networks can
give competitive results for small samples, so long as they
are properly trained. The aim of the present study is to
examine over a range of models the degree to which vari-
ously trained neural networks can provide competitive
results for the kinds of sample sizes used in many micro-
array studies, our emphasis being on training via noise
injection.

Noise injection
Sietsma and Dow [6] found that injecting noise into the
sample data can lead to neural networks with improved
performance, meaning that the designed neural networks
can have smaller misclassification errors than those
designed without noise injection. Since then there has
been substantial research on two aspects of noise injec-
tion, theoretical proof and implementation. Holmsträom
and Koistinen [7] showed that noise-injection-based
design is asymptotically consistent as the sample size goes
to infinity provided that the noise is chosen correctly.
Moreover, rather than relying on heuristic choices, they
developed rigorous methods to find the distribution of
noise to be injected through Gaussian kernel density esti-
mation. By using a Taylor expansion, Matsuoka [8]
claimed that injecting noise to the neural network is equal
to adding a regularization term to the error cost function.
Following a similar but more rigorous approach, a neural
network based on a regularized error function was intro-
duced by Bishop [9] to avoid the randomness and increas-
ing computation time brought by the injected random
noise. The regularization term in the cost function penal-
izes a fast changing input-output relationship, and is
believed to prevent the neural network from overfitting to
the individual sample points. However, An [10] pointed
out that the second derivative term of the cost function,
which is omitted in Bishop's derivation, is a perturbation
that can be either positive or negative, and can be ignored
only when the network function fits well or is very
smooth. Grandvalet and Cano [11] also found that the
error perturbation cannot be omitted, and Grandvalet
[12] found a bound for the perturbation as a function of
the amount of noise injected. He therefore claimed that
noise injection could be beneficial. In the mean time,
Reed et al. [13] pointed out that noise injection has simi-
lar effects as weight decay, another common method used
in neural network training in order to improve perform-
ance.

Recently, the study of noise injection has moved to
improving the training scheme (classification rule). Pro-
posed methods include applying the noise not to the
input data but to the hidden nodes [14]; use of elliptic
rather than spherical shaped Gaussian noise, and basing
the noise distribution on the data [15]; noise designed

according to the local data distribution [16]; and utilizing
a regularized cost function in conjunction with noise
injection to alleviate the effects caused by inappropriate
variance of the injected noise [17].

The effects of noise injection can be illustrated pictorially.
Figure 3 corresponds to a 2-feature nonlinear model and
shows a sample of size 20, with 10 points from each class.
Parts a, b, c, and d of the figure show the optimal classifier,
the quadratic discriminant analysis (QDA) classifier, the
standard neural network (SNN), and the noise-injected
neural network (NINN), respectively. The standard neural
network overfits the training data by fitting its decision
boundary into the small gaps between samples, either
between two classes (the jutting right corner of the deci-
sion boundary), or among points of the same class (the
left part of decision boundary, which cuts through four
circle points). By filling up small gaps with noise points,
noise injection has moved the decision boundary out of
these local optimal states, smoothly fit it into the large gap
between the two classes, so it is closer to the Bayes deci-
sion boundary, and hence enhances the classification per-
formance.

Results and discussion
In this study, we have conducted an extensive simulation-
based comparative study of NINN design by taking advan-
tage of contemporary high-performance computing, a
512-node Beowulf cluster, which was not available when
many neural-network training procedures were proposed.
We consider a number of different feature-label models
across various small sample sizes using varying amounts
of noise injection. Besides comparing NINN design to
classical SNN design, the paper compares it to a number
of other classification rules: LDA, QDA, the strong feature
classifier (SFC), the Gaussian kernel (GK) classifier, and
the 3-nearest-neighbor (3NN) classifier. Since our appli-
cations concern microarray data for expression-based clas-
sification for diagnosis and prognosis, we also consider
NINN design as it relates to a study of survivability of
breast cancer patients. The models and patient data are
described in the Methods Section, as are the classification
rules used in the study.

Corresponding to each experimental case determined by
the model, the degree of correlation, and the number of
features, there is a graph of the errors of the classifiers for
the sample sizes considered. The complete set of these
graphs appear in the additional file 1, with some of them
also appearing in the paper to support the discussion. In
these comparison graphs, the noise NINN results corre-
spond to largest amount of noise injection available
(check Method section for details). The amount of noise
injected is important. For each situation there is a graph
showing the errors for different amounts of noise for each
Page 5 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
sample size considered, again the full set being given in
the additional file 1. A large amount of noise may be
required to achieve good noise-injected design and this
entails a high computational cost, which can be prohibi-
tive when considering a large number of feature sets. In
the case of linear classification, avoidance of this compu-
tational burden motivated the introduction of SFC, which
produces the effect of noise injection but determines the
classifier analytically without the computational cost of
introducing random noise. Let us proceed to consider the
different models.

Linear model
Simulation results for the linear model are shown in Fig.
4. For the linear model, LDA is optimal for the feature-
label distribution, with its sample-based performance
depending on sample size. In the case of 5 uncorrelated
features, except for the impractical case of n = 10, LDA and
SFC perform equivalently, with QDA in the processing of
catching up as the sample size increases, as expected.
Among the neural nets, NINN performs best and its per-
formance is very close to that of LDA. As is the case
throughout the experiments, SNN does poorly. For 10

A visual comparison of different classifiersFigure 3
A visual comparison of different classifiers. The data model is a two-dimension nonlinear model. Sample size is 20, with
10 points from each class. The samples from class 0 and class 1 are denoted with round and cross markers, respectively. The
shading denotes the decision region determined by the corresponding classifier, with darker shade for class 0 and lighter shade
for class 1. The structure of the neural network is 2-4-2.

a) Optimal QDA (Bayes Classifier)

100 200 300

100

200

300

b) Designed QDA

100 200 300

100

200

300

c) Standard Neural Network

100 200 300

100

200

300

d) Noise-injected Neural Network

100 200 300

100

200

300
Page 6 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
uncorrelated features, the performance of all the classifiers
improves, but now we see the advantage of SFC for very
small samples. It outperforms LDA for n < 40, after which
it stabilizes, whereas LDA continues to improve. Most
interestingly relative to the current study, for n ≥ 20, NINN
outperforms LDA. For both 5 and 10 features, GK is not
far behind NINN and 3NN is not competitive with NINN
except for very small sample sizes.

For slightly correlated features, the situation is mostly
analogous to the uncorrelated case, except that overall
performance is worse, as expected. The main difference is
the performance decline of SFC relative to LDA and
NINN, although SFC still performs better than QDA, and
SNN. Matters are quite different for 10 features. SFC out-
performs LDA and NINN for all sample sizes, SFC and
NINN significantly outperforming LDA for smaller sam-
ple sizes. The key point is that LDA is only performing
slightly better with 10 features than with 5. As seen in pre-
vious cases, 3NN performs best for very small samples.

When we go to highly correlated features, there is severe
performance degradation. For 5 features, NINN bests LDA
for n ≤ 20, and their performance is essentially the same
for n ≥ 30. GK is not far behind. The more interesting
observations occur with 10 features. Except for n ≤ 20,
when 3NN is better, NINN provides the best performance,
and is much better than LDA for the smaller sample sizes.
NINN is also better than GK, although the latter outper-

forms LDA for n ≤ 70. The problem with LDA is that it has
suffered the peaking phenomenon: it performs worse with
10 features than with 5. Early peaking for LDA with highly
correlated features has been previously observed [2]. Note
that in this highly correlated case, as with the previous
cases, 3NN performs well for very small samples, but does
not improve much thereafter as the sample size increases.

The effect of different amounts of noise is shown in Fig. 5
for uncorrelated features. Classification error is plotted as
a function of the amount of noise injection. Each line cor-
responds to a fixed training sample size, from 10 to 100
for every 10 sample points, the highest line corresponding
to 10 sample points and the lowest corresponding to 100
sample points. This graph is typical in that noise injection
is more beneficial for smaller samples and there is dimin-
ishing return for additional noise. Indeed, too much noise
can mask the original data to the extent that it ceases to be
beneficial. Throughout the experiments we have seen that
10-fold noise injection is quite beneficial and typically
does not cause loss of performance. Note that the graph in
Fig. 5 has substantially more noise injected for smaller
samples. This is on account of two reasons: first, more
added noise provides greater benefit for smaller samples;
second, the computational burden increase in accordance
to the sample size. Owing to the typical behaviour illus-
trated in Fig. 5, for all other models we defer to the addi-
tional file 1 for graphs showing the effects of different
amounts of noise injection.

Comparison of various classifiers for linear modelFigure 4
Comparison of various classifiers for linear model.

Non correlated features Slightly correlated features Highly correlated features

5
fe

a
tu

re
s

10 20 30 40 50 60 70 80 90 100
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Training sample size

SNN

NINN

GK

3NN

LDA

QDA

SFC

e
rr

o
r

10 20 30 40 50 60 70 80 90 100
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80 90 100
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

1
0

fe
a

tu
re

s

10 20 30 40 50 60 70 80 90 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80 90 100
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC
Page 7 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
Low-curvature nonlinear model
Simulation results for the low-curvature nonlinear model
are shown in Fig. 6. As expected, although QDA is optimal
for the feature-label distribution, LDA outperforms QDA
for smaller sample sizes (n ≤ 60) owing to its lower com-
plexity. From the perspective here, the key point is that
NINN performs best among all classifiers for n ≤ 60 and
second to QDA (and only slightly worse) for n ≥ 70. Note
that GK and SFC are not far behind NINN. An interesting
phenomenon occurs with 10 features: SFC performs best
for n ≤ 90. Along with this, LDA significantly outperforms
QDA. As for NINN, it is close behind SFC, especially for n
≥ 40.

For slightly correlated features, there are some large differ-
ences in the performance comparisons. In this case, with
5 features SFC performs relatively very poorly. QDA over-
takes LDA earlier and then does much better as the sample
size increases. However, once again NINN does well, hav-
ing the best performance for 20 ≤ n ≤ 60, and only being
bested by QDA for n ≥ 70. Note also that GK performs
close to NINN for all n. Similar statements hold for 10 fea-
tures, an exception being that QDA never overtakes
NINN.

With highly correlated features, peaking plays a critical
role. It is particularly severe for LDA and QDA, with error
rates higher for 10 features than for 5. This is in agreement

with the results of previous study as shown in Fig. 2[2]. It
even occurs for NINN and GK. Otherwise, there are a lot
of similarities to the slightly correlated case, with QDA
overtaking LDA and, as in the 5-feature slightly correlated
case, NINN outperforming QDA for the smaller sample
sizes, this time in both the 5- and 10-feature cases. An
interesting point regarding neural networks is that, for 5
features, GK is not far behind NINN, as we have witnessed
before.

High-curvature nonlinear model
Simulation results for the high-curvature nonlinear model
are shown in Fig. 7. It is instructive to compare the results
for the low-curvature and high-curvature models. Focus-
ing first on 5 features, in the uncorrelated model we are
struck by the much poorer relative performance of NINN
for the high-curvature model in comparison to the low-
curvature model. Whereas in the low-curvature nonlinear
model, NINN is substantially better than SNN, and
slightly better than GK, in the high-curvature nonlinear
model, NINN is bested by GK, although it remains signif-
icantly better than SNN. Its relation to QDA is also much
different in the high-curvature model, where QDA is supe-
rior to it for n ≥ 50, and much better than it for n ≥ 60,
whereas in the low-curvature model, QDA does not out-
perform NINN until n ≥ 70, and then not very much. For
10 features in the uncorrelated case, NINN again outper-
forms SNN across all sample sizes, the gap closing at sam-
ple size 100. As in the 5-feature case, NINN is beat by GK.
Whereas QDA never surpasses NINN in the low-curvature
model, it surpasses NINN in the high-curvature model for
n ≥ 50. Analogous considerations apply to the different
relative performance of NINN compared to GK and QDA
in the other five high-curvature models.

Relative to overfitting the sample data, the key difference
between the low-curvature and high-curvature nonlinear
models is the increased curvature in the high-curvature
model. Noise injection has the effect of smoothing the
decision boundary and this smoothing has greater benefit
when the decision boundary is less curved. As another
effect of high curvature, note the strikingly poor perform-
ance of 3NN.

Equal-mean model
In this model, QDA is optimal for the feature-label distri-
bution with the decision boundary being a hypersphere.
The main point to be made here is that the comparisons
are similar to the high-curvature nonlinear model, the key
factor being the high curvature of the decision boundary
in the QDA-optimal model. Another noteworthy observa-
tion is that the performance of NINN does not always
monotonically improve along with the amount of noise
injected. In some certain cases, the classification error can
first decrease, then increase after the noise injection sur-

Effects of different amounts of noise for uncorrelated linear modelFigure 5
Effects of different amounts of noise for uncorrelated
linear model. Classification error is plotted as a function of
the amount of noise injection. Each line corresponds to a
fixed training sample size, from 10 to 100 for every 10 sam-
ple points, the highest line corresponding to 10 sample points
and the lowest corresponding to 100 sample points.

10
0

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

noise injected

e
rr

o
r

Linear model case, 5 uncorrelated features.
Page 8 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
passes a certain amount. This phenomenon is most prom-
inent in the case of 10 highly correlated features.

XOR model
The results for the XOR model are fairly consistent and
clear across all six cases, 5 and 10 features, and uncorre-
lated, slightly correlated, and highly correlated models.
NINN, GK, and 3NN have very close performances and
they perform significantly better than SNN. If anything
can be said concerning the relationship between NINN,
GK, and 3NN, it is that 3NN is insignificantly slightly bet-
ter than NINN and GK for small sample sizes, with the sit-
uation reversing for larger sample sizes.

Bimodal model
Simulation results for the 5-feature case for the bimodal
model are shown in Fig. 8. The results for the bimodal
model show similarity to those for the XOR model in that,
as a group, NINN, GK, and 3NN tend to outperform SNN
for the smaller sample sizes, but with the intra-group per-
formances more spread and the inter-group performance
differences tending to dissipate as the sample size
increases. Among the classifiers NINN, GK, and 3NN, for
5 features, NINN is better than GK, which is better than
3NN, with the differences becoming larger for increasing
correlation. For 10 features, NINN remains the best but
3NN outperforms GK.

Patient data
Simulation results for the patient data are shown in Fig. 9.
Basically, our simulation on patient data shows that
NINN achieves the best performance with 3NN, GK and
LDA not too far behind.

When we observe the 5-feature results for the patient data,
we see a striking similarity with those for slightly corre-
lated features in the nonlinear model. Ignoring the fact
that QDA provides the best performance for larger sam-
ples in the nonlinear model, for which it is optimal rela-
tive to the feature-label distribution, in both cases NINN
performs best across the full range of sample sizes, and
even more so with the patient data. In both cases, LDA
and GK are similar and trail NINN. 3NN is a little better
in the real patient data while SFC is a little worse. Note
that while we have compared the patient-data results to
those of the slightly correlated nonlinear model, similar
correspondences exist between the patient data and the
highly correlated nonlinear model, which is only reason-
able since, as pointed out previously, there are many sim-
ilarities between the slightly and highly correlated
nonlinear models.

The salient point regarding using 10 features for the
patient data is peaking, as it is in the highly correlated
nonlinear model. For instance, for n = 40, LDA performs

Comparison of various classifiers for low-curvature nonlinear modelFigure 6
Comparison of various classifiers for low-curvature nonlinear model.

Non correlated features Slightly correlated features Highly correlated features

5
fe

a
tu

re
s

10 20 30 40 50 60 70 80 90 100
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Training sample size

rr
o

e
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80 90 100
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80 90 100
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

1
0

fe
a

tu
re

s

10 20 30 40 50 60 70 80 90 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80 90 100

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80 90 100
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

LDA

QDA

SFC
Page 9 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
worse with 10 features than with 5 features and QDA per-
forms much worse with 10 features than with 5. NN
shows no improvement with 10 features compared with 5
features. NINN shows a slight improvement with 10 fea-
tures, indicating later peaking. Although NINN pretty
much flattens out when n > 20, it again has the best per-
formance across all sample sizes. The most prominent dif-
ferences between the real patient data and highly
correlated nonlinear model are QDA and GK. Poor per-
formance owing to peaking is particularly evident with
GK.

Conclusion
Although neural networks have high VC dimension and
can therefore suffer from overfitting the sample data, their
performance is highly dependent on the training proce-
dure (classification rule) employed. This paper has dem-
onstrated that in many instances noise-injected neural
network design is superior to classical neural-network
design and to the other tested methods, and in almost all
cases it does not perform substantially worse than the best
of the other methods. This conclusion has importance for
the design of classifiers for diagnosis and prognosis based
on gene-expression data because sample sizes are often

Comparison of various classifiers for bimodal modelFigure 8
Comparison of various classifiers for bimodal model.

Non correlated features Slightly correlated features Highly correlated features

5
fe

a
tu

re
s

10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training sample size

rr
o

e
r

SNN

NINN

GK

3NN

10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

10 20 30 40 50 60 70 80 90 100
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

Comparison of various classifiers for high-curvature nonlinear modelFigure 7
Comparison of various classifiers for high-curvature nonlinear model.

Non correlated features Slightly correlated features Highly correlated features

5
fe

a
tu

re
s

10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

Training sample size

rr
o

SNN

NINN

GK

3NN

QDA

e
r

10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

QDA

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

QDA

1
0

fe
a

tu
re

s

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Training sample size

e
rr

o

SNN

NINN

GK

3NN

QDA

r

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

QDA

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training sample size

e
rr

o
r

SNN

NINN

GK

3NN

QDA
Page 10 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
limited and, unless the class conditional distributions are
easily discriminated, say by a linear classifier, a higher-
complexity classifier must be employed.

Methods
Simulations have been conducted using both synthetic
data and real patient data. For synthetic data, we have con-
sidered six different distribution models for data genera-
tion.

▪ Linear model: The class-conditional distributions are
Gaussian, with S0~ N(μ0, Σ0) and S1~ N(μ1, Σ1), where μ0
= (0, 0,..., 0), μ1 = (1, 1,..., 1) and Σ0 = Σ1 = Σ. The corre-
sponding Bayes classifier is linear and the Bayes decision
boundary is a hyperplane and can be found via linear dis-
criminant analysis (LDA).

▪ Low-curvature nonlinear model: The class-conditional
distributions are Gaussian with unequal variance matri-
ces: μ0 = (0, 0,..., 0), μ1 = (1, 1,..., 1), and 2Σ0 = Σ1 = 2Σ. The
Bayes classifier is nonlinear, the Bayes decision boundary
is quadratic and can be found via quadratic discriminant
analysis (QDA), and the boundary possesses low curva-
ture in comparison to the high-curvature nonlinear model
to be described next.

▪ High-curvature nonlinear model: This model and the
following equal-mean model have been used in [7] and
[18]. The class-conditional distributions are Gaussians: μ0
= (0, 0,..., 0), μ1 = (2.32, 0,..., 0) and 4Σ0 = Σ1 = 4Σ. The
Bayes decision boundary is quadratic, it is found via QDA,

and it possesses higher curvature than the decision
boundary for the low-curvature nonlinear model.

▪ Equal-mean model: The class-conditional distributions
are Gaussians. Both classes share the same mean vector, μ0
= μ1 = (0, 0,..., 0), with 4Σ0 = Σ1 = 4Σ. The Bayes decision
boundary is a hypersphere determined by QDA, the cov-
ariance structure is the same as in the high-curvature non-
linear model, the decision boundary has high curvature in
comparison to the low-curvature nonlinear model, and
this model is more difficult than the high-curvature non-
linear model.

▪ XOR model: The class-conditional distributions of both
classes are mixture of two equi-probable Gaussians. The
covariance matrices of the classes are identical, i.e., Σ00 =
Σ01 = Σ10 = Σ11 = Σ. The mean vectors of class S0 are μ00 =
(1, -1, 1,...), μ01= (-1, 1, -1,...). The mean vectors of class
S1 are μ10 = (1, 1, 1,...), μ11 = (-1, -1, -1,...). The Bayes deci-
sion boundaries are two perpendicular hyperplanes.

▪ Bimodal model: The class-conditional distribution of
class S0 is Gaussian, centered at μ0 = (0, 0,...,0), and the
class-conditional distribution of class S1 is a mixture of
two equi-probable Gaussians, centered at μ10 = (1, 1,..., 1)
and μ11= (-1, -1,..., -1). The covariance matrices of the
classes are identical, i.e., Σ0 = Σ10 = Σ11 = Σ. The Bayes deci-
sion boundaries are two parallel hyperplanes.

Throughout the simulation, we assume that the two
classes have equal prior probability.

Comparison of various classifiers for patient dataFigure 9
Comparison of various classifiers for patient data.

5 features 10 features

10 20 30 40 50 60 70 80
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Training sample size

e
rr

o
r

Tumor data, 5 features

NN

NINN

GK

3NN

LDA

QDA

SFC

10 20 30 40 50 60 70 80
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Training sample size

e
rr

o
r

NN

NINN

GK

3NN

LDA

QDA

SFC
Page 11 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
We assume the covariance matrix Σ has a spherical struc-
ture such that every two features possess the same correla-
tion, namely,

where σ is the standard deviation of each feature, and ρ
the correlation between features. If ρ = 0, then all features
are uncorrelated. As ρ increases, the correlation among
features increases. We consider three representative covar-
iance matrices by setting ρ equal to 0, 0.125 and 0.5, and
referring to these as uncorrelated features, slightly correlated
features and highly correlated features, respectively. Note
that in [7] and [18], no correlation among features is con-
sidered when they discuss the nonlinear and equal-mean
models. As for the feature size, two feature sizes, 5 and 10,
are tested in our simulation. By considering all the possi-
ble combinations of the distribution model, feature size
and covariance matrix, there are altogether 36 different
situations.

The patient data come from a microarray cancer-classifica-
tion study that analyzes a large number of microarrays
prepared with RNA from breast tumor samples of 295
patients [19]. Using a previously established 70-gene
prognosis profile [20], a prognosis signature based on
gene-expression that correlates well with patient survival
data and other existing clinical measures is proposed in
[19]. Of the 295 microarrays, 115 belong to the 'good-
prognosis' class and the other 180 belong to the 'poor-
prognosis' class.

Seven classifiers are considered in the study: standard neu-
ral network (SNN) [21], neural network designed with
noise injection (NINN) [7], the Gaussian kernel (GK)
classifier [4], LDA [21], QDA [21], the strong-feature clas-
sifier (SFC) [22], and the 3-nearest-neighbor (3NN) clas-
sifier [4]. We include LDA and QDA because with full
distributional knowledge they are optimal in the linear
and nonlinear models, respectively, with QDA also opti-
mal in the equal-mean model. We include SFC because,
by replacing each data point with a spherical Gaussian dis-
tribution and then finding the classifier via a Wiener-filter
methodology, it provides an analytic form of noise injec-
tion that is much more computationally efficient than the
addition of random noise. Owing to the kinds of prob-
lems they are meant to address, we apply LDA and SFC
only in the linear and nonlinear models, and we apply
QDA in the linear, nonlinear, and equal-mean models.

We include 3NN for comparison purposes because it has
been used extensively in expression-based analysis and, as
we will see, performs relatively well on very small sam-
ples.

We use feed-forward layered networks with one hidden
layer. For 5 and 10 features, the network structures are 5-
8-2 and 10-15-2, respectively, meaning there are 8 and 15
nodes in the hidden layer, respectively. Since the classifi-
ers are binary, there are two units in the output layer. Nor-
malization of input data and initialization of the
parameters inside the network are done according to [21].
Error back-propagation is used to calculate the derivatives
of the cost function, which is minimized by using the Lev-
enberg-Marquardt method [23]. The source code of the
authors' neural network implementation is available on
request.

For the GK classifier, assume there are n training sample
points, (xi, yi), i = 1, 2,..., n, with sample point xi a d-
dimensional vector, and yi its label. Then for a testing
point x, the posterior probability of its label y being k is
estimated by

where I() is the identity function, and hi is the smoothing
factor which is chosen in the same way as in the noise-
injection procedure to be shortly described. The GK clas-
sifier will pick the k with the larger posterior probability as
the predicted label.

For NINN design we use the method in [7]. Again let there
be n sample points, (x1, y1), (x2, y2), ..., (xn, yn). The
amount of noise injected is measured by the ratio between
the noise-injected sample size and the original sample
size. In our simulation, we ensure that the same number
of noise points is generated for each training sample
point. For instance, if the noise injection amount is k, then
our sampling procedure is performed in the following
manner:

1) Pick xi from the training sample;

2) Draw a point z from standard normal distribution, z ~
N(0, 1);

Generate a noise point by x = xi + hiz, where hi is the
smoothing factor for point xi, and is given by [7]

hi = (8d/4-1dd/2Γ(d/2))2/(d+4) n-1/(d+4) (σ0I(yi = 0) + σ1I(yi =
1)), (4)

∑ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

()σ

ρ ρ
ρ

ρ
ρ ρ

2

1

1

1

1

2,

P y k I y k h x x hi
i

n

i
d

i i() exp / ,
/

= = =() ⋅ ⋅() − − ()() ()
=

−
∑

1

2 1 2 2 22 2 3π
Page 12 of 14
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
where I() is identity function, and σ0 and σ1 are the esti-
mated standard deviations of class 0 and 1, respectively;

3) Repeat steps 2 and 3 k times to generate k noise points
around xi;

4) Repeat steps 1 through 4 for i = 1, 2, ..., n to generate kn
noise points.

To test the effects of different amounts of noise injection,
for each sample size n, we allow k = 2b, b = 0, 1,..., B, where
B is the largest integer that kn = 2Bn ≤ 5120, in the simula-
tion. We set 5120 as the maximum sample size after noise
injection to avoid too much computation, owing to the
slow convergence in the training of the neural network.
Note that the original sample points are not used for the
final training of the network, so for noise-injection
amount 20 = 1, the result is simply a perturbation of the
original data. When comparing with other classifiers, the
results with the largest amount of noise 2B are used.

For synthetic data, the simulation is done by independ-
ently applying each classifier to different situations. For
each situation, the simulation generates n training points
(n/2 points for each class) according to the distribution
model, feature size, and covariance matrix of the corre-
sponding situation. The trained classifier is applied to 200
independently generated test points from the identical
distribution. This procedure is repeated 10,000 times for
all classifiers, and for NINN, for all possible noise injec-
tion amounts. The training sample size varies from 10 to
100, with increase by steps of 10. The entire simulation is
repeated for different training sample sizes, feature sizes,
and situations.

For patient data, we apply all seven classifiers to the
patient data and estimate the error by using a hold-out
method. For a sample size of n, n sample points are drawn
without replacement from the 295 data points. Out of the
70 genes, d are selected based on the n training points in
the following manner: for each gene, we calculate the dif-
ference of the mean expression values between the two
classes, normalize this value by the sum of the corre-
sponding standard deviations, and then select the genes
with largest differences [24]. To make a straightforward
comparison between the results of the patient data and
synthetic data, here we choose the same feature sizes as we
do in the synthetic data simulation, i.e., d = 5 and 10. The
classifier trained on the n points is tested on the 295 – n
points not drawn. This procedure is repeated 5000 times
and error rates are averaged to obtain an estimate of the
sample-based classification error. As discussed for this
hold-out procedure using the same data set in [25], since
in the hold-out experiment the observations are not fully

independent, we limit n to under 80 to reduce the impact
of observation correlation.

VC dimension

To define the VC dimension of a classifier family C, for

each classifier ψ ∈ C consider the set, {(x, y): ψ(x) ≠ y}, of

all points in the feature-label space ℜd × {0, 1) for which
the value of the classifier at point x does not equal the
value of the label at x. Let C be the collection of these

sets for all ψ ∈ C. If {z1, z2,..., zm} is a set of m points in

ℜd, let NC (z1, z2,..., zn) be the number of distinct subsets

of {z1, z2,..., zm} created by intersection with sets in C.

The mth shatter coefficient of C, denoted by ξ(, m), is the
maximum value of NC (z1, z2,..., zn) over all point sets {z1,

z2,..., zm}. If ξ (, m) = 2m, then C is said to shatter {z1,

z2,..., zm}. This means there is at least one set of m points

for which all subsets of the set can be constructed by inter-
section with sets in C. The shatter coefficient of C meas-

ures the extent to which the sets in C can separate

points for various point-set sizes. The largest integer m for

which ξ (, m) = 2m is called the Vapnik-Chervonenkis

(VC) dimension of C. If ξ (, m) = 2m for all m, then the

VC dimension is ∞. For a comprehensive discussion of the
VC dimension and its implications, see [4].

Authors' contributions
JH developed the models and classification rules, collabo-
rated in the analysis, and helped draft the manuscript. JL
developed efficient implementations of the various rules
and experiments on the Beowulf cluster so that the mas-
sive simulation could be completed. ZX participated in
the analysis and interpretation of the results. ED con-
ceived the study, participated in the analysis and interpre-
tation of the results, and helped draft the manuscript.

Additional material

Acknowledgements
This research was supported in part by the National Science Foundation
under Grant CCF-0514644.

Additional File 1
Supplementary_Simulation_Results. Complete simulation results are
provided in this file.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-274-S1.pdf]














Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-274-S1.pdf

BMC Bioinformatics 2006, 7:274 http://www.biomedcentral.com/1471-2105/7/274
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Dougherty ER: Small sample issues for microarray-based clas-

sification. Comparative and Functional Genomics 2001, 2:28-34.
2. Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER: Optimal number of

features as a function of sample size for various classification
rules. Bioinformatics 2005, 21:1509-1515.

3. Vapnik V, Chervonenkis A: On the uniform convergence of rel-
ative frequencies of events to their probabilities. Theor Prob
Appl 1971, 16:264-280.

4. Devroye L, Györfi L, Lugosi G: A Probabilistic Theory of Pattern Recogni-
tion New York, Springer Verlag; 1996.

5. Attoor SN, Dougherty ER: Classifier performance as a function
of distributional complexity. Pattern Recognition 2004,
37:1641-1651.

6. Sietsma J, Dow RJF: Creating artificial neural networks that
generalize. Neural Networks 1991, 4:67-79.

7. Holmsträom L, Koistinen P: Using additive noise in back-propa-
gation training. IEEE Trans Neural Networks 1992, 3:24-38.

8. Matsuoka K: Noise injection into inputs in back-propagation
learning. IEEE Trans Syst Man and Cybern 1992, 22:436-440.

9. Bishop CM: Training with noise is equivalent to Tikhonov reg-
ularization. Neural Computation 1995, 7:108-116.

10. An G: The effects of adding noise during backpropagation
traning on a generalization performance. Neural Computation
1996, 8:643-674.

11. Grandvalet Y, Canu S: Comments on "Noise injection into
inputs in back-propagation learning". IEEE Trans Syst Man and
Cybern 1995, 25:678-681.

12. Grandvalet Y, Canu S, Boucheron S: Noise injection: theoretical
prospects. Neural Computation 1997, 9:1093-1108.

13. Reed R, Marks RJ II, Oh S: Similarities of error regularization,
sigmoid gain scaling, target smoothing, and training with jit-
ter. IEEE Trans Neural Networks 1995, 6:529-538.

14. Hammadi NC, Ito H: Improving the performance of feedfor-
ward neural networks by noise injection into hidden neu-
rons. J Intell Robot Syst 1998, 21:103-115.

15. Grandvalet Y: Anisotropic noise injection for input variables
relevance determination. IEEE Trans Neural Networks 2000,
11:1201-1212.

16. Skurichina M, Raudys S, Duin RPW: K-Nearest neighbors
directed noise injection in multilayer perceptron training.
IEEE Trans Neural Networks 2002, 11:504-411.

17. Seghouane A, Moudden Y, Fleury G: Regularizing the effect of
input noise injection in feedforward neural networks train-
ing. Neural Comput & Applic 2004, 13:248-254.

18. Kohonen T, Barna G, Chrisley R: Statistical pattern recognition
with neural networks: Bechmarking studies. San Diego:Proc
IEEE Int Conf Neural Networks 2001, 11:61-68.

19. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AAM, Voskuil
DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M,
Atsma D, Witteveen A, Delahaye L, van der Velde T, Bartelink H,
Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expres-
sion signature as a predictor of survival in breast cancer. New
Eng J Med 2002, 347:1999-2009.

20. van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M,
Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ,
Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene
expression profiling predicts clinical outcome of breast can-
cer. Nature 2002, 415:530-536.

21. Duda R, Hart P, Stork DG: Pattern Classification 2nd edition. New
York, Wiley; 2001.

22. Kim S, Dougherty ER, Barrera J, Chen Y, Bittner ML, Trent JM:
Strong feature sets from small samples. Journal of Computational
Biology 2002, 9:127-146.

23. Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Rec-
ipes in C 2nd edition. New York, Cambridge University Press; 2002.

24. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov
JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD,
Lander ES: Molecular classification of cancer: Class discovery
and class prediction by gene expression monitoring. Science
1999, 286:531-537.

25. Braga-Neto U, Dougherty ER: Is cross-validation valid for small-
sample microarray classification? Bioinformatics 2004,
20:374-380.
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15572470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15572470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15572470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960464
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Classifier complexity and overfitting
	Noise injection

	Results and discussion
	Linear model
	Low-curvature nonlinear model
	High-curvature nonlinear model
	Equal-mean model
	XOR model
	Bimodal model
	Patient data

	Conclusion
	Methods
	VC dimension

	Authors' contributions
	Additional material
	Acknowledgements
	References

