
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Recrafting the neighbor-joining method
Thomas Mailund*1, Gerth S Brodal2, Rolf Fagerberg3,
Christian NS Pedersen1,4 and Derek Phillips5

Address: 1Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, 2Basic Research in Computer Sciences (BRICS), Department of
Computer Science, University of Aarhus, Denmark, 3Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark, 4Department of Computer Science, University of Aarhus, Denmark and 5School of Computer Science, University of Waterloo,
Canada

Email: Thomas Mailund* - mailund@birc.dk; Gerth S Brodal - gerth@brics.dk; Rolf Fagerberg - rolf@imada.sdu.dk;
Christian NS Pedersen - cstorm@birc.dk; Derek Phillips - djphilli@uwaterloo.ca

* Corresponding author

Abstract
Background: The neighbor-joining method by Saitou and Nei is a widely used method for
constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3)
algorithm upon which all existing implementations are based.

Results: In this paper we present techniques for speeding up the canonical neighbor-joining
method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining
method. The best-case running time of our algorithms are O(n2) but the worst-case remains O(n3).
We empirically evaluate the performance of our algoritms on distance matrices obtained from the
Pfam collection of alignments. The experiments indicate that the running time of our algorithms
evolve as Θ(n2) on the examined instance collection. We also compare the running time with that
of the QuickTree tool, a widely used efficient implementation of the canonical neighbor-joining
method.

Conclusion: The experiments show that our algorithms also yield a significant speed-up, already
for medium sized instances.

Background
The neighbor-joining method is a distance based method
for constructing evolutionary trees. It was introduced by
Saitou and Nei [1], and the running time was later
improved by Studier and Keppler [2]. It has become a
mainstay of phylogeny reconstruction, and is probably
the most widely used distance based algorithm in practice.
With a running time of O(n3) on n taxa [2], it is fast for
small input, and empirical work shows it to be reasonable
accurate, at least for cases where the rate of evolution is
not extremely high or low. St. John et al. [3] even suggest

it as a standard against which new phylogenetic methods
should be evaluated. The aim of this paper is to improve
on the running time of neighbor-joining tree reconstruc-
tion to make it applicable for larger datasets, e.g. [4].
Whether the accuracy supplied by the neighbor-joining
method is useful for a particular data set in a particular sit-
uation is an independent issue outside of the scope of this
paper.

The neighbor-joining method is a greedy algorithm which
attempts to minimize the sum of all branch-lengths on

Published: 19 January 2006

BMC Bioinformatics 2006, 7:29 doi:10.1186/1471-2105-7-29

Received: 29 April 2005
Accepted: 19 January 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/29

© 2006 Mailund et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/29
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16423304
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:29 http://www.biomedcentral.com/1471-2105/7/29
the constructed phylogenetic tree. Conceptually, it starts
out with a star-formed tree where each leaf corresponds to
a species, and iteratively picks two nodes adjacent to the
root and joins them by inserting a new node between the
root and the two selected nodes. When joining nodes, the
method selects the pair of nodes i, j that minimizes the
branch-length sum of the resulting new tree. One way of
achieving this [2] is always to select the pair of nodes i, j
that minimizes

Qij = (r - 2) dij - (Ri + Rj), (1)

where dij is the distance between nodes i and j (assumed
symmetric, i.e., dij = dji), Rk is the row sum over row k of the
distance matrix: Rk = ∑i dik (where i ranges over all nodes
adjacent to the root node), and r is the remaining number
of nodes adjacent to the root. When nodes i and j are
joined, they are replaced with a new node, A, with dis-
tance to a remaining node k given by

dAk = (dik + djk - dij)/2. (2)

This formulation of the neighbor-joining method gives
rise to a canonical algorithm that performs a search for
mini,j Qij, using time O(r2), and joins i and j, using time
O(r) to update d. This search and join is continued until
only three nodes are adjacent to the root (i.e. for n - 3 joins
where n is the total number of species). The total time
complexity becomes O(n3), and the space complexity
becomes O(n2) (for representing the distance matrix d).

For further discussions of the neighbor-joining method,
see e.g. [5-7].

In this paper, we present techniques for speeding up the
canonical neighbor-joining algorithm. Our algorithms
construct the same phylogenetic trees as the canonical
algorithm, but attempt to reduce the search time for mini,j
Qij a quad-tree [8] built on top of the Q matrix, or on a
matrix that approximates the Q matrix.

We evaluate the performance of our algorithms empiri-
cally on distance matrices obtained from the Pfam collec-
tion of alignments [9,10], and compare the running time
with that of the QuickTree tool [11], a widely used effi-
cient implementation of the canonical neighbor-joining
algorithm, which previously was shown to run faster than
the implementations in the CLUSTAL W, and PHYLIP
packages, and faster than the BIONJ implementation of a
variant of the neighbor-joining method. The results show
that the presented algorithms can give a significant speed-
up over the standard neighbor-joining method, already
for moderately sized instances. Indeed, evidence is given
that the running time of the best of our algorithms evolves
as Θ(n2) on the examined instance collection, as opposed
to Θ(n3) for QuickTree.

Results and discussion
To evaluate the presented methods, we have implemented
them in a tool, QuickJoin, available at [12]. For evaluating
the performance of QuickJoin we have compared the

Performance of our methods using the simple approximation to QFigure 1
Performance of our methods using the simple approximation to Q. The plots show the running time of QuickTree,
and QuickJoin with the depth-first search (DFS) method and with the priority queue (p.queue) method with and without sam-
pling (see Methods), with the first approximation of Q described in the Methods section. The input for the runs is distance
matrices for the Pfam alignments with 200 to 1000 sequences. The depth-first search without sampling performs very poorly
and is removed on the plot on the right to better show the performance of the remaining methods.

200 400 600 800 1000

0
20

40
60

Simple Q approximation, all methods

Number of taxa

W
al

lti
m

e
in

 s
ec

on
ds

● ● ●●

●

● ●●
●

● ● ●● ● ●●

●

●
●

● ● ●● ●
●

●● ●
● ●●● ● ● ● ●● ●● ● ●

●

●● ●● ●● ●●

●

●
●●● ● ●

● ●● ● ●● ●●● ●● ● ●● ● ●● ●● ●● ●●
●

● ●
●

● ●

●

● ●
●

● ●●

●

●●● ●
●

●● ●● ● ●●
●

● ● ●
●

● ●●●● ●● ●●● ● ●● ●●

●

●●●
●

●

●● ●● ● ●
● ●●

●
●

● ●●●●●●
●

● ●● ●● ●●●● ●● ● ●●● ●● ●
●

● ● ● ●
●●●● ●● ●● ● ●

●

●●● ● ●
●●● ●●●

●
●

●● ●

●
●●●

●
● ● ●● ● ●● ● ●

●

●
●

● ●●●●

●

●●● ●● ●
●

●
●●● ●●● ●●●

●●● ● ●●●●● ●●
●

●

●

● ●● ●● ●● ●

●

●● ● ● ●●●● ●

●

●●

●

●●●
●

●● ●● ●
●

●●● ●●●● ● ●●

●
●●●

●●● ●●● ●●

●
●

●● ● ●
●

● ●●● ●
●

●
●

●●

●

●●●

●

● ●
● ●

●
●

● ●●●
●

●● ● ● ●
● ●● ●●

●
●●● ●●

●
● ●

●
●

●● ● ●
● ● ●●

●

●
●

● ●●● ●●● ● ●●● ●●● ●● ●
●

●●●
●●

●●

●

● ●●●
●

●
● ●●●

●
● ●

●
●● ● ● ● ●●●● ●

●
● ●● ● ●

●
●●●●

● ●●●
●

●●●●● ●

●●
●●● ● ●● ●●● ●

●●
●

●
● ●

●

● ● ●●
●

●● ●●● ●● ●●●●
●●●●● ●

●

●● ● ●
●

● ●●● ●● ●

●

● ●

●
●

●
●

● ●●● ●
●●●

●

●

● ●● ● ● ● ●
●

●

●● ●●● ●●●
●

● ● ● ●●●● ●●●
●●● ● ●●● ●●●● ●● ●●

●
●

●●● ● ●
● ● ● ●

●

●● ●
●

●●●● ●● ●● ●● ●●● ● ●● ●●●● ●●

●

●

●
●

● ●●
●

●●● ●● ●● ●●
●●● ●●● ●●● ●●

●
● ●●

●

●●●●●● ●●●

●

●● ●●
●● ●

●●
● ● ●● ● ●●

●●
● ● ● ● ●

●●● ● ●● ●●●

●

●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●

●

●

●

● ●● ●●● ●●
●

● ●●

●
●

● ● ●●●
●

●●● ● ●
●

●
●

●

●● ● ●●● ●●●●●
●

●● ● ●● ●
●●

● ●● ● ●
●

● ●

●
●

●
●

● ●
●

● ●● ●● ●● ●● ● ●●

●

● ●●
●

● ● ●● ● ●●

●

●
●

● ● ●● ●

●

●●
●

● ●●● ● ● ● ●● ●● ● ●

●

●● ●● ●● ●●

●

●
●

●●
●

●

● ●● ● ●● ●●●
●

● ● ●● ● ●● ●● ●● ●●

●

● ●

●

● ●

●

● ●

●

● ●●

●
●

●● ●
●

●● ●● ● ●●

●

● ● ●

●
● ●●●● ●● ●●● ● ●● ●●

●

●●●

●

●

●● ●● ●
●

● ●●

●
●

●
●

●●●●●

●

● ●● ●● ●●●● ●● ● ●●● ●● ●

●

● ● ●
●

●●●●
●

● ●● ● ●
●

●●●
●

●
●●● ●●●

●

●

●● ●

●

●●●
●

● ● ●● ● ●● ● ●

●

●

●

● ●●●●

●

●●●
●

● ●
●

●
●●●

●
●● ●●●

●
●

● ● ●●●●● ●●

●

●

●

● ●● ●● ●● ●

●

●● ● ● ●●●● ●

●

●●

●

●●●
●

●● ●● ●

●

●●● ●●●● ●
●

●

●
●●

●

●●● ●●● ●●

●●

●● ●
●

●

● ●●● ●

●

●

●

●●

●

●●●

●

● ●

● ●

●
●

● ●●●
●

●● ● ●
●

● ●● ●●

●

●●● ●●

●

● ●

●●

●● ●

●

● ● ●●

●

●

●

● ●
●● ●●● ● ●●● ●●● ●● ●

●

●●●

●●
●●

●

● ●●●
●

●

● ●●●

●

● ●

●

●● ● ● ●
●●●● ●

●

● ●● ● ●

●

●●●●

● ●

●●

●
●

●●●● ●

●
●

●
●● ● ●● ●●● ●

●●
●

●
● ●

●

● ● ●●

●

●● ●●● ●● ●●●●
●

●●●● ●

●

●● ● ●
●

● ●●● ●● ●

●

● ●

●

●
●

●

● ●●● ●
●

●
●

●

●

● ●● ● ● ●
●

●

●
●● ●●●

●
●●

●

● ● ● ●●●● ●●●
●●● ● ●

●● ●●●● ●● ●●
●

●
●

●● ●
●

● ● ● ●

●

●● ●

●
●

●●● ●● ●● ●● ●●● ● ●● ●●●● ●●
●

●

●

●

● ●●
●

●●● ●● ●●
●

●
●

●●
●

●● ●●● ●●
●

● ●●

●

●●●●●●
●

●●

●

●● ●●
●

● ●

●●

● ● ●● ●
●●

●
●

● ● ●
● ●

●●● ● ●● ●●●

●

●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●

●

●

●

● ●● ●●● ●●
●

● ●●

●
●

● ● ●●●
●

●●● ●
●

●

●

●

●

●● ● ●●● ●●●●●

●

●● ● ●● ●
●●

● ●● ●
●

●

● ●

●

●
●

●

● ●

●

● ●● ●● ●● ●●

●

●●

●

● ●●

●

● ●

●

● ● ●
●

●

●

●

● ● ●●

●

●

●
●

●

●

●●
● ●

● ●
●●

●●
● ●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

● ●● ●
●●

●●●
●

● ● ●● ●
●

● ●● ●●
●

●

●

●
●

●

● ●

●

● ●

●

● ●●

●

●

●

●
●

●

●●
●

●
●

●
●

●

● ● ●

●

● ●●●● ●● ●
●

●

●

●●

●

●

●

●●●

●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●
●●●●

●

● ●● ●

● ●

●●● ●● ●
●

●● ●●
●

●

●
●

●

●

●
●●●

●

● ●● ●
●

●

●●●

●

●

●
●

●
●●●

●

●

●● ●

●

●
●●

●

●
● ●●

●
●● ●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

● ●
●●

●●
● ●●

●

●

●

●
●

● ●● ●● ●

●

●● ●
● ●●●● ●

●

●
●

●

●●●

●

●
● ●● ●

●

●●
●

●
●●● ●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

● ●●●

●

●
●

●
●

●

● ●● ●●

●

●●●
●

●

●

●
●

●

●

●●
●

●

●
● ●

●

●

●

●

●

●

●● ●●● ● ●
●● ●●●

●

● ●

●

●●●

●
●

●
●

●

●
●

●

●

●

●

● ●●●

●
● ●

●

●● ●
●

●
●

●●● ●

●

● ●●

●

●

●

●
●●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●● ● ●●
●●

●
●

●●

●

●

●
●

●

● ● ●●

●

●●
●

●●

●
● ●

●●●

●

●●●●

●

●

●● ●
●

●

● ●
●

● ●● ●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●
●

●
●

●●

●

●
●

●

● ● ●

●●
●●

●

●●

●

●

● ●

●●

● ●
●

●● ●
● ●●

●

●

●

●

●
●

●

● ●

● ●

●

●●
●

●

●

●●
● ●● ●● ●●

●
●● ● ●● ●●●●

●

●
●

●

●

●

● ●●

●

●●● ●●
●

●

●

●

●

●●

●

●
● ●

●●

●

●

●

●
●

●

●

●
●

●●●●

●●

●

●

●●
●●

●

● ● ●

●

● ●
●

● ●

●

●

●

●

●
● ●

●

●

●
●●

● ●
●

●

●●

●

●
●

●

● ●●● ●●●
●

● ●●●
●●● ●

●
●

●

●

●

●

● ●
●

●●● ●●

●

● ●●

●●

● ●

●●
●

●

●●●

●

●

●

●

●

●

●● ● ●●●

●

●●●●

●

●● ●
●

● ●

●●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

● ●● ●● ●● ● ●●

●

● ●●
●

● ● ●● ● ●●

●

●
●

● ● ●● ●

●

●●
●

● ●●● ● ● ● ●● ●● ● ●

●

●● ●● ●● ●●

●

●
●

●●
●

●

● ●● ● ●● ●●●
●

● ● ●● ● ●● ●● ●● ●●

●

● ●

●

● ●

●

● ●

●

● ●●

●
●

●● ●
●

●● ●● ● ●●

●

● ● ●

●

● ●●●● ●● ●●● ● ●● ●●

●

●●●

●

●

●● ●● ●
●

● ●●

●
●

●
●

●●●●●

●

● ●● ●● ●●●● ●● ● ●●● ●● ●

●

● ● ●
●

●●●●
●

● ●● ● ●
●

●●●
●

●
●●● ●●●

●

●

●● ●

●

●●●
●

● ● ●● ● ●● ● ●

●

●

●

● ●●●●

●

●●●
●

● ●
●

●
●●●

●
●● ●●●

●
●

● ● ●●●●● ●●

●

●

●

● ●● ●● ●● ●

●

●● ● ● ●●●● ●

●

●●

●

●●●
●

●● ●● ●

●

●●● ●●●● ●
●

●

●
●●

●

●●● ●●● ●●

●●

●● ●
●

●

● ●●● ●

●

●

●

●●

●

●●●

●

● ●

● ●

●
●

● ●●●
●

●● ● ●
●

● ●● ●●

●

●●● ●●

●

● ●

●●

●● ●

●

● ● ●●

●

●

●

● ●
●● ●●● ● ●●● ●●● ●● ●

●

●●●

●●
●●

●

● ●●●

● ●

● ●●●

●

● ●

●

●● ● ● ●
●●●● ●

●

● ●● ● ●

●

●●●●

● ●

●●

●
●

●●●● ●

●
●

●
●● ● ●● ●●● ●

●●
●

●
● ●

●

● ● ●●

●

●● ●●● ●● ●●●●
●

●●●● ●

●

●● ● ●
●

● ●●● ●● ●

●

● ●

●

●
●

●

● ●●● ●
●

●
●

●

●

● ●● ● ● ●
●

●

●
●● ●●●

●
●●

●

● ● ● ●●●● ●●●
●

●● ● ●
●● ●●●● ●● ●●

●
●

●
●● ●

●
● ● ● ●

●

●● ●

●
●

●●● ●● ●● ●● ●●● ● ●● ●●●● ●●
●

●

●

●

● ●●
●

●●● ●● ●●
●

●
●

●●
●

●● ●●● ●●
●

● ●●

●

●●●●●●
●

●●

●

●● ●●
●

● ●

●●

● ● ●● ●
●●

●
●

● ● ●
● ●

●●● ● ●● ●●●

●

●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●

●

●

●

● ●● ●●● ●●
●

● ●●

●
●

● ● ●●●
●

●●● ●
●

●

●

●

●

●● ● ●●● ●●●●●

●

●● ● ●● ●
●●

● ●● ●
●

●

● ●

●

●
●

●

● ●

●

● ●● ●● ●● ●● ● ●●

●

● ●●
●

● ● ●● ● ●●

●

●
●

● ● ●● ●

●
●●

●
● ●●● ● ● ● ●● ●● ● ●

●

●● ●● ●● ●●

●

●
●

●●
●

●

● ●● ● ●● ●●● ●● ● ●● ● ●● ●● ●● ●●

●

● ●

●

● ●

●

● ●

●

● ●●

●
●

●● ●
●

●● ●● ● ●●

●

● ● ●
●

● ●●●● ●● ●●● ● ●● ●●

●

●●●
●

●

●● ●● ●
●

● ●●

●
●

●
●

●●●●●

●

● ●● ●● ●●●● ●● ● ●●● ●● ●

●

● ● ●
●

●●●●
●

● ●● ● ●
●

●●●
●

●
●●● ●●●

●
●

●● ●

●

●●●
●

● ● ●● ● ●● ● ●

●

●
●

● ●●●●

●

●●●
●

● ●
●

●
●●●

●
●● ●●●

●
●

● ● ●●●●● ●●

●

●

●

● ●● ●● ●● ●

●

●● ● ● ●●●● ●

●

●●

●

●●●
●

●● ●● ●

●

●●● ●●●● ● ●●

●●●
●

●●● ●●● ●●

●●

●● ●
●

●

● ●●● ●

●

●
●

●●

●

●●●

●

● ●

● ●

●
●

● ●●●
●

●● ● ●
●

● ●● ●●

●

●●● ●●
●

● ●

●
●

●● ●
●

● ● ●●

●

●

●

● ●
●● ●●● ● ●●● ●●● ●● ●

●

●●●
●●

●●

●

● ●●●
● ●

● ●●●

●

● ●

●

●● ● ● ● ●●●● ●

●

● ●● ● ●

●

●●●●

● ●

●●

●
●

●●●● ●

●
●

●
●● ● ●● ●●● ●

●●
●

●
● ●

●

● ● ●●

●

●● ●●● ●● ●●●●
●

●●●● ●

●

●● ● ●
●

● ●●● ●● ●

●

● ●

●

●
●

●

● ●●● ●
●●

●
●

●

● ●● ● ● ● ●
●

●

●● ●●●
●●●

●
● ● ● ●●●● ●●●

●

●

● ● ●●● ●●●● ●● ●●
●

●
●

●● ●
●

● ● ● ●

●

●● ●

●
●

●●● ●● ●● ●● ●●● ● ●● ●●●● ●●
●

●

●

●

● ●●
●

●●● ●● ●●
●

●
●

●●
●

●● ●●● ●●
●

● ●●

●

●●●●●●
●●●

●

●● ●●
●

● ●

●●

● ● ●● ●
●●

●
●

● ● ●
● ●

●●● ● ●● ●●●

●

●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●

●

●

●

● ●● ●●● ●●
●

● ●●

●●

● ● ●●●
●

●●● ●
●

●

●

●

●

●● ● ●●● ●●●●●
●

●● ● ●● ●
●●

● ●● ●
●

●

● ●

●

●
●

●

● ●

●

● ●● ●● ●● ●

QuickTree
QuickJoin p.queue, no sampling
QuickJoin DFS, no sampling
QuickJoin p.queue, with sampling
QuickJoin DFS, with sampling

200 400 600 800 1000

0
2

4
6

8
10

Simple Q approximation, QuickJoin DFS removed

Number of taxa

W
al

lti
m

e
in

 s
ec

on
ds

●

●

●

●

●

● ●●

●

● ●
●

● ● ●●

●

●

●

● ● ●●
●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●
●

●

●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●

● ●

●

● ●

●

● ●● ●●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
● ●

●

●● ●●
●

●

●

●

● ● ●

●

●
●

●●● ●●

●
●

●
●

●

●
●

●

●

●●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●
● ●

●●● ●● ●
●

●●
●

●
●

●

● ●
●

●

●●●●

●

● ●
● ● ●

●

●●●

●

●

●

●
●

●●●

●

●

●
● ●

●

●

●●

●

● ●

●

●

● ●

● ●
●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
● ●●

●●●

●
●

●

●

●

●

●

● ●● ●● ●

●

●

● ●
●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●●●
●

●●● ●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●

●

● ●●
●●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

● ●

●● ●●● ●

●
●

●

●

●●

●

● ●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●● ● ●
●

●

●

●● ●

●

● ●●

●

●

●

●
●●●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

● ● ●● ●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●●

●
● ●●●●

●
●

●●●

●

●

●● ●

●

●

●

●

●
● ●● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●●
●

●●

●

●

●

●

● ● ●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●
● ●● ●●

●

●
●

●● ● ●
● ●●●●

●
●

●

●

●

●

● ●●

●

●

●
●

●

● ●●

●

●

●

●●

●

●
● ●●●

●
●

●

●

●

●

●

●

●
●●●●

●

●
●

●

●●
●●

●

●
●

●

●

● ● ●
● ●

●

●

●
●

●
●

●

●

●

●●●
●

●
●

●
●●

●

●
●

●
● ●●●

●

●●
●

●

●●

●
●

●●
●●

●

●

●

●

●

●
●●

●●

● ●●

●

●

●

●

●

●

● ●

●
●●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●

●

●●●●

●

●●

●

●

●
●

●
●

●
●● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●● ●● ●●

● ●
●

●

●
●

●

●

● ●
●

● ●
●

●

●

●

●

● ● ●●

●

●

●
●

●

●
●

●
● ●

● ●
●

● ●

●
●

●

●

●● ●●
●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●● ●
●●

●

● ●
●

● ●
●

● ●● ●●

●

●

●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●
● ●

●

●●
●

● ●
●●

●

●
● ●

●

●
●

●
●● ●●

●
●

●

● ●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●
●

●

●
● ●

●●●
●

● ●

●

●●

●

●

●

●

●
● ●

●

●
●●●

●

●
●

● ●
●

●

●●●

●

●

●

●● ●●●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●●

●●●
●

●

●

●

●

●

●

● ●● ●●
●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●

●
●●

●

● ●

●

●●●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●●
● ● ●

●

●

●
● ●

●

●
●

●

●
●

●

●

●●●

● ●

●
●

●

●

●●

●●
●

●

●

●

●

● ●
●●

●●
●

●

●●

●

●

●
●

●

●

● ●
●

●

●
●

●●●
●● ●

●●●

●

●
●●●

●

●

●
●

●

●

●

●

●●
● ●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●●
●

●●

●

●

●

●

● ● ●

●●

●●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

● ●● ●●

●

●
●

●● ●
●

● ●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●●●●

●

●
●

●

●●
●●

●

●
●

●●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●●●
● ●

●
●

●●

●

●
●

●
●

●●●

●

●●
●

●

●

●
●

●
●●

●
● ●●

●

●

●

●

●● ●●

●
●●

●

●
●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

● ●

●

●
●

● ●● ●●
●

●

● ●
●

●

●
●

●

●

● ●
●

● ●
●

●

●

●

●

● ● ●●

●

●

●
●

●

●
●

●
● ●

● ●
●

● ●

●
●

●

●

●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●● ●
●●

●

● ●

●
● ●

●

● ●● ●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●
● ●

●

●●
●

● ●
●

●

●

●
● ●

●

● ●
●

●● ●●

●
●

●

●
●

●

●
●

●

●●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●
●

●

●
● ●

●●●
●

● ●
●

●●

●

●
●

●

●
● ●

●

●
●●●

●

●
●

● ●
●

●

●●●

●

●

●

●● ●●●

●

●

●
● ●

●

●

●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●●

●●●
●

●

●

●

●

●

●

● ●● ●●
●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●
●

●
●●● ●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●

●
●●

●

● ●

●

●●●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●●
● ● ●

●

●

●
● ●

●

●
●

●

●
●

●

●

●●●

● ●

●
●

●

●

●●

●●
●

●

●

●

●

● ●
●●

●●
●

●

●●

●

●

●
●

●

●

● ●
●

●

●
●

●●●
●● ●

●●●

●

●
●●●

●

●

●
●

●

●

●

●

●●
● ●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●●
●

●●

●

●

●

●

● ● ●

●●

●●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

● ●● ●●

●

●
●

●● ●
●

● ●●●●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●●●●

●

●
●

●

●●
●

●

●

● ●

●●

●
●

●

● ●

●

●

●

●

● ●
●

●

●

●●●
● ●

●
●

●●

●

●
●

●
●

●●●

●

●●
●

●

●
●

●

●
●●

●● ●●

●

●

●

●

●● ●●

●
●●

●

●
●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●●●●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●

● ●

●

●
●

● ●● ●●
●

●

● ●
●

●

● ●●

●

● ●
●

● ●
●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●

●
● ●

● ●
●

● ●

●
●

●

●

●● ●●
●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●● ●
●●

●

● ●

●

● ●
●

● ●● ●●

●
●

●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●
● ●

●

●●
●● ●

●
●

●

● ● ●

●

● ●
●●● ●●

●
●

●
●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●●●

●

●
●

●

●● ●

●●●
●

●
●

●
●●

●

●
●

●

●
● ●

●

●
●●●

●

●
●

● ●
●

●

●●●

●

●

●

●● ●●●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

● ●●
●●●

●
●

●

●

●

●

●

● ●● ●●
●

●

●

● ●

●
●

●●●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●●
●

●
●●● ●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●●
●●●
●

●●
●

●
●●

●

● ●

●

●●●

●
●

●
●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●●
● ● ●

●

●

●
● ●

●

●
●

●

● ●

●

●

●●●

● ●

●
●

●

●

●●

●●
●

●

●

●

●

● ●
●● ●●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●●
●●●

●● ●
●●●

●

●
●●●

●

●

●
●

●

●

●

●
●●

● ●● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●●
●

●●

●

●

●

●

● ● ●

●●
●●

●

●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●
● ●● ●●

●

●
●

●● ● ●
● ●●●●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●
●●●

●

●

●

●
●

●

●

●

●
●●●●

●

●
●

●

●●
●●

●

● ●

●●

●
●

●
● ●

●

●

●

●

● ●
●

●

●

●●●
● ●

●
●

●●

●

●
●

●
● ●●●

●
●●

●
●

●
●

●

●
●●

●
● ●●

●

●

●

●
●● ●●

●
●●

●

●
●

●

●

●

● ●

●
●●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●●●●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●

● ●

●

●
●

● ●● ●●
●

QuickTree
QuickJoin p.queue, no sampling
QuickJoin p.queue, with sampling
QuickJoin DFS, with sampling
Page 2 of 8
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:29 http://www.biomedcentral.com/1471-2105/7/29
QuickJoin tree creation with the canonical neighbor-join-
ing tree creation method, as implemented in the tool
QuickTree [11]. The QuickJoin program takes a distance
matrix of the taxa for input, and produces a tree as output.
The QuickTree tool, likewise, can take a distance matrix as
input and produce a tree as output. Additionally, it can
take a multiple alignment as input, and produce either a
distance matrix or a tree as output. When comparing the
running time of the two tools, we call both tools with a
distance matrix as input.

The platform where the experiments were conducted was
a Linux RedHat 8.0 kernel 2.4.18–19.7, Pentium 4 2.66
GHz, 512 KB cache, 1 GB ram, both the QuickJoin pro-
gram and the QuickTree program was compiled using gcc/
g++ 3.1.1 with optimization -O3. To measure the running
time of the programs we used the GNU time tool, the time
report is the user time obtained by the time -f %e option
(wall-time in seconds). For QuickJoin we examine both
the method based on a depth-first search with cutoffs and
the method based on a priority queue search — see the
Methods section for details. For QuickTree there is only
one way of building trees.

Results on Pfam data
The data used for the first experiment were protein
sequence alignments taken from the Pfam database
[9,10], and translated into distance matrices using Quick-
Tree.

We first evaluated the performance of your method with-
out the linear functions approximation of Q (see Meth-
ods). Figure 1 shows a plot of the walltime performance
of the new methods with this approximation, compared
to QuickTree on the alignments from Pfam with 200–
1000 sequences. We can observe that the performance of
the depth-first search method without sampling has a
quite unstable performance, whereas the other methods
achieve a performance comparable with that of the Quick-
Tree implementation.

We then evaluated the performance of the new methods
when also using the linear functions approximation to Q.
The input for the runs is distance matrices for the Pfam
alignments with 200 to 8000 sequences, and the results
are shown in Figure 2. We can observe that the running
time of all the presented methods are at the same level,
and that all the methods outperform the QuickTree
implementation.

The way QuickJoin is implemented, the memory usage for
representing the quad-tree is increased (by a factor of
four) each time the number of taxa is increased to the next
power of two. That is, the memory usage is close to con-
stant between powers of twos, and grows by a factor of
four when the input size crosses a power of two. As the
memory usage grows, the number of page faults when
running the program grows. This slows down the pro-
gram, and is the explanation behind the increase in run-

Performance of our methods using the linear functions approximation to QFigure 2
Performance of our methods using the linear functions approximation to Q. The plots show the running time of
QuickTree, and QuickJoin with the depth-first search method and with the priority queue method with and without sampling,
with the linear functions approximation of Q described in the Methods section. The input for the runs is distance matrices for
the Pfam alignments with 200 to 8000 sequences. The new methods perform significantly better than the basic neighbor-joining
method, as implemented in QuickTree. To better compare the new methods the QuickTree plot is removed on the right.

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00

Linear functions Q approximation, all methods

Number of taxa

W
al

lti
m

e
in

 s
ec

on
ds

●●
●

● ●●●

●
●●

●

●
●

●
●

● ●●

●
●

●
●

● ●

●
●

●

●
●

● ●

●

●

●

● ●

● ●● ●●
● ●

●

●
●

●● ●● ●

●

● ●

●

●

●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●●● ●●●

●●

●● ●

● ●●

● ●●●

● ●

●●

●

● ●● ●

●

●

●

●
●

● ●● ●● ● ●

●

●●●● ●● ●

●● ● ●
●●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●●● ●●●

●●

●● ●

● ●●

● ●●●

● ●

●●

●

● ●● ●

●

●

●

●

●

● ●● ●● ● ●
●

●●●● ●● ●

●● ●
●

●
●●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●●● ●●●

●●

●● ●

● ●●

● ●●●

● ●

●●

●

● ●● ●

●

●

●

●

●

● ●● ●● ● ●

●

●●●● ●● ●

●● ● ●
●●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●●● ●●●

●
●

●● ●

● ●●

● ●●●

● ●

●●

●

● ●● ●

●

●

●

●

●

● ●● ●● ● ●

●

●●●● ●● ●

●● ● ●
●●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●●

QuickTree
QuickJoin p.queue, no sampling
QuickJoin DFS, no sampling
QuickJoin p.queue, with sampling
QuickJoin DFS, with sampling

0 2000 4000 6000 8000

0
10

0
20

0
30

0

Linear functions Q approximation, QuickTree removed

Number of taxa

W
al

lti
m

e
in

 s
ec

on
ds

●●
●

● ●●●

●
●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●●
●

●

●

●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●●

●●
●

● ●●●

●
●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●●
●

●

●

●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●●

●●
●

● ●●●

●
●●

●

●

●
●

●

●

●●

●

●●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●●

●●
●

● ●●●

●
●●

●

●

●● ●

●
●

●

● ●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●● ●●

●
●

●

●
●

●●
●

●
●

●

● ●

●

●

●

●

● ●●● ●●●● ●●●●●●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●● ●●● ● ●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●● ● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ● ●●●● ● ●● ●●●●●● ●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●● ●●●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●●● ●●●●●●● ●● ●●●●● ● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●● ●●●●●●●

QuickJoin DFS, no sampling
QuickJoin p.queue, no sampling
QuickJoin p.queue, with sampling
QuickJoin DFS, with sampling
Page 3 of 8
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:29 http://www.biomedcentral.com/1471-2105/7/29
ning time at 212 = 4096 in Figure 2. A similar increase in
running time is observed at 211 = 2048 when running
QuickJoin on a machine with less RAM. The canonical
neighbor-joining method does not rely on a quad-tree
and as such can run on less memory; it still needs to rep-
resent a distance matrix and a tree, however, and as such
can only save about a factor of four compared to Quick-
Join.

Results on data provided by Georg Fuellen
We have also used QuickJoin on two datasets supplied by
Georg Fuellen, Integrated Functional Genomics, Univer-
sity Hospital Muenster, who used neighbor-joining to
produce large phylogenies as described in [4]. Dataset A is
a multiple sequence alignment of 1138 species, and data-
set B is a multiple sequence alignment of 1863 species.
Both multiple sequence alignments were converted into
corresponding distance matrices. Building trees using
QuickTree took 8.29 sec for dataset A and 34.67 sec for
dataset B. Building trees using QuickJoin took 3.09 (3.38)
sec for dataset A and 6.50 (7.56) sec for dataset B when
using the depth-first search (priority queue search)
method.

Conclusion
We have suggested methods for speeding up the search for
mini,j Qij in neighbor-joining based on a quad-tree storing
information about known lower bounds on parts of the Q
matrix. All our methods have a space bound of O(n2) and
a time bound of the form O(nS + U), where S is the time
used (on average) in each search and U is the time used for
updating and rebuilding the quad-tree and other auxiliary
data structures. For the suggested methods, the update
time has a worst case bound of O(n2) if we rebuild the
quad-tree whenever we have halved the number of
remaining nodes. A worst case bound for S is O(n2),
resulting in a combined O(n3) time bound for the meth-
ods, i.e., the same asymptotic bound as the original
method.

We have conducted experiments, evaluating the perform-
ance of the methods implemented in QuickJoin on data
from the Pfam database and have shown that the methods
perform favorably compared to the canonical algorithm
as implemented in QuickTree and achieves a significant
speed up. QuickTree is stated to be an optimized imple-
mentation of the Neighbor-Joining tree building algo-
rithm [11]. We expect that if we apply a similar level of
code optimization techniques to the implementation of
QuickJoin used for the experiments we will be able
achieve an improved performance increasing the gap
between the performance of QuickTree and QuickJoin.

Methods
Our algorithms construct the same phylogenetic trees as
the canonical algorithm, but attempt to reduce the search
time for mini,j Qij, see Eq. (1), by using a quad-tree [8]
built on top of the Q matrix, or on a matrix that approxi-
mates the Q matrix but does not need to be recomputed
after each join. The nodes of the quad-tree store informa-
tion guiding the search for the minimum, and the crux of
our methods is to define this information in a way which
will guide the search well for many iterations before it
needs updating. The time complexity of our methods are
given by O(nS + U), where S is the average search time for
finding nodes i and j minimizing Qij, and U is the time
used, throughout the algorithm, for updating the quad-tree
and other bookkeeping information, e.g., the distance
matrix. The worst case time complexity remains O(n3),
but the anticipation is that our methods on real data is sig-
nificantly faster. The space complexity after adding the
quad-tree is still O(n2) since a quad-tree with n2 leaves can
be represented in O(n2) space.

Using a quad-tree
A quad-tree [8] is a four-ary tree modeling of a two-
dimensional area recursively divided into quadrants. In
the following description we assume for the sake of sim-
plicity that r is a power of two. Figure 3 shows the tree
resulting from a three-level recursive process.

By building a quad-tree of height log r — where r is the
number of remaining neighbors to the root node — on
top of the r × r matrix Q and storing in nodes of the quad-
tree the minimal values in the subtree rooted at that node,
we can search for the pair of nodes minimizing Qij in time
O(log r). However, by Eq. 1, in each iteration of the algo-
rithm, all entries in Q need to be updated: the value r is
decreased by one, and each row and column in d has a
new distance to the joined node A added and two dis-
tances removed, thereby changing Rk for all k. Updating Q
after each iteration therefore takes time O(r2), leading to a
running time of O(n3). There is no asymptotic gain, and
in practice the quad-tree solution will be significantly
slower than the basic, non-quad-tree, algorithm, as a con-

A quad-tree with three levels of nodesFigure 3
A quad-tree with three levels of nodes. A quad-tree
with three levels of nodes, and the corresponding subdivision
of a square. The root covers the entire square, its children
each of the four quadrants, and the leaves a further division
of these.
Page 4 of 8
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:29 http://www.biomedcentral.com/1471-2105/7/29
sequence of the added overhead. Simply building a quad-
tree on top of Q will not improve the running time.

The problem with building the quad-tree on top of Q is
that all entries in Q change with each join. To decrease the
update time, we need to build the quad-tree on some
information that does not completely change with each
join. If, for instance, we only need to update a single row
and column per join, we can do that in O(r) time.

Using approximations of Q

If we assume that the relative differences between the Qij

values do not change dramatically between joins — that
is, we assume that the ordering of Qij values is not ran-

domly permuted after a join — we would expect that we
could use the old Qij values to guide the search for the cur-

rent minimal Qij. Let Q' denote the Q matrix at some ear-

lier point, and let r' denote the number of remaining

nodes adjacent to the root at that point. Similarly, let

denote the row sum of row k in Q', and let δk denote the

difference between Rk and : Rk = + δk. Based on these

definitions we can rewrite Eq. 1 to the following:

This equation expresses the current Qij values in terms of

the old values and some correction terms, given by the R'

and δ vectors. Because of these terms, the minimal

does not necessarily identify the nodes i, j that minimize
Qij, so we cannot use a quad-tree of Q' alone to find the

nodes to join. We can, however, use a quad-tree over Q' to
get lower bounds for the minimal Qij value in parts of the Q

matrix, as described in the following.

Let denote a quad-tree built on top of Q' such that [i,
j, l] denotes the minimum value at level l, where leaves are

at level zero. More precisely, let [i, j, 0] = , and

With this definition, we have

Let denote a binary tree for the correction terms built

as follows, where [k, l] denotes the kth node at level l:

We have

>From the rewriting of Q by Eq. 3 and the trees above, we
define

We observe that [i, j, 0] = Qi,j and that [i, j, l] is a

lower bound on the Q matrix entries in rows 2li to 2l(i +
1) - 1 and columns 2lj to 2l(j + 1) - 1:

The values can be seen as a quad-tree, although it is

implicitly defined by and .

Searching the quad-tree

We cannot simply search for the minimum valued leaf in
 in the usual quad-tree search fashion, since we are no

longer storing the minimum value in a range, but rather a
lower bound on the minimum value. Instead, we will use
the [i, j, l] values to guide our search for the minimal Qij

values.

Two approaches present themselves: A depth-first traver-
sal of with cut-offs when the lower bound is greater
than a known Qij value, and priority queue based search

that always expands the [i, j, l] value with the lowest
lower bound.

Depth-first search

In the depth-first search approach, we simply explore

in a depth-first manner, looking for the minimal [i, j, 0]
value. By definition, this is also the minimal Qij value. In

itself, this will not speed up the search for the minimal
value — although still in O(r2), traversing is signifi-
cantly slower than traversing the Q matrix to begin with —

Rk
’

Rk
’ Rk

’

Q
r

r
Q

r r

r
R Rij ij i j i j= −

−
+ −

−
+ − + ()2

2 2
3

’
’

’
() ().’ ’ ’ δ δ

Qij
’

 

 Qij
’








[, ,] min

[, ,]

[, ,]

[, ,]

[

i j l

i j l

i j l

i j l

i

=

−
+ −

+ −
+

2 2 1

2 1 2 1

2 2 1 1

2 1,, ,].2 1 1j l+ −










[, ,] min .
’ (), ()

’ ’
’

’
i j l Q

l l l li i i j j j
i j=

≤ < + ≤ < +2 2 1 2 2 1






  

[,]

[,] min{ ,], [,]}.

k
r r

r
R

k l k l k l

k k0
2

2 1 2 1 1

= − ′
′ −

′ −

= − + −

δ

[

 [,] min [’,].
’ ()

k l k
l lk k k

=
≤ < +2 2 1

0

   [, ,]
’

[, ,] [,] [,].i j l
r

r
i j l i l j l= −

−
+ + ()2

2
4

 

[, ,] min
’ (), ’ ()

’ ’i j l Q
l l l li i i j j j

i j≤
≤ < + ≤ < +2 2 1 2 2 1


 














Page 5 of 8
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:29 http://www.biomedcentral.com/1471-2105/7/29
however, we can avoid exploring parts of the tree by cut-
ting off searches of sub-trees. When we see a node [i, j,
l], whose lower bound is greater than an already seen Q
value at the bottom level, we need not explore the sub-tree
rooted in [i, j, l] since none of the leaves in this tree will
contain the minimal value.

The efficiency of this search greatly depends on how much
of the tree can be discarded by cut-offs. In the worst case,
no cut-offs are possible and we explore the entire , with
a search time in O(r2), giving us a combined search time
of O(n3). If, on average, we only need to explore O(r)
nodes, the combined search time is down to O(n2).

Priority queue search

In the priority queue approach, we use a priority queue to
expand the [i, j, l] nodes in a lowest-lower-bound-first
order. This is based on the assumption that the lowest
lower bound is more likely to contain the real lowest
value. In each step, deletion of the minimum element in
the priority queue gives us the unexplored node with the
current lowest lower bound, and each of the children of
the node are then inserted into the priority queue. Once a
deletion produces an element on level 0, we have found
the minimal Qij value and need search no further.

As with the depth-first search, the efficiency of this search
depends on how the lower bounds corresponds to the
actual leaf-values in the tree. In the worst case, we need to
explore the entire tree at a cost of O(r2 log r), with a total
search time of O(n3 log n), while if, on average, we only
search O(r) nodes we have a cost of O(r log r), with a total
search time of O(n2 log n).

Random sampling
Both the depth-first search and the priority queue search
approaches can be extended with an initial random sam-
pling of, e.g., O(r) entries of the Qij matrix. The minimum
of these values can then be used as the initial cut-off value.
For the depth-first search approach this allows the algo-
rithm to make more qualified cut-offs already from the
beginning of the search, whereas for the priority queue
search approach the gain is minimal since the cut-off only
reduces the number of insertions into the priority queue
— the number of deletions remains unchanged.

Updating the quad-tree

In each join of two nodes, we need to delete two rows and
two columns from Q — the two nodes we join — and add
one new row and column — for the new node. This
update must also be represented in , which means that

we need to update and . If we store the new row/col-
umn in one of the deleted rows/columns, say i, we need

to update two rows/columns in Q' and all values in δ as
follows (where denotes the updated value of x):

for all k ≠ i, j. Updating δ and Q' this way takes time O(r).

Rebuilding from the new δ and updating based on
the change of two rows/columns in Q' can also be done in
time O(r). Over the n iterations of the algorithm, this
updating contributes O(n2) to the running time.

As the distance between r and r' grows, the information

stored in Q' and R', and thus in , diverges from the real
values from Q and R. Consequently, the lower bounds in

 becomes less accurate, and we expect to search more of

 before we find a minimal leaf. It is therefore necessary

to regularly update , by setting Q' to the current Q,

updating R' and δ correspondingly, and rebuild .

A rebuild takes time O(r2), so if we rebuild too frequently,
there will be no gain in running time — rebuilding in each
iteration, for instance, will result in an O(n3) algorithm.
On the other hand, if we rebuild too infrequently, the
search time will suffer due to the worse lower bounds.

We chose to rebuild each time we have processed a frac-

tion of the remaining nodes, i.e. after iterations, for

some fixed m. Since the size of the matrices constructed
decreases exponentially, this implies that we spend O(n2)
time on rebuilding all in all. Together with the updating
performed in each iteration, this gives a total update time
of O(n2).

Limitations of the approach

For the methods to be useful, i.e. to yield a speed-up com-
pared to a standard neighbor-joining implementation, it
is essential that the derived lower bounds [i, j, l] for a
node in the quad-tree are close to the minimum value
among the leafs in the subtree spanned by the quad-tree
node. Comparing Eq. 3 and Eq. 4 this might be infeasible
if the correction terms











 

x

d d d d

d d d

Q r d R R

ik ik jk ij

k k ik ik jk

ik ik i k

= + −

= + − −

= − − +

()/

(’) (’ ’

2

2

δ δ

’’

’

)

()Q jjk = ∞ effectively deleting

 









r

m

’



Page 6 of 8
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:29 http://www.biomedcentral.com/1471-2105/7/29
span quite different values, since we use the minimum
over all the correction values in the subtree.

Unfortunately, this is what we expect for the Ri values. In
our experiments presented in the Results section, we
observe in Figure 1 that the performance of the above
developed techniques, except for the depth first search
without sampling, is essentially the same as those
obtained by the QuickTree algorithm.

Approximation of Q using Linear functions

In Eq. 3 we based our search on an old Q matrix. In this
section we base the approach on the following rewriting

of Eq. 1 that only depends on old row sums :

where

The rewriting expresses Qij as a linear function fij over r

plus some correction terms ci and cj — which, assuming

 for k = i, j, is likely to be small. Note that fij only

depends on the current value of dij and the values of r' and

R'; we only need to update fij when i or j is joined in a new

node, i.e., we only need to update a linear number of
functions for each join.

We will define below a quad-tree with the fij functions at
the leaves and where each internal node ideally should
store the function that is the minimum over all the linear
functions stored at the leaves of the subtree rooted at the
node. Unfortunately this is not a linear function but a
convex function consisting of piecewise linear functions.
To achieve an efficient algorithm we instead, for the inter-
val of r values of interest, maintain a lower bound for the
convex function that is a linear function.

Assume we decide to rebuild the structure after (at most)

 iterations, for some fixed m. For two linear functions

fij and fi'j', define minm{fij, fi'j'} to be the linear function

that passes through the two points

(r' - r'/m, min {fij (r' - r'/m), fi'j' (r' - r'/m)})

and

(r', min {fij (r'), fi'j' (r')}),

as illustrated by Figure 4. Defined this way, minm{fij, fi'j'}
is a lower bound for both of the functions until the next
rebuilding:

minm{fij, fi'j'} (r) ≤ min{fij (r), fi'j' (r)}, (7)

for all r � [r' - r'/m, r']. This minimum-operation is easily
generalized to take the minimum of four functions, and

we define a quad-tree over the functions by:

[i, j, 0] = fij (r)

r r

r
R Ri j i j

−
−

+ − +’
’

() ()’ ’

2
δ δ

Rk
’

Q d
R R

r
r

d
rR

r
R

rR

r
R

f r

ij ij
i j

ij
i

i
j

j

ij

= −
+











− + − + −

=

’ ’

’ ’

’

’ ’
()

2

++ +c r c ri j() (),

f r d
R R

r
r dij ij

i j
ij() = −

′ + ′
′









 − ()2 5

c r r
R

r
Ri

i
i() .=

′
′

− ()6

R

r

R

r
k k≈

’

’

r

m

’





The lower bound linear functionFigure 4
The lower bound linear function. A linear function that
is the best lower bound of two other linear functions on the
interval r' - r'/m to r'. The dashed line is the linear function
that is the greatest lower bound of the two linear functions
shown as solid lines.
Page 7 of 8
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:29 http://www.biomedcentral.com/1471-2105/7/29
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

By induction on the number of minimum operations and
a generalization of Eq. 7 we get

for all r � [r' - r'/m, r'].

We can use this tree, together with a binary correction tree
 defined by

[k, 0] = ck(r)

[k, l] = min{ [2k, l - 1], [2k + 1, l - 1]} for l > 0

to define the implicit quad-tree

[i, j, l](r) = [i, j, l](r) + [i, l] + [j, l]

satisfying

for the current r, assuming (a) is updated along with
the functions fij whenever i or j is joined, (b) r � [r' - r'/m,

r'], and (c) is current. Condition a is necessary since fij
depends on dij which changes when i or j is joined, and

condition b is necessary because of the way the minimum
operation is defined. Condition c simply states that since

[k, 0] depend on the current value of Rk, it must be

updated whenever a join is performed.

Searching

Before each iteration we must rebuild a current version

of , which takes time O(r). After this, we can search for

the minimal Qij using the lower bounds in , as

described in the previous section, using either a depth-first
search with cut-offs or a priority queue. If the number of
nodes visited during a search on average is linear, the total
search time is O(n2) for the depth-first approach, or O(n2

log n) for the priority queue approach.

Updating

For each join we must update two rows/columns in
taking time O(r) for a total of O(n2). Furthermore, we

must completely rebuild the function tree whenever r
reaches r' - r'/m. For fixed m, this has a total cost of O(n2).

Authors' contributions
TM implemented the algorithms in the QuickJoin tool.
TM and RF conducted the experiments. All authors partic-
ipated in the development of the algorithms, designing
the experiments, and writing the paper.

Acknowledgements
This work was partially supported by the Future and Emerging Technolo-
gies programme of the EU under contract number IST-1999-14186
(ALCOM-FT). Gerth S. Brodal was supported by the Carlsberg Foundation
(contract number ANS-0257/20).

References
1. Saitou N, Nei M: The Neighbor-Joining Method: A New

Method for Reconstructing Phylogenetic Trees. Mol Biol Evol
1987, 4(4):406-425.

2. Studier JA, Keppler KJ: A Note on the Neighbor-Joining Method
of Saitou and Nei. Mol Biol Evol 1988, 5(6):729-731.

3. St John K, Warnow T, Moret B, Vawter L: Performance Study of
Phylogenetic Methods: (Unweighted) Quartet Methods and
Neighbor-Joining. J Algorithms 2003, 48:173-193. [(Special issue on
best papers from SODA'01.)].

4. Fuellen G, Spitzer M, Cullen P, Lorkowski S: BLASTing Pro-
teomes, Yielding Phylogenies. Silico Biology 2003, 3:. [To
appear.].

5. Gascuel O: A note on Sattath and Tversky's, Saitou and Nei's,
and Studier and Keppler's algorithms for inferring phyloge-
nies from evolutionary distances. Mol Biol Evol 1994,
11(6):961-963.

6. Nei N, Kumar S: Molecular Evolution and Phylogenetics Volume chap 6.4.
Oxford University Press; 2000:103-110.

7. Saitou N: Reconstruction of Gene Trees from Sequence Data.
Methods in Enzymology 1996, 266:427-448.

8. Finkel RA, Bentley JL: Quad Trees: A Data Structure for
Retrieval by Composite Key. Acta Informatica 1974, 4:1-9.

9. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy S, Griffiths-
Jones S, Howe K, Marshall M, Sonnhammer E: The Pfam Protein
Families Database. Nucleic Acids Res 2002, 30:276-280.

10. Pfam: Protein Families Database of Alignments and HMMs
[http://www.sanger.ac.uk/Software/Pfam/]

11. Howe K, Bateman A, Durbin R: QuickTree: Building Huge
Neighbour-Joining Trees of Protein Sequences. Bioinformatics
2002, 18(11):1546-1547.

12. QuickJoin [http://www.birc.dk/Software/QuickJoin/index.html]





[, ,] min

[, ,]

[, ,]

[, ,
i j l

i j l

i j l l

i j lm=

−
+ − >

+ −

2 2 1

2 1 2 1 0

2 2 1

for

11

2 1 2 1 1

]

[, ,] i j l+ + −










 [, ,]() min (),
’ (), ’ ()

’ ’i j l r f r
l l l li i i j j j

i j≤
≤ < + ≤ < +2 2 1 2 2 1





  

  Qij
’ 

[, ,]() min
’ (), ’ ()

i j l r Q
l l l li i i j j j

ij≤
≤ < + ≤ < +2 2 1 2 2 1
















Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3221794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3221794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7815933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7815933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7815933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752314
http://www.sanger.ac.uk/Software/Pfam/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424131
http://www.birc.dk/Software/QuickJoin/index.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Results on Pfam data
	Results on data provided by Georg Fuellen

	Conclusion
	Methods
	Using a quad-tree
	Using approximations of Q
	Searching the quad-tree
	Depth-first search
	Priority queue search
	Random sampling

	Updating the quad-tree
	Limitations of the approach
	Approximation of Q using Linear functions
	Searching
	Updating

	Authors' contributions
	Acknowledgements
	References

