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Abstract
Background: One of the important goals of microarray research is the identification of genes
whose expression is considerably higher or lower in some tissues than in others. We would like
to have ways of identifying such tissue-specific genes.

Results: We describe a method, ROKU, which selects tissue-specific patterns from gene
expression data for many tissues and thousands of genes. ROKU ranks genes according to their
overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist
using an outlier detection method. We evaluated the capacity for the detection of various specific
expression patterns using synthetic and real data. We observed that ROKU was superior to a
conventional entropy-based method in its ability to rank genes according to overall tissue specificity
and to detect genes whose expression pattern are specific only to objective tissues.

Conclusion: ROKU is useful for the detection of various tissue-specific expression patterns. The
framework is also directly applicable to the selection of diagnostic markers for molecular
classification of multiple classes.

Background
A major challenge of microarray analysis is to detect genes
whose expression in a single or small number of tissues is
significantly different than in other tissues. Accurate iden-
tification of such tissue-specific genes can allow research-
ers to deduce the function of their tissues and organs at
the molecular level [1].

Several methods have been used for this purpose [1-5]. Of
these, Schug et al. [4] demonstrated the effectiveness of
using Shannon information theoretic entropy for ranking
genes according to their tissue-specificity, from restricted
(tissue-specific) expression to average (ubiquitous/house-
keeping) expression. However, there is also a severe disad-
vantage. The entropy does not explain to which tissue a

gene is tissue-specific, only measuring the degree of over-
all tissue specificity of the gene. Hence further analysis to
identify specific tissues is needed. Although Schug et al.
[4] proposed a new statistic (Q) based on entropy to esti-
mate the degree of a gene's specificity on a particular tis-
sue, the issue of redundancies remains where top-ranked
genes as specific to tissue A are also top-ranked as specific
to tissue B. We assert such genes are not specific to A or B,
but rather are genes specific to both A and B. For example,
we observed that two of the top five probesets specific to
liver were also found in the top five probesets specific to
gall bladder [4]. The issue of such redundancies is a con-
cern with any ranking-based method, such as pattern-
matching [2], when the number of interrogated tissues
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increases. Methods of identifying genes specific only to
objective tissues are needed.

Unlike ranking-based methods, methods based on outlier
detection are free from the issue of redundancies because
they identify tissues corresponding to both over- and
under-expressed outliers for each gene [3,5]. Therefore,
these methods can treat equally various types of tissue-
specific genes: (1) 'up-type' genes selectively over-
expressed in a single or small number of tissues compared
to the others, (2) 'down-type' genes selectively under-
expressed, and (3) 'mixed-type' genes selectively over- and
under-expressed in some tissues. Although the mixed-type
is possible, the first two types (up-type and down-type) of
expression patterns are particularly important because
those genes may be associated with fundamental biologi-
cal phenomena and may contain particular tissue-specific
diagnostic markers. Using outlier-detection-based meth-
ods, however, ranking genes according to their degree of
overall tissue-specificity is difficult.

This complementary relationship between ranking-based
and outlier-based methods led us to develop a combined
approach, ROKU. ROKU analyzes any type of tissue-spe-
cific genes (up-, down-, and mixed-type) in two steps.
First, it ranks genes according to overall tissue-specificity
using Shannon entropy, and second, for each gene, it
identifies specific tissues whose observations are regarded
as outliers using a method of Kadota et al. [3]. We applied
the method to both synthetic and real gene expression
data and demonstrated its utility by comparison with
other methods.

Results and discussion
Definition of tissue-specific genes
We first show typical examples of various types of gene
expression patterns. We here divided tissue-specific genes
into two levels, a narrow sense and a broad sense. Genes
over-expressed in a small number of tissues but unex-
pressed or slightly expressed in others, such as those
shown in Figs. 1a and 1c, are defined as tissue-specific
genes in a narrow sense, while genes over- and/or under-
expressed in a small number of tissues compared to other
tissues are defined as tissue-specific in a broad sense (the
latter group includes the former). We focused here on the
latter case and wanted to identify such expression patterns
(see black scatter plots in Figs. 1d–f). We use two terms
("genes" and "probesets") interchangeably throughout
this paper.

Data processing and its effect on Shannon entropy 
calculation
When one gene vector x = (x1, x2, ..., xN) is given, the
entropy H(x) can be calculated by equation 1 (See Meth-
ods). The range of H is from 0 whose gene expression is

perfectly restricted in a single tissue (Fig. 1a) to log2(N)
whose gene expression pattern is flat in all the interro-
gated tissues (Fig. 1b). We therefore rely on the low
entropy score for the identification of tissue-specific
genes. The black scatter plots in Fig. 1 are synthetic expres-
sion observations for N tissues (i.e., N = 10 in this case).
The entropy H for each gene vector x is given by the
number in black above the figures. Clearly, direct calcula-
tion of the entropy for raw gene vector x works well only
for detecting tissue-specific genes in a narrow sense (Figs.
1a and 1c) but not for those in a broad sense (Figs. 1d–f).
The H scores (3.22, 3.29, 3.23 for Figs. 1d–f, respectively)
of tissue-specific genes in a broad sense are close to the
maximum value (log210 = 3.32) and cannot identify
those genes as 'tissue-specific'.

To detect tissue-specific genes in a broad sense, we intro-
duce a simple method that processes a given gene vector x
and makes a new vector x'. Data processing is done by sub-
tracting the one-step Tukey biweight and by taking the
absolute value of equation 2 (see Methods). The Tukey
biweight yields a robust weighted mean able to resist 50%
of outliers [6]. The scatter plots of processed vectors are
shown in red in Fig. 1. The entropy scores, H(x'), for the
processed vectors to obvious tissue-specific genes in a
broad sense (Figs. 1d–f) are considerably lower than those
for x. This is because the relative expression levels for spe-
cific tissues (highlighted tissues) become high after data
processing. For example, the value (0.04) for tissue 3 in
Fig. 1e becomes 0.75 after data processing. Since the base-
line value is 0.1 (1/N, N = 10) in this case, such high val-
ues decisively contribute low entropy to the gene expres-
sion pattern. Also, entropy scores, H(x') and H(x), to non-
specific (or randomly expressed) genes are quite similar
and close to the maximum (3.32) (Figs. 1g and 1h). These
results demonstrate the adequacy for our strategy for
detecting tissue-specific genes in a broad sense at least on
typical/hypothetical expression data.

Analysis of real data
To further investigate the validity of our method (ROKU),
we applied the method to a public gene expression matrix
consisting of 36 normal human tissues and 22,283
probesets [5]. Briefly, ROKU (1) processes each probeset
expression vector and makes a processed vector x', (2) cal-
culates the entropy H(x'), and (3) assigns specific tissues
to each probeset whose observations are detected to be
'outliers' (see Methods). We compared the performance of
ROKU to that of Schug's method, which directly uses the
original/non-processed vector x for measuring the entropy
H(x) [4]. The two entropy scores (H(x') and H(x)) for all
probesets are available in the additional file [see Addi-
tional file 1].
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To compare the agreement of top-ranked probesets
between ROKU and Schug's method we analyzed the per-
centage of common probesets in a top-ranked set of
~22,283 probesets. About 80% of ~3,000 top-ranked
probesets are common, indicating that ROKU does not
change the rank of probesets drastically (data not shown).
One way to compare the effect of the data processing used
in ROKU to that used in Schug's method is to sort
probesets in order of increasing magnitude by the differ-
ence between the two entropy scores (H(x') - H(x)) calcu-
lated by the two methods. Since ROKU outputs relatively
low entropy to each probeset compared to Schug's
method as a whole [see Additional file 1], the average
value of (H(x') - H(x)) tends to be negative: -0.425 (4.314
for ROKU; 4.739 for Schug's method).

Table 1 lists the ten lowest- and ten highest (H(x') - H(x))
valued probesets and Fig. 2 shows expression profiles for
the two lowest- and two highest probesets listed in Table
1. The difference is greatest for the probeset '206319_s_at'.
This is mainly because the relative expression for the testis
changes from 0.35 to 0.75 by virtue of data processing.
ROKU gives a low entropy (H(x') = 1.950 and H(x')
<H(x)) for the probeset '206319_s_at' and a high entropy
(H(x') = 4.729 and H(x') > H(x)) for the probeset
'201131_s_at'. This is quite reasonable because visual
evaluation admits the former to be tissue-specific and the
latter to be non-specific. Schug's method, however, gives
quite similar values (4.235 for the former and 4.228 for
the latter) for the two probesets: the entropy for the
former is higher than that for the latter.

Shannon entropy calculation for various tissue-specific expression patternsFigure 1
Shannon entropy calculation for various tissue-specific expression patterns. Synthetic expression patterns are 
shown. Original expression data represented by black circles are processed by equation 2 using Tukey biweights (dashed line). 
Processed data are represented by red circles. Specific expression observations detected to be outliers by [3] are highlighted. 
Numbers in black and red indicate Shannon entropy scores for the original and the processed data, respectively. Shannon 
entropy can range from (a) 0 to (b) 3.32 in this case (logarithm to the base 2 of 10). Expression patterns such as (a) and (c) are 
defined as tissue-specific genes in a narrow sense. Tissue-specific genes in a broad sense include various expression patterns 
such as (a, c, d) up-type, (e) down-type, and (f) mixed-type. By virtue of data processing, ROKU can detect tissue-specific genes 
in a broad sense. Meanwhile, ROKU gives relatively high scores (close to 3.32) for non-specific gene expression patterns such 
as (g) and (h).
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Expression patterns of probesets listed in Table 1Figure 2
Expression patterns of probesets listed in Table 1. Expression patterns of probesets with the two (a) lowest- and (b) 
highest (H(x') - H(x)) scores are shown. Other legends are the same as given in Fig. 1.



BMC Bioinformatics 2006, 7:294 http://www.biomedcentral.com/1471-2105/7/294
There are 858 probesets satisfying H(x') > H(x): processed
expression vectors are less tissue-specific than the original
vectors. Visual evaluation for those probesets showed no
probeset exists whose entropy score is improperly
assigned, i.e., no obvious tissue-specific probesets exist.
These results demonstrate the data processing strategy
used in ROKU successfully estimated/ranked probesets by
their overall tissue specificity on real data. We verified
such trends in other microarray datasets (data not
shown).

Note that ROKU is inferior to Schug's method (i.e., direct
application of entropy to measuring tissue specificity) in
rare cases. For example, consider a gene expression pattern
of constant high expression in N/2 tissues and low expres-
sion in other tissues. ROKU gives the processed expression
pattern as 'flat' and H(x') = log2(N). Accordingly, ROKU
cannot distinguish such differential expression patterns
from constant expression patterns because it gives the
same entropy scores for the two patterns. In other words,
H(x') is not useful for identifying non-specific genes. Nev-
ertheless, this disadvantage is not a problem for detecting
the tissue-specific expression patterns we focused on. We
also observed that there was no probeset suffer from this
disadvantage in the real data set.

Detection of specific tissues as outliers
As mentioned earlier, the entropy does not indicate which
tissues are specific though it can rank genes according to
their degrees of overall tissue specificity. To identify such
specific tissue when they exist, ROKU employs an outlier-
detection-based method proposed by Kadota et al. [3]
(see Methods for details). Regardless of over- and/or
under-expressed outliers, it can return specific tissues cor-
responding to outliers for each gene. Accordingly, an out-
lier matrix can be constructed (consisting of 1 for over-
expressed outliers, -1 for under-expressed outliers, and 0
for non-outliers) that corresponds to the original gene
expression matrix by applying the method. Genes with
any expression pattern of interest can be detected using
the outlier matrix. The outlier matrix is also available in
the additional file [see Additional file 1].

For example, ROKU identifies 59 probesets specific to
lung and 291 probesets specific to fetal lung and of course
no redundancies exist between the two sets by virtue of
the advantage of the original method [3]. Since ROKU is
a combined method consisting of calculation of an
entropy and assignment of specific tissues to each gene,
ROKU can compensate for the disadvantage of the origi-
nal method [3] by assigning an entropy score H(x'):

Table 1: Comparison of entropy scores by ROKU and Schug's method. Probesets and two entropy scores estimated by ROKU and 
Schug's method are shown. The numbers in parenthesis are the ranks of the probesets. One can easily rank all probesets by this order 
using the additional file [see Additional file 1].

Probeset ID Entropy H(x') - H(x)

H(x') H(x)

Probesets with the lowest (H(x') - H(x)) scores
206319_s_at 1.950 (482) 4.235 (2347) -2.285
215622_x_at 1.499 (295) 3.698 (1144) -2.198
207636_at 1.253 (210) 3.369 (806) -2.116
206587_at 2.310 (651) 4.402 (3048) -2.092
206945_at 1.659 (352) 3.742 (1222) -2.083
213332_at 2.674 (861) 4.755 (6637) -2.081
215189_at 1.706 (371) 3.784 (1292) -2.078
207053_at 2.321 (653) 4.359 (2830) -2.038
207908_at 1.420 (260) 3.452 (877) -2.032
214377_s_at 0.808 (105) 2.830 (493) -2.022

Probesets with the highest (H(x') - H(x)) scores
202546_at 4.955 (22257) 4.431 (3215) 0.524
201131_s_at 4.729 (17433) 4.228 (2311) 0.501
211981_at 4.746 (18161) 4.328 (2680) 0.419
202864_s_at 4.919 (22137) 4.502 (3668) 0.417
213998_s_at 4.652 (14417) 4.259 (2432) 0.393
218839_at 4.971 (22267) 4.580 (4284) 0.391
208963_x_at 4.312 (6836) 3.930 (1548) 0.382
210474_s_at 4.985 (22277) 4.622 (4701) 0.363
213071_at 4.551 (11124) 4.196 (2200) 0.355
218361_at 4.944 (22231) 4.617 (4642) 0.326
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ROKU can rank genes with particular tissue-specific pat-
terns by their overall tissue specificity. We compared the
performance of ROKU to that of Schug's Qt(x) statistic [4]
which can also rank genes specific to a tissue t.

Fig. 3 shows the top-ranked gene expression profiles spe-
cific to (a) lung and (b) fetal lung identified by ROKU's
H(x') statistic and Schug's Qt(x) statistic [4]. The Qt(x) sta-
tistic for a tissue t in a gene expression vector x is defined
as Qt(x) = H(x) - log2(pt) (see Methods for details). Clearly,
ROKU can detect probesets whose expression patterns are
specific only to each of the objective tissues (lung or fetal
lung) while Schug's Q statistic cannot. This is because a
low Qt(x) statistic indicates that gene x is relatively highly
expressed in a small number of tissues including tissue t,
but does not always indicate whether the expression pat-
tern of x is specific only to the tissue t. Indeed, both
probesets ('215454_x_at' detected as specific to lung and
'205982_x_at' specific to fetal lung) identified by Schug's
Qt(x) statistic include another tissue in addition to the
objective tissue. We analyzed this trend in the top-ranking
probesets (Table 2). We assert that these probesets are not
specific to lung (or fetal lung) but are specific to both lung
and fetal lung. Although the choice of which method
should be used is, of course, dependent on individual

research purposes, our method (ROKU) is superior to
Schug's Q statistic for detecting genes specific only to tis-
sues of interest.

Of 22,283 probesets analyzed, 16,072 exhibit one or
more specific tissues. We observed that most of them con-
sist of specific up-expression patterns, such as Figs. 1c and
1d [see Additional file 1]. This is probably because the dis-
tribution of gene expression levels from the dataset we
used here roughly follows an exponential distribution in
which the probability of a gene's expression observation
decays exponentially (data not shown). Still we appreciate
the merit of ROKU being able to detect genes with various
types of tissue-specific expression patterns, as shown in
Fig. 1.

Effect of different quantification algorithms on gene 
ranking
As discussed in Grant et al. [6], a serious issue regarding
any method is the choice of quantification algorithms,
such as MAS5 [7] or RMA [8]; different choices can output
different subsets of top-ranked genes. We compared the
influence on gene ranking when the same raw data are
MAS5-quantified and RMA-quantified. Fig. 4 shows the
percentages of common probesets in a top-ranked set of

Table 2: List of top ten genes specific to lung and to fetal lung. Probesets and two entropy scores estimated by ROKU and Schug's 
method are shown. *Probesets indicate those listed to be "specific to lung" are also listed to be "specific to fetal lung" and vice versa. 
Note that Schug's method has strong redundancy when similar tissues are selected independently and therefore cannot detect 
probesets specific only to the objective tissue.

ROKU Schug's method

Probeset ID H(x') Probeset ID Q(x)

Specific to Lung
205207_at 2.483 215454_x_at * 1.223
215677_s_at 4.006 218835_at 1.310
206432_at 4.020 214199_at 1.512
218627_at 4.066 211735_x_at * 1.941
204622_x_at 4.255 205982_x_at * 1.959
205624_at 4.290 214387_x_at * 1.994
216782_at 4.339 37004_at * 2.311
206026_s_at 4.361 209810_at * 2.521
219361_s_at 4.378 217046_s_at 2.820
205027_s_at 4.414 205819_at 3.498

Specific to Fetal lung
204545_at 2.779 205982_x_at * 2.591
221418_s_at 2.879 211735_x_at * 2.662
206315_at 3.252 214387_x_at * 2.863
211300_s_at 3.369 37004_at * 3.151
213417_at 3.399 209810_at * 3.258
206159_at 3.791 38691_s_at 3.716
208474_at 3.883 203417_at 4.307
220707_s_at 3.936 211237_s_at 4.480
206646_at 4.039 215454_x_at * 4.494
221284_s_at 4.044 204468_s_at 4.637
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Expression patterns of probesets listed in Table 2Figure 3
Expression patterns of probesets listed in Table 2. Expression patterns of top-ranked probesets specific to (a) lung and 
to (b) fetal lung are shown. Other legends are the same as given in Fig. 1. Note that the two methods output different top-
ranked probesets and probesets detected by ROKU are specific only to the objective tissue.
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~22,283 probesets between MAS5 data and RMA data, by
gene ranking using ROKU (red circle) and Schug's method
(black circle). Although both methods (ROKU and
Schug's method) output relatively low percentages of
common probesets, especially in the 100 top-ranked
probesets (about 31% for ROKU; about 3% for Schug's
method), the percentages for ROKU were consistently
higher than those for Schug's method. This result indi-
cates gene ranking based on ROKU is more robust against
data transformation than Schug's method.

There are some ways for extending this work. First, we
used an outlier-detection-based method [3] for the detec-
tion of specific tissues. Some other methods, such as
Sprent's non-parametric method [5] and its derivative,
could be applicable. The outputs of these methods vary
with the selected parameters. A comparative study of these
methods is the next task. Second, the current work did not
discuss the statistical significance of observed differences
in gene expression. We plan to combine the significance
analysis, such as a method of Sharov et al. [9], with the
current method.

Conclusion
In this work, we propose a novel method (ROKU) for the
detection of genes with tissue-specific expression patterns.
ROKU was developed to compensate for the disadvan-
tages of two conventional methods [3,4] by combining
the advantages of the two. Using synthetic expression
data, we demonstrated its potential applicability for the

detection of various types of specific expression patterns.
Although most of the detected tissue-specific genes in real
microarray data exhibit one type of expression pattern
(i.e., 'up-type' genes selectively over-expressed in a single
or small number of tissues compared to the others), the
entropy-based gene ranking by ROKU outperforms the
two original methods. ROKU can be a powerful tool for
selecting genes specific to tissues of interest.

Methods
Microarray data
Publicly available Affymetrix U133A oligonucleotide
microarray data for 22,283 genes in 36 various normal
human tissues [5] were downloaded from the author's
website [10]. For the most part we used the data quanti-
fied using MAS5 (Micro Array Suite 5 from Affymetrix)
software. Other quantified data using the RMA algorithm
[8] were also analyzed to compare the effects of different
quantification algorithms. RMA quantification was per-
formed by the justRMA() function in R [11] using raw
data (Affymetrix CEL files).

Gene ranking by Shannon entropy
The use of Shannon entropy [12] to rank genes by their
overall tissue specificity here is the same as described in
Schug et al. [4]. Consider one gene's expression vector x =
(x1, x2, ..., xN) for N tissues and an observation xt for tissue
t. The entropy of the gene is calculated as

where pt is the relative expression of xt for tissue t defined

as . H ranges from zero to log2(N), with

the value 0 for genes expressed in a single tissue (Fig. 1a)
and log2(N) for genes expressed uniformly in all the inter-

rogated tissues (Fig. 1b).

To equally identify down- and mixed-types of tissue-spe-
cific genes as well as up-type genes, we processed the orig-
inal vector x. The processed observation xt' for tissue t is
defined as

 = |xt - Tbw|,  (2)

where Tbw is the one-step Tukey biweight, a popular statis-
tic robust against outliers. It provides as much robustness
as a median and is also used to estimate the expression
signal from each probe set in the Affymetrix Micro Array
Suite (MAS 5.0) software package [7,13]. The parameters
for the calculation of Tbw are the same as those adopted in
the tukey.biweight() function in R package 'affy' (i.e., c =
5, ε = 0.0001) [11]. Our method (ROKU) uses the proc-
essed expression vector x' of a gene, while Schug et al. [4]

H p ptt
N

t= − ( )=∑ 1 2 1log ( ),

p x xt t tt
N= =∑/

1

′xt

Effect of different quantification algorithms on gene rankingFigure 4
Effect of different quantification algorithms on gene 
ranking. MAS5- and RMA-quantified data are compared. 
The higher the percentage of common probesets between 
the two, the more rank-invariant property the method has. 
ROKU gives a more invariant gene ranking than Schug's 
method.
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uses the original vector x, to calculate the gene's entropy
(H(x') and H(x)) as a measure of the overall tissue specif-
icity.

Detecting specific tissues as outliers
As mentioned above, the entropy does not indicate which
tissues are specific, but is a measure of the overall tissue
specificity of a gene. We imagine observations in specific
tissues to be easily visualized as outliers on the over- and/
or under-expressed side if any exist. We used an outlier-
detection-based method proposed by Kadota et al. [3] to
detect tissues with specific expression patterns. According
to Kadota et al. [3], the statistic U for identifying outliers
is defined as

where n and s denote the numbers of non-outlier and out-
lier candidates, and σ denotes the standard deviation (SD)
of the observations of the n non-outlier candidates. The
procedure is first, normalize the gene vector x = (x1, x2, ...,
xN) for N (=n+s) tissues by subtracting the mean and
dividing by the SD; second, sort the normalized values
(i.e., Z-scores) by order; third, calculate the statistics U for
various combinations of outlier candidates starting from
both sides of the values; finally, regard tissues correspond-
ing to outliers detected in the combination of the mini-
mum U as 'specific'.
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