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Abstract
Background: The most fundamental task using gene expression data in clinical oncology is to
classify tissue samples according to their gene expression levels. Compared with traditional pattern
classifications, gene expression-based data classification is typically characterized by high
dimensionality and small sample size, which make the task quite challenging.

Results: In this paper, we present a modified K-nearest-neighbor (KNN) scheme, which is based
on learning an adaptive distance metric in the data space, for cancer classification using microarray
data. The distance metric, derived from the procedure of a data-dependent kernel optimization,
can substantially increase the class separability of the data and, consequently, lead to a significant
improvement in the performance of the KNN classifier. Intensive experiments show that the
performance of the proposed kernel-based KNN scheme is competitive to those of some
sophisticated classifiers such as support vector machines (SVMs) and the uncorrelated linear
discriminant analysis (ULDA) in classifying the gene expression data.

Conclusion: A novel distance metric is developed and incorporated into the KNN scheme for
cancer classification. This metric can substantially increase the class separability of the data in the
feature space and, hence, lead to a significant improvement in the performance of the KNN
classifier.

Background
DNA microarray technology is designed to measure the
expression levels of tens of thousands of genes simultane-
ously. As an important application of this novel technol-
ogy, the gene expression data are used to determine and
predict the state of tissue samples, which has shown to be
very helpful in clinical oncology. The most fundamental
task using gene expression data in clinical oncology is to
classify tissue samples according to their gene expression
levels. In combination with pattern classification tech-
niques, gene expression data can provide more reliable

means to diagnose and predict various types of cancers
than the traditional clinical methods.

Compared with traditional pattern classifications, gene
expression-based data classification is typically character-
ized by high dimensionality and small sample size, which
make the task quite challenging. In the literature, a
number of methods have been applied or developed to
classify microarray data [1-6]. These methods include K-
nearest-neighbor (KNN), boosting, linear discriminant
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analysis (LDA), and support vector machines (SVM), etc.
we herein briefly review some of the approaches.

K-Nearest-Neighbor (KNN)
The KNN method is a simple, yet useful approach to data
classification. The error rate of the KNN has been proven
to be asymptotically at most twice that of the Bayessian
error rate [7]. However, its performance deteriorates dra-
matically when the input data set has a relatively low local
relevance [8]. The most important factor impacting the
performance of KNN is the distance metric. It is desirable
to adopt an appropriate distance metric for the KNN algo-
rithm. In practice, the Euclidean distance is usually used
as the distance metric.

Diagonal Linear Discriminant Analysis (DLDA)
DLDA is the simplest case of the maximum likelihood dis-
criminant rule, in which the class densities are supposed
to have the same diagonal covariance matrix. In the spe-
cial case of binary classification, the DLDA scheme can be
viewed as the "weighted voting scheme" proposed by
Golub et al. in [3]. The major advantage of the DLDA algo-
rithm lies in its computational efficiency.

Linear Discriminant Analysis (LDA)
The classical LDA method aims to find the most discrimi-
natory projection directions of the input data and classi-
fies the data in the projected space. A major problem in
employing the classical LDA algorithm for classifying gene
expression data is that the so called scatter matrices are
always singular, due to the nature of high dimensionality
and relatively small sample size. The singularity makes the
classical LDA algorithm inapplicable. In the areas such as
face recognition and text classification, the principal com-
ponent analysis (PCA) technique is introduced as a pre-
processing procedure in order to reduce the
dimensionality of the input data. However, since the pro-
jection criterion of PCA is essentially different from that of
LDA, losing discriminatory information in the PCA step
becomes inevitable. A recent development in LDA is the
generalized discriminant analysis [9,10], in which a more
delicate matrix technique, namely, the generalized singu-
lar value decomposition (GSVD), is used to modify the
classical LDA into a more general version.

Support Vector Machines (SVM)
SVM has been recognized as the most powerful classifier
in various applications of pattern classification. For binary
classification, SVM searches for a hyperplane that sepa-
rates the two classes of data with the maximum margin. It
has been shown that support vector machines perform
well in many areas of computational biology [11-13]. In
the experimental part of this paper, we follow the way in
[14] to implement the SVM algorithm.

Generally speaking, due to the high dimensionality and
small sample size, linear classifiers such as the linear dis-
crimiant analysis (LDA), and the support vector machines
(SVM) with linear kernels are used favorably. However,
based on some benchmark tests, researchers have shown
that nonlinear classfiers are capable of exploring the non-
linear discriminatory information in the microarray data,
and usually produce more precise classification results
[15,16]. This is especially true when more patients' sam-
ples are available or the data dimension is substantially
reduced, since, in these cases, the linear separability of the
microarray data could be considerably degraded.

Among the general algorithms of pattern classification, K-
nearest-neighbor (KNN) is a simple yet useful one. How-
ever, in practice, the performance of KNN algorithm is
often inferior to those of the sophisticated approaches
such as SVM and generalized linear discriminant analysis
(GLDA) [9,10]. Since the distance metric is of great impor-
tance for the KNN scheme, an attractive way to improve
the performance of KNN is to adopt a more adaptive dis-
tance metric to the input data than the Euclidean diatnce.
In this paper, we propose to learn the adaptive distance
metric via optimizing a data-dependent kernel. Experi-
mental results show that, compared with the ordinary
Euclidean distance-based KNN scheme, our kernel-based
KNN algorithm, denoted KerNN, always achieves signifi-
cant improvement in the performance of classifying gene
expression data. Moreover, the performance of the KerNN
classifier is shown to be competitive, if not better, to those
of the sophisticated classifiers, e.g., SVM and the uncorre-
lated linear discriminant analysis (ULDA) [10], in classi-
fying microarray data.

Results
We conducted intensive experiments to compare the per-
formances of our KerNN scheme to the commonly-used
classification algorithms, i.e., KNN, DLDA [3], ULDA
[10], and SVM. Ten publicly available microarray data sets
were chosen to test our algorithms. The basic information
about these data sets is summarized below. Each data set
is first normalized to a distribution with zero mean and
unity variance in every feature direction, and then, ran-
domly partitioned into two disjoint subsets with equal
number of samples, one is used as the training data, and
the other the test data. We only consider Gaussian kernel
function in the proposed and SVM algorithms.

1. ALL-AML Leukemia Data: This data set, taken from the
website [17], contains 72 samples of human acute leuke-
mia. 47 samples belong to acute lymphoblastic leukemia
(ALL), and the other acute myeloid leukemia (AML). Each
sample presents the expression levels of 7129 genes. For
the detailed information, one can refer to [3].
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2. ALL-MLL-AML Leukemia Data: This leukemia microar-
ray data set is available on the website [17]. It includes 72
human leukemia samples, 24 of them belong to acute
lymphoblastic leukemia (ALL), 20 of them to mixed line-
age leukemia (MLL), a subset of human acute leukemia
with a chromosomal translocation, and 28 of the samples
are acute myelogenous leukemia (AML). Each sample
gives the expression levels of 12582 genes. Further infor-
mation about this data set can be found in [21].

3. Embryonal Tumors of the Central Nervous System (CNS):
This data set, available at the website [17], contains 60
patient samples, 21 are survivors of a treatment, and 39
are failures. There are 7129 genes in the data set. One can
refer to [22] to find more information about this data set.

4. Breast Cancer Data: The data are available on the website
[18]. The expression matrix monitors 7129 genes in 49
breast tumor samples. There are two response variables
respectively describing the status of the estrogen receptor
(ER) and the lymph nodal (LN) status. For the ER status,
25 samples are ER+, whereas the remaining 24 samples
are ER-. For the LN variable, there are 25 positive sample
and 24 negative samples. The detailed information about
this data set can be found in [6].

5. Colon Tumor Data: This data set is adopted from the
website [17]. The data contain 62 samples collected from
colon-cancer patients. Among them, 40 samples are from
tumors, and 22 normal biopsies are from healthy parts of
the colons of the same patients. 2000 genes were selected
to measure their expression levels. One can refer to [23].

6. Lung Cancer Data: This data set is taken from the website
[17]. It contains 181 tissue samples, which are classified
into two classes: malignant pleural mesothelioma (MPM)
and adenocarcinoma (ADCA). Each sample is described
by 12533 genes. More information about this data set can
be found in [24].

7. Lymphoma Data: The data are available on the website
[19]. This data set contains 77 tissue samples, 58 are dif-
fuse large B-cell lymphomas (DLBCL) and the remaining
19 samples are follicular lymphomas (FL). Each sample is
represented by the expression levels of 7129 genes. The
detailed information about this data set can be found in
[25].

8. Ovarian Cancer Data: This data set, available on the
website [17], is to distinguish ovarian cancer from non-
cancer. It contains 253 samples, and each sample has
15154 features. More details can be found in [26].

9. Prostate Cancer Data: This data set, adopted from the
website [19], contains the gene expression levels of 12600

genes for 52 prostate tumor samples and 50 normal pros-
tate samples. One can refer [4] for the details about this
data set.

10. Subtypes of Acute Lymphoblastic Leukemia: This data set,
available on the website [20], contains 6 subtypes of pedi-
atric acute lymphoblastic leukemia, corresponding to six
diagnostic groups: BCR-ABL, E2A-PBX1, MLL, T-ALL, TEL-
AML1, Hyperdiloid>50. Each sample contains 12625
genes.

Comparisons in terms of the best results
For each data set, we chose the Nf most discriminatory
genes, where Nf = 10, 20, 40, 60, 80, 100, 200, 400, 600,
800, 1000, 1200, 1400, 1600, 1800, 2000, respectively;
repeated the experiment 100 times at each value of Nf; and
then, calculated the average test error rates and their
standard deviations over the 100 experiments. Table 1
lists the best results, i.e., the smallest average test error
rate, of different algorithms. It can be seen that the pro-
posed KerNN algorithm reaches the best, which are in
bold face, on four data sets. On the other data sets, the
performance of the KerNN algorithm is still competitive,
if not better, to those of the SVM and ULDA schemes.

In Table 1, if we assign a score 1 to the best result, 2 to the
next best result, ..., and so on, then, the global perform-
ance of a classifier can be roughly evaluated in terms of the
average score. We show the average scores of the five clas-
sifiers in Table 1. It can be seen that the proposed KerNN
scheme achieves the lowest score among the five classifi-
ers.

Comparisons under different gene numbers
To investigate the stability of the 5 classification algo-
rithms, we compared their performances when different
number of genes were selected. The experimental results
are shown in Fig. 1, for the ALL-AML data, Fig. 2, for the
Colon data, and Fig. 3, for the Prostate data, where the hor-
izontal axis is the number of the selected genes and the
vertical axis is the average test error rates of the classifiers
over 100 experiments. While Fig. 1 (a), Fig. 2 (a), and Fig.
3 (a) illustrate the results in the case of choosing a rela-
tively small number of features (from 10 to 100), Fig. 1
(b), Fig. 2 (b), and Fig. 3 (b) demonstrate the correspond-
ing results when more genes are chosen (from 200 to
2000). It can be seen that the proposed KerNN scheme
performs favorably in most cases. Compared with the
ULDA scheme, which always performs poorly in the case
of small feature size, and the DLDA algorithm, whose per-
formances usually degrade for relatively large feature size,
our KerNN algorithm works with more stability with dif-
ferent feature numbers. More importantly, compared with
the ordinary KNN classifier, the kernel optimization-
based KNN classifier always gains significant improve-
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ments, which implies that the procedure of kernel optimi-
zation induces a distance metric that adapts better than
the Euclidean metric to the gene expression data in the
data space.

Discussion
Parameter tuning

In the experiments, for KNN, ULDA, and the proposed
algorithm, the final classification is done via the K-near-
est-neighbor algorithm with K = 3. For KNN, ULDA, and
DLDA algorithms, the only parameter is the number of
selected genes Nf. For SVM, in addition to the gene

number, two parameters, the γ in the Gaussian kernel
function and the regulation constant C, need to be set in
advance. As for the KerNN algorithm, there are more
parameters. To avoid the intensive computation in param-
eter tuning using the cross validation, we respectively
chose the Nf most discriminatory genes, where Nf = 10, 20,

40, 60, 80, 100, 200, 400, 600, 800, 1000, 1200, 1400,
1600, 1800, 2000. The best performance for each method
is reported in Table 1. For our kernel optimization

method, the initial learning rate η0 and the total iteration

number N are always set to 0.01 and 1000 respectively.
Furthermore, for the sake of computational simplicity, we
empirically set the two Gaussian parameters in the pro-

posed method as  and  , rather than

tune them by the cross validation. This may not be the

optimal settings for the parameters γ0 and γ1. However,

high computational complexity can be avoided. It is

expected that even better results could be obtained if we
were to choose them by the cross validation. Therefore, for

the KerNN method, there is only one parameter σε, the

standard variance of the disturbance added to the data in
Eq. (10), that need to be tuned. As to the SVM, two param-
eters are tuned by the cross validation.

In the experiments, we employed the leave-one-out tech-
nique on the training data to choose these parameters. We
followed [14] to implement the SVM algorithm, in which
the parameter C is chosen from {l.0e+00, l.0e+01,
l.0e+02, l.0e+03, l.0e+04, l.0e+05, l.0e+06, l.0e+07} and
γ from {l.0e-07, 5.0e-07, l.0e-06, 5.0e-06, l.0e-05, 5.0e-
05, l.0e-04, 5.0e-04, l.0e-03, 5.0e-03, l.0e-02} using the
leave-one-out cross validation. For our KerNN algorithm,
the parameter σε is selected from {0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0}. Note that only the training samples
were used for setting parameters. Test samples are inde-
pendent of this process.

Gene selection
In this paper, we employ the BW ratio used in [2,10] to
select genes. This ratio is essentially a Fisher discriminant
measure. Given a gene j, the ratio on gene j is calculated as

where Ck denotes the index set of the k-th class (k =

l,2,...,p), mk is the number of samples in Ck

( ), k(j) and (j) represent the average
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Table 1: Comparison of the classifiers in terms of the best results. The  comparison of all the classifiers in terms of the best results of 
the average test error rates (%). For each data set, we chose the Nf most discriminatory genes, where Nf = 10, 20, 40, 60, 80, 100, 200, 
400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, respectively; repeated the experiment 100 times at each value of Nf; and then, 
calculated the average test error rates and their standard deviations over the 100 experiments. In comparison, we assign a classifier a 
score 1 as it achieves the best result on one data set, and 2 if it achieves the next best result, and so on. The average score roughly 
evaluates the global performance of a classifier on these twelve data sets.

KNN ULDA DLDA SVM KerNN

ALL-AML 3.32 (1.21) 3.08 (1.09) 2.95 (0.78) 2.70 (0.00) 2.70 (0.00)
ALL-MLL-AML 6.17 (2.75) 2.14 (1.97) 5.19 (2.95) 2.83 (2.37) 3.21 (2.18)

CNS 19.52 (5.88) 12.26 (7.04) 22.42 (5.58) 13.35 (7.52) 15.32 (5.60)
Breast-ER 7.12 (4.12) 4.92 (4.40) 3.21 (3.04) 4.64 (4.39) 4.48 (4.45)
Breast-LN 13.12 (5.91) 9.92 (5.16) 7.76 (4.85) 7.92 (5.39) 8.36 (4.48)

Colon 14.03 (3.76) 16.84 (6.14) 12.65 (4.58) 11.84 (4.28) 11.58 (4.97)
Lung 1.21 (0.98) 0.81 (0.73) 0.47 (0.57) 0.53 (0.61) 0.31 (0.54)

Lymphoma 2.05 (2.58) 2.05 (2.09) 6.23 (2.88) 1.03 (1.59) 1.90 (2.05)
Ovarian 0.74 (0.87) 0.02 (0.13) 1.58 (0.81) 0.17 (0.42) 0.01 (0.08)
Prostate 7.41 (2.47) 5.22 (2.99) 6.73 (3.02) 4.86 (2.77) 4.90 (2.53)
Subtypes 2.57 (0.86) 1.73 (0.90) 2.45 (0.92) 2.60 (1.02) 2.42 (0.82)

Average Score 4.5 2.8 3.3 2.3 1.9
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expression levels cross the k-th class and whole training
samples on gene j, respectively.

Gene selection usually has a strong impact on the per-
formances of various classifiers, due to the effect of corre-
lation between genes. Our experiments show that the
impact can be considered in two aspects: l)with different
numbers of genes, the performance of a classifier could be
remarkably different. For example, the ULDA method
usually works quite well as a large number of genes is

used, but performs poorly in the case of small gene
number. Contrarily, the DLDA classifier often reaches its
best performance at small number of features. 2) with dif-
ferent numbers of genes, the model parameters, especially
for the nonlinear methods, need to be set differently to
achieve better result.

The effect of the disturbed resampling
Due to the lack of enough training samples, the scheme of
the kernel optimization-based classification may lead to
an overfitting result in classifying gene expression data. To

Test error rates for the ALL-AML data setFigure 1
Test error rates for the ALL-AML data set. Stability comparison on the ALL-AML data. The average test error rate (%) as 
a function of the selected gene number.
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Test error rates for the Colon data setFigure 2
Test error rates for the Colon data set. Stability comparison on the Colon data. The average test error rate (%) as a func-
tion of the selected gene number.
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alleviate the possible overfitting, a strategy of disturbed
resampling, as shown in Eq. (10), was adopted. In this
section, we demonstrate that using this strategy, the over-
fiting could be effectively reduced.

In the case that there are relatively large number of sam-
ples, the kernel optimization-based KNN classifier with-
out using the strategy of disturbed resampling, denoted by
KerNN0, usually works well on both the training and test
data. Fig. 4 illustrates the performances of KNN, KerNN0,
and KerNN on both the training and test data of the Pros-
tate data set, which includes 102 samples. It can be seen
that, compared with the KNN algorithm, both the
KerNN0 and KerNN methods gain significant improve-
ments, not only on the training data, but also on the test
data. However, when the sample size is relatively small,
the KerNNO algorithm may lead to serious overfitting. We
choose the Breast-ER data set, which contains only 49
samples, to demonstrate our argument. Fig. 5 (a) shows
the average error rates of KNN, KerNN0, and KerNN algo-
rithms on the training data, and Fig. 5 (b) presents the cor-
responding results on the test data. It can be seen that,
although KerNN0 works quite well on the training data,
its performance degrades remarkably on the test data. On
the contrary, for the KerNN scheme, no overfitting
occurred.

Conclusion
In this paper, a novel distance metric is developed and
incorporated into a KNN scheme for cancer classification.
This metric, derived from the procedure of a data-depend-
ent kernel optimization, can substantially increase the
class separability of the data in the feature space, and

hence, lead to a significant improvement in the perform-
ance of the KNN classifier. Furthermore, in combination
with a disturbed resampling strategy, the kernel optimiza-
tion-based K-nearest-neighbor scheme can achieve com-
petitive performance to the fine tuned SVM and the
uncorrelated linear discriminant analysis (ULDA) scheme
in classifying gene expression data. Experimental results
show that the proposed scheme performs with more sta-
bility than the ULDA scheme, which works poorly in the
case of small feature size, and the DLDA scheme, whose
performance usually degrades in the case of a relatively
large feature size.

Methods
0.1 Data-dependent kernel model
In this paper, we employ a special kernel function model,
which is called date-dependent kernel model, as the
objective kernel to be optimized. Apparently, there is no
benefit at all if we simply use the common kernel such as
the Gaussian kernel or the polynomial kernel in the KNN
scheme, since the distance ranking in the Hilbert space
derived from the kernel function is the same as that in the
input data space. However, when we adopt the data-
dependent kernel, especially after the kernel is optimized,
the distance metric could be appropriately modified so
that the local relevance of the data is significantly
improved.

Let {xi, ζi} (i = 1,2, ..., m) be m d-dimensional training
samples of the given gene expression data, where ζi repre-
sent the class labels of the samples. We refer the data-
dependent kernel as,

Test error rates for the Prostate data setFigure 3
Test error rates for the Prostate data set. Stability comparison on the Prostate data. The average test error rate (%) as a 
function of the selected gene number.
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k(x, y) = q(x)q(y)k0(x, y)    (1)

where x, y ∈ Rd, k0(x, y), called the basic kernel, is an ordi-
nary kernel such as a Gaussian or a polynomial kernel
function, and q(.), the factor function, takes the form as

in which k1(x, ai) = , αi's are the combination

coefficients, and ai's denote the local centers of the train-

ing data.

Let the kernel matrices corresponding to k(x, y) and k0(x,
y) be K and k0. Obviously, K = [q(xi)q(xj)k0(xi, xj)]m × m =
QK0Q, where Q is a diagonal matrix whose diagonal ele-
ments are q(x1), q(x2),...,q(xm). Let us denote the vector
(q(x1), q(x2),..., q(xm))T and (α0, α1, α2,...,αn)T by q and α
respectively, we have q = K1α, where K1 is an m × (l + 1)
matrix

0.2 Kernel optimization for binary-class data
We optimized the data-dependent kernel in Eq.(l). This
requires optimizing the combination coefficient vector α,
aiming to increase the class separability of the data in the
feature space. A Fisher scalar measuring the class separa-
bility of the training data in the feature space is adopted as
a criterion for our kernel optimization

where Sb represents the "between-class scatter matrix", and
Sw "within-class scatter matrix".

Suppose that the training data are grouped according to
their class labels, i.e., the first m1 data belong to one class,
and the remaining m2 data belong to the other class (m1 +
m2 = m). Then the basic kernel matrix k0 can be partitioned
as

where the sizes of the submatrices , and 

respectively are m1 × m1, m1 × m2, m2 × m1, and m2 × m2. A

close relation between the class separability measure J and
the kernel matrices can be established [27].
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The effect of the disturbed resampling on ProstateFigure 4
The effect of the disturbed resampling on Prostate. The effect of adopting the technique of disturbed resampling on a 
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where M0 = B0K1, N0 = W0K1, in which

To avoid using the eigenvector solution, an updating algo-
rithm based on the standard gradient approach is devel-
oped. This algorithm is summarized below, in which the
learning rate η(n) is adopted in a gradually decreasing
form as

where η0 represents an initial learning rate.

1. Group the data according to their class labels. Calculate
K0 and K1 first, then B0 and W0, and then M0, N0.

2. Initialize α(0) by a vector (1,0,..., 0)T, and set n = 0.

3. Calculate q = K1α(n), and J1 = qT B0q, J2 = qT W0q, and J.

4. Update α(n):

and normalize α(n+1) so that ||α(n+1)|| = 1.

5. If n reaches a pre-specified number N, stop. Otherwise,
set n = n + 1, go to 3.

0.3 Kernel optimization for multi-class data
In the case of multi-class data, we decompose the problem
of kernel optimization into a series of binary-class kernel
optimizations.

Let (xi, ζi) ∈ Rd × ζ (i = 1, 2,..., m) be the training data set

containing p classes, that is, ζ = {1,2,...,p}. We assume the
data to be grouped in order, that is, the first m1 data

belong to the first class, the next m2 data belong to the sec-
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ond class, and so on, where . Then, the ker-

nel matrix can be written as

where the submatrix kij is of size mi × mj, and Kii represents
the kernel matrix corresponding to the data in the i-th
class. The class separability of the i-th and j-th class,
denoted by Jij (i,j = 1, 2,...,p, i ≠ j), is calculated as

where the between-class and within-class kernel scatter
matrices Bij and Wij are defined as

in which Dij denotes a diagonal matrix whose diagonal
elements are composed of the diagonal entries of the
matrix Kii and Kjj. We also denote the between-class and

within-class kernel matrices corresponding to the basic

kernel by  and  respectively.

In each iteration of the updating algorithm, we first find
the class index (u, v) that corresponds to the minimum Jij

in current step, then the value of α is updated in such a
way that the class separability of the u-th and v-th class Juv

will be maximized. In other words, the objective of the
kernel optimization becomes

It is easy to modify the kernel optimization algorithm
from the case of binary class data to the case of multi-class
data. The detailed kernel optimization algorithm for

multi-class data set is summarized below, where Γij
denotes the union of the data index sets of the i-th and j-
th class, and q(Γij) and K1(Γij,:) represent the submatrix
extraction as in MATLAB.

1. Group the data according to their class labels. Calculate
k0 and K1.

2. Initialize α(0) by a vector (1,0,..., 0)T, and set n = 0.

3. Calculate q = K1α(n),  = q(Γij)T q(Γij),  = q(Γij)T

q(Γij), and Jij, where i, j = l,2,...,p, and i ≠ j.

4. Find Jij(α), and calculate  =

K1(Γuv,:)T K1(Γuv,:), and  = K1(Γuv,:)T

K1(Γuv,:).

5. Update α(n)

and normalize α(n+1) so that ||α(n+1) || = 1.

6. If n reaches a prespecified number N, stop. Otherwise,
set n = n + 1, go to step 3.

0.4 KNN classification using the optimized kernel distance 
metric
Given two samples x,y ∈ Rd, the inner product is defined
as: x·y = <x, y > = k(x, y); therefore, their derived distance
can be calculated

d(x, y) = <x, x > + <y, y > -2 <x, y > = k(x, x) + k(y, y) - 2k(x,
y).

Using our data-dependent kernel model, the distance can
be expressed as

d(x, y) = q2(x) + q2(y) - 2q(x)q(y)k0(x, y) = [q(x) - q(y)]2 +
2q(x)q(y)(1 - k0(x, y))

where we assume that the basic kernel function satisfy:
k0(x,x) = 1, just like the Gaussian function.

Since the kernel optimization scheme increases the class
separability of the data in the feature space, the perform-
ances of kernel machines should be improved. However,
for the classification of gene expression data, due to the
small size of training samples, the kernel optimization,
which performs on training data, may cause overfitting,
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which means the algorithm may work very well on the
training data, but worse on the test data. To handle this
problem, we adopted a disturbed resampling strategy to
increase the sample size of the training data.

Suppose that {xi, ζi} (i = 1,2, ... m) are the training data,
we construct a new set of training data {yi,ξi}(i =
1,2,...,3m), where

in which xr is a sample randomly selected form {xi} with

replacement and ε denotes a normal random disturb, that

is, ε ~N(0, ). The class labels are determined as

Due to the very high dimensionality and small number of
the patient samples, the training data are sparsely distrib-
uted in the high dimensional Euclidean space. It is reason-
able to assume that the near points of a training datum
have the same class characteristic as that of the training
datum. Experimentally, using the technique of disturbed
resampling (Eq.(l0)), we can effectively reduce the possi-
ble overfitting and computational instability, which are
mainly caused by the lack of enough training samples for
the gene expression data.
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