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Abstract

Background: Gene expression profiling has become a useful biological resource in recent years,
and it plays an important role in a broad range of areas in biology. The raw gene expression data,
usually in the form of large matrix, may contain missing values. The downstream analysis methods
that postulate complete matrix input are thus not applicable. Several methods have been developed
to solve this problem, such as K nearest neighbor impute method, Bayesian principal components
analysis impute method, etc. In this paper, we introduce a novel imputing approach based on the
Support Vector Regression (SVR) method. The proposed approach utilizes an orthogonal coding
input scheme, which makes use of multi-missing values in one row of a certain gene expression
profile and imputes the missing value into a much higher dimensional space, to obtain better
performance.

Results: A comparative study of our method with the previously developed methods has been
presented for the estimation of the missing values on six gene expression data sets. Among the
three different input-vector coding schemes we tried, the orthogonal input coding scheme obtains
the best estimation results with the minimum Normalized Root Mean Squared Error (NRMSE). The
results also demonstrate that the SVR method has powerful estimation ability on different kinds of
data sets with relatively small NRMSE.

Conclusion: The SVR impute method shows better performance than, or at least comparable
with, the previously developed methods in present research. The outstanding estimation ability of
this impute method is partly due to the use of the most missing value information by incorporating
orthogonal input coding scheme. In addition, the solid theoretical foundation of SVR method also
helps in estimation of performance together with orthogonal input coding scheme. The promising
estimation ability demonstrated in the results section suggests that the proposed approach
provides a proper solution to the missing value estimation problem. The source code of the SVR
method is available from http://202.38.78.189/downloads/svrimpute.html for non-commercial use.
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Background

Gene expression profiles, produced by the microarray
experiments, provide a way to investigate the expression
levels of thousands of genes under various experimental
conditions. It has been used in a broad range of areas in
biology, such as regulatory pathway inferring, functional
gene finding, etc. [1-6]. The downstream processing meth-
ods, such as clustering [7,8], supervised learning algo-
rithms [9-11], etc., have been applied to the analysis of the
available data.

Consisting of hundreds or even thousands of gene-spe-
cific DNA sequences, gene expression microarrays pro-
duce massive gene expression data sets in the form of large
matrices, which, however, contain the missing values.
These missing values can be caused by various factors,
such as insufficient resolution, image corruption, or sim-
ply due to dust or scratches on the slide. Moreover, sys-
tematically data missing might also present in the robotic
method for the generation of gene expression profiles.

Repetition of identical experiments [12] has been adopted
to validate downstream microarray analysis algorithms
dealing with the missing value issue. However, this
method is costly and time consuming. The naive ways that
have been commonly used include omitting the expres-
sion profile vector with missing values, and padding them
with zeros, or row averages [13]. These methods are
widely used by biologists, but the disadvantages of them
are obvious: omitting the profile vector results in losing
useful information; padding them with zeros and row
averages do not provide proper missing value estimation.
Rather sophisticated approaches have been proposed by
Troyanskaya et al. [12]. The approaches are based on K-
nearest neighbor algorithm (KNN impute) and Singular
Value Decomposition algorithm (SVD impute). The KNN
impute method aims at finding k genes mostly similar to
genes containing missing values, where the similarity is
estimated by Euclidean distance measure, and the missing
values are imputed with values of weighted average from
these neighboring genes. The SVD impute method obtains
a set of mutually orthogonal expression patterns (eigen-
genes) from the gene expression matrix, and impute the
missing values by regressing the gene against the k eigen-
genes and linearly combining the eigengenes. In most
cases, the KNN imputing performs better and more robust
than does the SVD, which is also good on time series data
corrupted by low level noise. These initial attempts of
imputing the missing-values by means of mathematical
fashion have shown the promising progress in terms of
superior performance of estimation accuracy on the test
datasets.

Recently, Oba et al. has developed an optimization
method based on Bayesian principal component analysis
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(BPCA impute) [14], which outperforms the KNN and the
SVD impute methods. One of the features, which allow
the method provides better performances, is the capability
of auto-selection of the parameters used in estimation.
The method also claims better estimation performance
when the number of the samples is large. Bayesian varia-
ble selection algorithm, developed by Zhou et al. [15],
also aims at the auto-selection of the number of the near-
est neighboring genes used in estimation. In this algo-
rithm, both linear and nonlinear regressions are used for
the estimation rule, and the procedures for the fast imple-
mentation have been developed for the essential steps of
the algorithm. Kim et al. [16] has proposed a method
based on local least squares (LLS impute), which
exploited the local similarity structures in the data as well
as the least squares optimization process. Some of these
methods, however, did not take most use of missing val-
ues in one row of certain expression profile (see method
section), so that other missing values are just excluded, or
padded with zeros or row average in the estimation.

In this paper, we propose a new approach based on the
Support Vector Regression (SVR) to estimate the missing
values and use orthogonal input coding scheme to
address the issue of multiple missing values in one row of
certain expression profile. To evaluate the proposed
method, six microarray datasets have been tested with var-
ious parameter settings. The superior performance, com-
paring with KNN, BPCA, and LLS impute methods,
indicates the promising estimation ability of the method.

In this paper, we use D € R""" to denote the whole gene
expression data matrix, where m is the number of genes,
and n is the number of different experimental conditions,
Le., entry d; ;in the expression matrix denotes the expres-
sion level of the i-th gene in the j-th experimental condi-
tion.

Results

Data sets

In this paper, the performance of each method is evalu-
ated by using six data sets. The first two data sets, initially
made available by Spellman et al [17], focus on identifica-
tion of the cell-cycle regulated genes in yeast Saccharomy-
ces cerevisiae, and are all time series data sets. One of the
data set is from the study of a-factor block experiments,
and it contains 18 sampling points of each gene. This data
set is referred as data A hereafter. And another data set,
referred to as data F, is an elutriation dataset with 14 sam-
pling points. The third data set, data G, is from Gasch's
experiments [18] focusing on the response to the environ-
ment changes of genes in yeast, and is a data set contain-
ing 173 expression ratios for each gene. After removing all
the columns with more than 8% missing entries, we select
all gene rows without the missing values. Among the
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Influence of different input coding schemes on
regression performance. The percentage of entries miss-
ing in the 'complete matrix' and the NRMSE of each input
coding scheme are shown in the horizontal and vertical axes,
respectively.

resulting 2990 gene rows, we randomly select 44 columns
to construct a non-time series subset of the whole data set
by rearranging the columns at random. The fourth data
set, data I, is original cDNA microarray data relevant to
human colorectal cancer (CRC) [19]. This data set con-
tains 205 primary CRCs that include 127 non-metastatic
primary CRCs, 54 metastatic primary CRCs to the liver,
and 12 normal colonic epithelia that have been his-
topathologically confirmed to be free of cancer [14]. In
this paper, the total number of the genes used from this
subset is 758. The fifth data set, data P, is a gene expres-
sion data set relevant to the molecular pharmacology of
cancer, which contains gene expression profiles in 60
human cancer cell lines in a drug discovery screen [20].
This data set contains 9706 genes with 60 sampling points
for each gene. After removing all the columns with more
than 30% missing entries, and selecting all gene rows
without missing entries, we finally get the data set with
4508 genes, which contain 31 sampling points for each
gene. The last data set, data C, is also from reference [17],
the same data set used in Kim's paper, focusing on the cell-
cycle-regulated genes. This data set was classified into five
classes by Spellman, from the same 14 experiments as in
data E. Data C is used to test how much an imputing
method is able to take advantage of strongly correlated
genes in estimating the missing values.

The data sets we used in our study are processed with sev-
eral steps. Firstly, they are log-transformed after they are
taken from the image. Secondly, the rows and the col-
umns which contain much missing values are excluded.
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Performance of the four methods on data A. The per-
centage of entries missing in the 'complete matrix' and the
NRMSE of each missing value estimation method are shown
in the horizontal and vertical axes, respectively.

Thirdly, before using orthogonal input coding scheme
and SVR impute method, each of the columns are scaled
to between 0 and 1, which means the data sets are normal-
ized. Mean-normalizing the data will further help in
regression performance using Euclidian Distance. Finally,
the data sets with all these pre-procession are used to con-
struct the "complete matrix".

Measurements for performance

We constructed the "complete matrices" by removing all
the rows containing raw missing values, and randomly
created the artificial missing values, from 1% to 20%, of
the entries in a matrix. The performance is measured by
the Normalized Root Mean Squared Error (NRMSE),
defined as

2
me‘m[(yguess - )/answer) ]

Uariance[)/answer ]

NRMSE =

(1)

Where the mean and the variance are calculated from the
complete matrix, and y,,,,,are the estimated vectors for the
missing values in the matrix while y,,,,, are the true value
vectors for the artificial missing values. The NRMSE varies
according to the estimation performance. When predicted
values are accurate, the NRMSE reaches its minimum
value 0, and when the prediction is very poor or the noise
involved is too large, the NRMSE becomes much larger.

Input coding scheme selection
Figure 1 shows the comparison of performance. The hori-
zontal and vertical axes indicate the percentage of entries
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missing in the 'complete matrix' and the NRMSE of each
input coding scheme, respectively. In the Figure 1, the
results reveal that orthogonal input coding scheme out-
performs the other two input coding schemes, and the
performances of the zero-imputing and the row-average-
imputing input coding scheme are quite similar. For
example, when the percentage of entries missing is 20%,
the NRMSE of the orthogonal input coding scheme
reaches 0.5269, and the NRMSE of the other two input
coding schemes are 0.5841 and 0.6064, respectively.
When the percentage of entries missing is 1%, the NRMSE
of the orthogonal input coding scheme goes as low as
0.1176, which is much lower than the NRMSE of the
other two input coding scheme, 0.2384 and 0.2483.

Performance comparison with other methods

The performance of the SVR impute method, assessed
over five different data sets, has been compared with three
imputing approaches, i.e., KNN, BPCA and LLS impute
method. The k-value in the KNN impute method was pre-
set as 15, according to proposed scope of between 10 and
20. The parameter sets for the BPCA impute method were
taken directly from published resource. The LLS impute
method is a non-parameter method, and the referenced
programs were used. Performance of each method on dif-
ferent data sets is shown in Figure 2, 3, 4, 5, 6, 7.

Data A and data E, which are the noisy time-series data
sets, were pre-processed by removing all genes containing
the missing values. They produce complete matrix with
4304 genes. From Figure 2 and 3 we can see that the SVR
impute method notably outperforms the other three
methods on these two data sets. And we obtain similar
results on data A. The SVR also performs stably across the
data missing percentages.

As claimed by Troyanskaya [12], data G is the most chal-
lenging prediction data set, where a clear expression pat-
tern is often absent. The complete matrix contains 2990
genes after pre-pressing. Figure 4 shows that among all
four methods, in most cases, the SVR method gets mini-
mal NRMSE. When percentage of missing values in the
data sets is below 20%, the SVR achieves the best result.
And when percentage of missing values reaches 20%, the
NRMSE of the SVR is a little larger than those of the BPCA
and the LLS impute methods, and still much smaller than
that of the KNN impute method. This shows the SVR
method is comparable with, if not better than, the previ-
ous methods on non time series data set.

Data I is a data set relevant to human cancer, which
involves much more complex regulation mechanisms.
Therefore, this type of gene expression profile data set is
much difficult for the missing value estimation. Figure 5
shows the performance of four methods on data I. On this
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data set, the SVR method gets similar results as it does on
data G. When the percentage of missing values is below
10%, the SVR method gets good result. While the percent-
age of missing values exceeds 10%, the NRMSE of SVR is
a little larger. On this data set, our method shows compa-
rable estimating ability with the previous methods.

Relevant to many kinds of human cancers, including
colorectal, renal, ovarian, breast, prostate, lung and cen-
tral nervous system origin, as well as leukaemias and
melanomas, data P becomes the most difficult data set for
missing value estimation. Figure 6 shows the performance
of each method on this data set. On this data set, the SVR
impute method gets similar result as other previous meth-
ods. All the methods get similar estimate performance
with the NRMSE between 0.65 and 0.7. On this data set,
the SVR impute method performs robustly as the percent-
age of the missing values increase.

Data C is designed to test how much an imputing method
is able to take advantage of strongly correlated genes in
estimating the missing values according to the research
work by Kim et al. [16] We can see from Figure 7 that the
SVR method gets similar result as other previous methods.
This indicates the SVR method can take better use of
strongly correlated genes than do other three methods in
estimating the missing values.

Performance of SVR method on dataset with higher noise

levels

For the real data set that always contains noise caused by
various reasons, a good estimation method must be
robust against certain levels of noise. To test the robust-
ness of the SVR method, we prepare five noisy datasets by
adding random noise of various levels, with normal distri-
bution, on data C, as has been proposed by Kim [16]. To
generate the six datasets, we first build six noise matrices
with normal distribution of zero-mean (p = 0) and vari-
ous standard deviations (o = {0.01, 0.05, 0.10, 0.15
0.20}), and then add them to data C with 5% entries
missing. From Figure 8 we can see that the performance of
the SVR method is not very sensitive to the noise level,
especially when o is less than 0.15. Therefore, the SVR
method is more robust against noise.

Discussion

Performance compared with previous methods

Three pervious methods are used to compare the perform-
ance of the SVR impute method in our research. One of
the advantages of the SVR method is that it makes most
use of the information from the original data sets. The
orthogonal input coding scheme raises the estimation
performance notably, which contributes to the best per-
formance of the SVR method among these four methods.
In the case of the KNN and the LLS method, the redun-
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Performance of the four methods on data E.
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Performance of the four methods on data G.

dant missing values in the samples or genes with many
missing values are just neglected, while the BPCA method
simply regards them equally with the non-missing values.
Another advantage comes from the SVR method itself. The
SVR method is a method based on the structural risk min-
imization principle in statistical learning theory, which
guarantees the global optimal solution of the dual quad-
ratic programming problem. The KNN method linearly
combines the similar genes by weighting the average val-
ues of them. The coefficients used in combination are cal-
culated by using Euclidean distance, which is not an
optimal measurement for gene similarity. This makes the
KNN method perform worst among all the methods. The
BPCA method uses the principal component regression,
which makes the results highly depend on the numbers of
the principal axes. If genes have dominant local similarity
structures, the result of this method may not be the global
optimal. The LLS method is a method based on local sim-
ilar structure. It shares the similar linear combination of k
nearest genes as the KNN impute, and surpasses the KNN
impute by optimizing the coefficients of the non-missing
part of the similar genes using the least square solution.
The LLS method is based on local similarity structure of
the data set, which draws back its performance when the
local similarity is not very clear. In most cases, LLS
method performs worse than BPCA impute method and
SVR impute method.

Besides yeast gene expression profiles, our method also
works well on the data sets those are much more difficult
for regression, because of the complex regulation mecha-
nisms involved (Figure 5 and Figure 6). What's more, the
length of the expression profiles in data I is 205, which is
much larger than the data sets relevant to yeast. This might
make it more complex for regression. Figure 5 and Figure

6 show that the SVR method achieves comparative results
to the previous methods. When the percentage of missing
values becomes too large, the SVR impute method per-
forms little worse than do the BPCA and the LLS impute
method. This is partly due to the grid search strategy for
the parameter sets. To maintain proper parameter sets, the
user should specify the range of the parameters been
searched, so the parameter sets might not be the opti-
mum. The parameter selection is also a problem that has
to be solved in the Support Vector Regression. Even if the
parameter set might not be the optimum, the result is still
comparative with other impute methods. Thus the SVR
impute method performs well in present research.

Input coding scheme selection

The main difference between the orthogonal input coding
scheme and the other two is that the former utilizes the
most information in the whole matrix, while the latter
does not. All the values in two non-orthogonal input
schemes are regarded equally in the input vector, which is
not true. The flag bits in orthogonal coding, on the other
hand, mark its strength by taking the missing value infor-
mation into account, which is able to represent the differ-
ence between the missing and non-missing values.

Let x, = (x;,, X1, ¥;3) denotes the gene expression profile,
where x;, and x,5 are missing. When imputing x,5, the
orthogonal input coding schemes gets the input vector of
VeCtOT yyggonal = (X11, 0, 0, 1) (see method), and the zero-
imputing input coding scheme gets the input vector of vec-
tor,,,, = (%11, 0). When calculation the kernel function K(x;,
x;) = exp(-7|x;- x;||2) used in final regression function (9),
we get:
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Figure 5
Performance of the four methods on data I.
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Performance of the four methods on data P.

korthogonal(xlf xi) = exp(_j'(xll2 + 1)) *exp('?(xlzz +

X3,%))*exp(2*xy;*x1,)  (2)

in the orthogonal input coding scheme and

Rzero (X1, x;) = exp(-Ax;;2)) *exp(-Ax12  +
x,')?)) *exp(2*x;,*x1,)  (3)

in the zero-imputing input coding scheme, where x; = (x,;,
X0 X23), X' = (%51, %55, X,5') denote the center point of the
SVR in the orthogonal input coding scheme and the zero-
imputing input coding scheme during calculation, respec-
tively. The difference of the two input coding scheme in
the kernel function is not only the difference of the center
point, but also a coefficient of exp(-y). So they perform
differently in regression performance. It is also indicated
that why the value of flag bit is set to be 1, but not other
values. The flag bit in the orthogonal input coding scheme
is used as the coefficient of the parameter y in the kernel
function and the final regression function. Since the
parameter y can be tuned by the user, the flag bit can be
safely set to be 1 without any influence on the final regres-
sion result.

Conclusion

In this paper, we introduce the Support Vector Regression
(SVR) impute as a novel method for estimation of the
missing values in gene expression profile. Testing results
reveal that the SVR impute has outstanding prediction
ability in the estimation of the missing values problem
and robust against the noise. Moreover, our approach
makes most use of the missing value information in the
whole gene expression matrix by using orthogonal input
coding scheme. A comprehensive comparison of NRMSE
on five data sets shows that the SVR impute performs

comparative with, if not better than, the other missing
value estimation methods in this area ever since, and it
appears to be a proper solution to the missing value esti-
mation in gene expression profile.

Methods

Support Vector Regression

Support Vector machine (SVM), which is based on the
structural risk minimization principle in statistical learn-
ing theory, is a powerful tool for general purpose machine
learning problem [21]. It solves the "over-fitting" problem
by using structure risk minimization principle, which
minimizes both empirical risk and confidence interval. In
practice, two kinds of SVMs are provided for different pur-
pose: Support Vector machine for classification (SVC) and
Support Vector machine for regression (SVR). The SVC has
been extensively investigated in the areas of bioinformat-
ics, such as enzyme family classification [22], protein sec-
ondary structure prediction [23], and protein relative
solvent accessibility prediction [24], etc., for that it is not
only well founded in theory, but also very efficient in
practical purpose. As another aspect of the SVM, although
the SVR has seldom been used in these areas, the SVC also
has shown its powerful ability of resolving problems in
our work.

Generally, the SVR is carried out with two steps: first, the
SVR maps the samples from the input space with a low
dimension into a much higher (sometimes infinite)
dimensional space with a kernel function, and then
searches for the global optimal solution to the corre-
sponding problem using the quadratic programming. The
so called support vectors (Figure 9) are these samples with
non-zero Lagrange multiplier. Given a set of observed
training data (circles and triangles), which are sampled
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Performance of the four methods on data C.

from the hidden original function f(x) (solid line) and
maybe polluted by noise during this procedure, SVR con-
structs the fitted regression function ¢(x)(dashed line) by
solving the corresponding optimal problem with con-
strains. The support vectors and non-support vectors are
denoted with circles and triangles, respectively. The sup-
port vectors are these input samples that will be further
used in regression, which means if we remove all the non
support vectors in the data set, the regression result will
not be influenced. The mathematical concept of support
vectors and how to calculate these support vectors will be
discussed later in this section.

The final regression function of the SVR is determined by
the support vectors. The number of the support vectors is
usually small when compared to the total number of the
samples. Let {(x;, 2,),...,(x,, z,)} denotes a set of the train-
ing data, which was sampled from the original function
f(x) and may be polluted by noise during this procedure.
Here, x; € R is the input and z; € R!is a target output. The
standard form of the SVR is

n n
min lWTW+CZ§i+CZ§: (4)
whi g2 i=1 i=1
Subject to

WTo(x;) +b-z;<¢e + &,
zi- WIp(x;) -b<e+ E,:,

& & >0i=1,...n (5)
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Comparison of the NRMSEs with respect to noise
levels. Artificial noise, with normal distribution of a mean p
= 0 and various standard deviations (¢ =
0.01,0.05,0.1,0.15,0.2), were added to data C to construct
the five noisy datasets.

Where W is the solution of the primal formulation and C
is the regulation parameter that controls the trade off

between margin and prediction error denoted by &, &;.
¢(x;) is a non-linear function mapping the input feature

into a higher dimensional space and ¢ is the error proba-
bility that controls the most deviation of the regression
function from the actually obtained target.

The formulation above corresponds to dealing with a so
called e-insensitive loss function:

el :Z{o,if|§|s?, (o)

|€| — & otherwose

To a certain extent, regulation parameter C controls the
complexity of the learning machine, and the training
speed is also influenced by this parameter. The number of
the support vectors will be influenced by these parame-
ters. Generally, the larger ¢ is, the less support vectors
there need. The corresponding dual quadratic program-
ming problem is

1 1
rninl(oc—(x*)TQ((x—(x*)+eZ((xi+a;)+zzi((xi—(x;) (7)
a0t 2 i=1 i=1
Subject to

! * *
Y (0 —0;)=0,0< 0,0 <Ci=1,...1 (8)
i=1
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v

Figure 9

Illustration of the support vector machine method
used for regression. Given a set of observed training data
(circles and triangles), which are sampled from the hidden
original function f{(x) (solid line) and may be polluted by noise
during this procedure, the SVR constructs the fitted regres-
sion function ¢(x) (dashed line) by solving the corresponding
optimal problem with constrains. The support vectors and
non-support vectors are denoted with circles and triangles,
respectively.

Where Q; = K(x; x;) = ¢(x;)T ¢(x;). The final regression
function can be expressed as

l
0(x) = X, (o + 0 )K(x;,%) +b (9)

i=1
And K(x;, x) is the kernel function, which can be set in dif-
ferent forms, such as polynomial kernel function, radial
basis kernel function, sigmoid kernel function, etc. The
support vectors are those input vectors with the corre-
sponding o of non-zero value.

Parameter sets for SYR

Performance of the SVR depends on its kernel functions
and corresponding parameter sets. Among different kinds
of the kernel functions, we choose radial basis function
for its outstanding performance and relatively short oper-
ation time. The formulation of the radial basis function is
as follows:

K(x, %) = exp(-|x,- x[)  (10)

¥ is a parameter that can be designed by user. The toolkit
for the SVR implementation we choose is LibSVM [25].

Three parameters, C, y and &, can be tuned for this kernel
function as has been defined before. To get optimum
parameter sets for the SVR, a grid search strategy is per-

http://www.biomedcentral.com/1471-2105/7/32

formed over the training data set. All the profiles without
missing data in the certain column are used to construct
the training data set. We then apply a grid search strategy
with 5 fold cross-validation over the training data set for
each column individually, where the ranges of the param-
eters are specified by the user. Finally, the parameter set
with best performance on the training data set over all the
columns in the data set is chosen for the SVR method.

The time the program takes depends on the size of the
data set and the parameter sets, the larger the C parameter
is, the slower the program runs. Usually, it will finish
regression in several minutes. For example, on data set C,
the regression progress takes 2.85 seconds, while on data
set P, the regression progress takes 595.78 seconds when
using the same parameter set. When searching for the
parameter sets using grid search scheme, the time cost
depends on several factors: firstly, the size of the data set.
The larger the data set is, the longer it will take. Secondly,
the range of the parameter sets, which was assigned by the
user. As we use 5 fold cross-validation in search scheme,
the time of searching one set of parameters is about 5
times that of the regression using specified parameter sets.
Considering the fact that the time grows as the parameter
C becomes larger, actually, the time cost is in fact larger
than n x 5 x G, gepares Where n represents the number of
parameter sets been searched, g, gepar, FEPTESEN time COSE
when using one set of specific parameter set. So when the
data set is very large, the user has to search in a relatively
small range of the parameter sets, to balance the time cost
and the performance of SVR impute method.

Input coding scheme

In the present study, the input vectors of the SVR consist
of the (n - 1) columns in the profile, and the target output
is the prediction of the missing value in the matrix. For
example, in the expression matrix D when entry d, ; is
missing the remaining (n - 1) entries in the i-th gene
expression profile compose the input vector

v=d;, di,ZI""di,j-ll di,j+1f"'fdi,n] (11)

All the rows in the expression matrix with non-missing
values in the j-th position are used to compose the train-
ing set, which will be mapped into higher dimensions and
construct a model for regression; all the rows with missing
values in the j-th position were used to compose the test-
ing set. Because the SVR can estimate one missing value in
a row at one time, in the case of more than one missing
values occurred in one row, the following input coding
schemes can be employed, zero-imputing input coding,
row-average-imputing input, and orthogonal input.

Zero-imputing input coding scheme imputes the missing

values in the input vector with zeros. Row-average-imput-
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ing input coding scheme imputes the missing values in
the input vectors with the average value of the non-miss-
ing values in the row.

Orthogonal input coding scheme is one of the useful
input coding schemes those are widely used in machine
learning technology such as neural networks and support
vector machines. In recent years, it has been successfully
used in various fields in biology, such as prediction of
protein secondary structure [26], solvent accessibility
[27], etc. It is presented as follows. Each value in the input
vector is expended to two dimensions. The first dimen-
sion is the real value of the input vector, where the missing
value is imputed with zeros, and the second dimension is
a flag bit, where the missing value is set to be 1 and the
others are set to be zeros, thus the length of the input vec-
tors in orthogonal input coding scheme is expanded to 2
x (n-1). For example, let (x;, x,, x3, x4, Xs) denote an
expression profile with the length of 5, in which x, and x,
are the missing values. In the calculation of x,, the zero-
imputing input coding scheme, row-average-imputing
input coding scheme and orthogonal input coding
scheme obtain the input vectors of (xy, x5, 0, X5), (%1, X3,
aver, x5) and (x1, 0, x5, 0, O, 1, x5, 0), respectively, where
aver = (x; + x5 + Xx5)/3.
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