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Abstract

Background: ESTs are a tremendous resource for determining the exon-intron structures of
genes, but even extensive EST sequencing tends to leave many exons and genes untouched. Gene
prediction systems based exclusively on EST alignments miss these exons and genes, leading to
poor sensitivity. De novo gene prediction systems, which ignore ESTs in favor of genomic sequence,
can predict such "untouched" exons, but they are less accurate when predicting exons to which
ESTs align. TWINSCAN is the most accurate de novo gene finder available for nematodes and N-
SCAN is the most accurate for mammals, as measured by exact CDS gene prediction and exact
exon prediction.

Results: TWINSCAN_EST is a new system that successfully combines EST alignments with
TWINSCAN. On the whole C. elegans genome TWINSCAN_EST shows 14% improvement in
sensitivity and 13% in specificity in predicting exact gene structures compared to TWINSCAN
without EST alignments. Not only are the structures revealed by EST alignments predicted
correctly, but these also constrain the predictions without alignments, improving their accuracy.
For the human genome, we used the same approach with N-SCAN, creating N-SCAN_EST. On
the whole genome, N-SCAN_EST produced a 6% improvement in sensitivity and 1% in specificity
of exact gene structure predictions compared to N-SCAN.

Conclusion: TWINSCAN_EST and N-SCAN_EST are more accurate than TWINSCAN and N-
SCAN, while retaining their ability to discover novel genes to which no ESTs align. Thus, we
recommend using the EST versions of these programs to annotate any genome for which EST
information is available.

TWINSCAN_EST and N-SCAN_EST are part of the TWINSCAN open source software package
http://genes.cse.wustl.edu/distribution/download_TS.html.

Background has been sequenced. This approach can accurately predict

There are two major computational approaches to deter-
mining the exon-intron structures of genes: expression-
based and de novo. Expression-based systems predict that
a genomic nucleotide is exonic only if a transcript from it,
or from a homologous gene (or a corresponding protein),

genes whose transcripts have been sequenced and those
that are highly similar to sequenced transcripts. However,
its accuracy on genes that are not highly similar to
sequenced transcripts is much lower [1,2]. This is a signif-
icant limitation, since sequencing cDNA libraries typically
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produces complete cDNA sequences from only about 50-
60% of the genes in a genome. When genes that are par-
tially covered by ESTs are included, that number may rise
to 70-85%, depending on the depth of library sequencing
and the complexity of the organism. Genes that are
expressed at a low level or in a small number of tissues
tend not to be sequenced even after sequencing libraries
very deeply [3,4].

De novo gene prediction systems employ statistical models
to predict gene structures using the sequences of one or
more genomes as their only inputs. No cDNA sequences
or other expression data are needed, so de novo methods
can predict completely novel genes. However, they ignore
the cDNA sequences that are available. As a result, they
tend to be less accurate than expression-based methods
on genes for which full-length cDNAs are available.

There is a long history of efforts to use databases of
expressed sequences (ESTs, mRNAs, their conceptual
translations, and experimental protein sequences) to
enhance the accuracy of prediction systems that are based
primarily on de novo methods. Studies that present quan-
titative evaluations of the effects of using ESTs alone, with-
out using amino acid sequences from homologous genes,
have reported mixed results [5-7]. Using a HMM-based de
novo predictor, HMMGene, Krogh [7] reported no
improvement in predictions for Drosophila melanogaster.
Using GENIE, another HMM-based de novo predictor,
Reese and colleagues reported a modest increase in sensi-
tivity accompanied by a smaller decrease in specificity,
also on Drosophila [6]. The best results were reported by
Howe et al. [5]. Using GAZE, a generic evidence-combina-
tion framework, they obtained an increase in both the
sensitivity and specificity of predictions by GeneFinder (P.
Greene, unpublished) on Caenorhabditis elegans. Synthe-
sizing these studies, it seems that better results were
achieved by using a more stringent cutoff for similarity
between the EST and the genome (93% identity for HMM-
Gene, 95% for GENIE and GAZE). Better results were also
achieved by using alignments created by EST_GENOME
[8], a program designed to align ESTs with proper introns
bounded by GT-AG (GAZE), rather than alignments cre-
ated by BLASTN and then "fixed up" to make proper
exons and introns (HMMGene and GENIE). Finally, bet-
ter results were achieved on C. elegans, which has short
introns and relatively less alternative splicing, than on D.
melanogaster.

Another approach is to derive gene structures from a
weighted combination of ESTs with multiple gene predic-
tions, often including predictions from systems like
ENSEMBL that use cDNA and protein alignments. This
approach is exemplified by EuGene [9], Combiner [10],
and its descendent JIGSAW [11]. However, with the excep-
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tion of JIGSAW, none of the work described so far
includes evaluations on mammalian genomes, which
have long introns, many pseudogenes, and extensive alter-
native splicing. The JIGSAW publication includes evalua-
tion on selected genes and regions from the human
genome, but not on entire chromosomes.

The more successful of the methods outlined above work
in part by boosting the scores of predicted introns that
match intron gaps in EST alignments. For GENIE, the
boost is large, "effectively constraining the system to
ensure that the introns were correctly annotated according
to the EST/cDNA evidence" [6]. For GAZE, the boost is a
function of the EST alignment score: (%identity — 95) x
length [5]. In neither case, however, is the EST scoring sys-
tem trained automatically (Howe et al. reported that the
automatic training method they tried did not work very
well). Recently, several papers have reported success in
training parameters for use of EST alignments, including
EuGene [9], Combiner [10], and JIGSAW [11].

In this paper, we report on a new approach to integrating
information from EST alignments with an HMM-based, de
novo gene predictor. Rather than using fixed score boosts
for compatible predictions, our method learns the degree
to which a particular set of EST alignments is predictive of
correct gene structure. This predictive power depends on
the quality and quantity of the ESTs, the degree of alterna-
tive splicing, the alignment method, and the pre-process-
ing method for filtering out questionable alignments.
When used in combination with our state-of-the-art gene
prediction programs, TWINSCAN and N-SCAN, this sys-
tem can be automatically retrained to work well on both
C. elegans and human. Furthermore, accuracy on genes or
parts of genes without aligned ESTs is not compromised.
On the contrary, genes without ESTs are predicted more
accurately as a result of the constraints imposed by ESTs
aligned to neighboring genes.

Results

Model for exploiting EST alignments

Our method for exploiting EST alignment information is
very similar to the "conservation sequence" approach
TWINSCAN uses to exploit genomic alignments [12,13].
First, all available EST sequences are aligned to the
genome and alignments that fail certain quality criteria
are filtered out (see Methods). Each nucleotide of the
genome sequence is then assigned one of three symbols: I
if it falls in an intron of all overlapping EST alignments, E
if it falls in the exon (aligned region) of all overlapping
EST alignments, and N if there is a disagreement among
overlapping EST alignments or there are no overlapping
EST alignments (Figure 1). The result is a sequence with
one letter for each base of the input genome which repre-
sents much of the useful information in the EST align-
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Construction of ESTseq from EST alignments. Each row of purple bars represents the aligned blocks of one EST, while the thin
lines connecting the bars represent implied introns. The ESTseq representation contains an "E" for each base that is indicated
as exonic (red), an "I' for each base that is indicated as intronic (yellow), and an "N" for each base that lies outside of all the
alignments (gray). Regions that are indicated as intronic by some alignments and exonic by others are also labeled "N".

ments. We call this representation ESTseq by analogy to
the conservation sequence or conseq that TWINSCAN uses
for genomic alignments. Representing regions of disagree-
ment among alignments in the same way as regions where
no ESTs align allows the gene finder to rely on intrinsic
information in the genome sequence when ESTs are
inconclusive.

The EST sequence can be exploited by any HMM-based
gene predictor. Each state of the HMM is required to emit
both a target genome sequence and the corresponding
ESTseq. When TWINSCAN uses ESTseq it emits ESTseq
symbols, target genome bases, and conservation sequence
symbols. Similarly, N-SCAN [14,15] emits ESTseq sym-
bols together with columns of multi-genome alignments.
All states must have probability models for the emission
of ESTseq symbols, so these symbols can influence the
likelihoods of functional annotations such as splice donor
and acceptor, exon, intron, translation initiation and ter-
mination site, and so on. For example, the likelihood of
emitting the I symbol from intron states should be greater
than the likelihood of emitting I from exon states. Param-
eters for these models are estimated from examples of
known gene structures together with their ESTseqs. See
Methods for the ESTseq models we used in each HMM
state.

Accuracy evaluation: C. elegans

TWINSCAN_EST has been tested on two worm data sets.
The first is the whole C. elegans genome (version WS130).
C. briggsae version cb25.agp8 is used as the informant
database. The results show 14% improvement in sensitiv-
ity and 13% in specificity in predicting exact gene struc-
tures compared to TWINSCAN 2.03, which does not use
EST alignments (see Figure 2). TWINSCAN 2.03 was, in
turn, significantly more accurate than both FGENESH (v.

1, with C. elegans parameters v.1) [16,17] and GENE-
FINDER (release 980504, P. Green, unpublished), the two
most widely used ab initio gene prediction programs for
nematodes. This difference is due, in part, to the fact that
TWINSCAN uses comparison to the C. briggsae genome,
while the others do not [18]. (For a discussion of sensitiv-
ity and specificity estimates using incomplete annotation
sets, please see [13]).

The second test used the 2 Mb GAZE dataset, which was
created by concatenating the sequences of 325 genes
flanked by half the intergenic region to the closest known
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Figure 2

Results on the whole C. elegans genome (version WSI30)
using C. briggsae (version cb25.apg8) as the informant data-
base and C. elegans ESTs from dbEST. The sensitivities are
based on the 4,705 fully confirmed genes from WSI30 and
the specificities are based on those predictions that overlap
with fully confirmed genes.
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gene on each side [5]. C. elegans ESTs were downloaded
from dbEST (1/20/2005) [19], aligned to the GAZE
genomic sequence by using BLAT, and filtered for align-
ment quality (Methods). Both GAZE_est and
TWINSCAN_EST were run on the same genomic sequence
with the same EST alignments. The results show that
TWINSCAN_EST is more accurate than GAZE_est, espe-
cially for exact gene structure prediction (Figure 3).
TWINSCAN_EST has 73% gene sensitivity and 62% gene
specificity compared to GAZE_est's 61% and 58%.

Although TWINSCAN_EST shows substantial improve-
ment over previous systems when evaluated against fully
confirmed worm genes, these genes are more likely to
have aligned ESTs than a randomly selected gene. Thus, an
independent test is needed to determine how
TWINSCAN_EST would perform on genes with no aligned
ESTs. We carried out such a test by running it on the entire
genome with an empty EST database, so that no gene had
aligned ESTs. This resulted in slight improvements to sen-
sitivity and specificity in exact gene prediction compared
to predictions by TWINSCAN 2.03, which does not con-
sider the presence or absence of ESTs (Table 1). These
improvements may result from applying a slight score
penalty to exons and genes without ESTs - in this case all
exons and genes. Since the training set includes genes with
EST evidence, a region without EST alignment will be con-
sidered more probable outside a gene region than in a
gene region. Such a penalty would eliminate predicted
exons and genes with marginal scores, in effect filtering
out the lowest scoring predictions from TWINSCAN 2.03.
Since the lowest scoring predictions are mostly incorrect,
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Accuracy on GAZE merged data set. Both GAZE_EST and
TWINSCAN_EST used the same BLAT alignments of C. ele-
gans ESTs from dbEST (1/20/2005). Informant database for
TWINSCAN_EST is the C. briggsae genome (version
cb25.apg8). 305 of the 325 gene loci have at least one EST
alignment.
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this would improve accuracy. On the other hand, the
improvement in gene accuracy is small, and exon sensitiv-
ity does not improve, so it is safe to conclude that novel
genes with no ESTs are predicted with approximately the
same accuracy by TWINSCAN_EST and TWINSCAN 2.03.

The previous experiment in which all ESTs were deleted
from the database may yield an overly pessimistic assess-
ment of TWINSCAN_EST's accuracy on novel genes with
no aligned ESTs. It is possible that the presence of EST
alignments for some genes may improve the accuracy of
TWINSCAN_EST on the neighboring genes even when
those neighboring genes have no aligned ESTs. The intui-
tion is that certain kinds of mistakes, such as incorrectly
splitting a gene with an EST and joining part of it to a
neighbor without an EST, will become much less com-
mon. To test whether such indirect benefits actually exist,
we did a partial EST deletion experiment. All fully con-
firmed WS130 genes were divided into 10 groups at ran-
dom, each containing about 10% of the fully confirmed
genes. One group of fully confirmed genes was selected,
its ESTseq was masked with "N", and TWINSCAN_EST
was run on the entire genome. These steps were repeated
10 times. Each time, the ESTseq for a different 10% of the
confirmed genes was masked, so that the ESTseq for each
confirmed gene was masked in exactly one repetition. We
then computed the average accuracy statistics over the 10
runs for both the masked and unmasked genes. Results
are shown in Table 1. The gene sensitivity of
TWINSCAN_EST on the genes with masked ESTseq was
2.4% higher than TWINSCAN 2.03 and the specificity was
1.9% higher. In addition, exon and gene accuracy were
higher than TWINSCAN_EST with blank EST sequence,
indicating that the presence of ESTs for other genes did
indeed improve the accuracy of genes with no ESTs.

The previous experiments show TWINSCAN_EST's accu-
racy on genes with or without aligned ESTs. In practice,
many genes are partially covered by ESTs. To investigate
the effect of partial EST coverage, we did the following
experiment. ESTseqs were generated as in the
TWINSCAN_EST experiment for Figure 2. The ESTseq for
each fully confirmed WS130 gene was then N-masked
over a contiguous, randomly chosen 50% of its genomic
extent (see Methods). The predictions were evaluated on
all the confirmed genes. The gene sensitivity was 69%,
which is about halfway between the gene sensitivity of
TWINSCAN 2.03 (61%) and TWINSCAN_EST without
ESTseq masking (75%). The gene specificity is 67%,
which is about two-thirds of the way from that of TWINS-
CAN 2.03 (59%) to that of TWINSCAN_EST without EST-
seq masking (71%).
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Table I: Results for deletion experiment. The first column is for TWINSCAN 2.03 and the remaining 3 columns are for
TWINSCAN_EST. The second column is for the TWINSCAN_EST performance with empty ESTseq, i.e., all bases in ESTseqs are
'N's. For the third and fourth column, 10% of genes in the annotation were set to "N"s. The third column is for TWINSCAN_EST's
performance on the 10% of genes with masked ESTseqs and the last column is for the 90% of genes with unmasked ESTseqgs. Results
show that EST alignments improve the prediction accuracy and do not compromise the capability to predict novel genes where EST
alignments do not exist (column 2). Specificities are based on predictions that overlap with annotations by at least | bp.

TWINSCAN2.03 TWINSCAN_EST
Blank ESTseq 10% with ESTseq 90% with ESTseq
masked unmasked
Gene_sn 60.6 61.3 63.0 747
Gene_sp 58.6 59.8 60.5 71.5
Exon_sn 86.9 86.2 86.4 91.5
Exon_sp 79.5 80.8 8l.1 87.0
Accuracy evaluation: human sensitivity and 5% in gene specificity. On genes with a

TWINSCAN_EST and N-SCAN_EST were also tested on  spliced 5' UTR, N-SCAN_EST produced a 3.5% improve-
the human genome (NCBI Build 35). On this dataset,  ment in sensitivity and 1.4% in specificity as compared to
TWINSCAN_EST produced about 10% improvement in ~ N-SCAN without ESTs.

sensitivity and 3% in specificity in predicting exact gene

structures compared to TWINSCAN 2.03 (see Figure 4). N- ~ While this paper was in revision, a paper was published
SCAN_EST produced a 6% improvement in sensitivity  describing AUGUSTUS+, a new, trainable system capable
and 1% in specificity on exact gene structure level com-  of combining evidence from EST alignments with de novo
pared to N-SCAN. Approximately 36% of genes in our  gene prediction [20]. We compared the accuracy of N-
RefSeq-based annotation have a transcript with a spliced ~ SCAN_EST and AUGUSTUS+ by running them on human
5' UTR. For those that do, the sensitivity and specificity of =~ chromosome 22 using the same EST alignments (see
N-SCAN (without ESTs) is similar to its sensitivity and = Methods). Comparing the results to aligned RefSeq genes,
specificity on genes without a spliced 5'UTR. However, N- ~ N-SCAN_EST's sensitivity and specificity for predicting
SCAN_EST performs better on genes without a spliced  the exact ORFs were 47% and 24%, respectively. The com-
5'UTR than on those with a spliced 5'UTR by 3.5% in gene  parable numbers for AUGUSTUS+ using the same EST

alignments were 38% and 19%, respectively.

100 @ TWINSCAN2.03 Impact of training EST parameters
20 EL&V&I}%CAN_EST 852 One of the differences between the ESTseq approach and
80 CNSCAN_EST i most previous approaches is that our system can be
270 - trained, using known gene structures, to take advantage of
860 | 56 58 59 60 the unique characteristics of a particular set of EST align-
gso || ments to a particular genome. To test the effects of train-
Py 38 i ing on accuracy, we first performed cross-validation
£40 > || training for TWINSCAN_EST for human on human EST
330 7 B alignments and TWINSCAN_EST for C. elegans on C. ele-
20 1 B gans EST alignments (see Figure 5). Next, we swapped the
10 - = ESTseq parameters of the systems trained for human and
0 worm. The effect of training on accuracy was modest but
exactgene exactgene exactexon exactexon clear - gene sensitivity is greater when a system trained for
sensitivity  specificity  sensitivity  specificity worm ESTs is used on worm ESTs and a system trained for
Figure 4 human ESTs is used on human ESTs (Figure 5). Applying

Accuracy of TWINSCAN, TWINSCAN_EST, NSCAN and either one of the EST parameter sets to both species results

N-SCAN_EST on the human genome. For TWINSCAN and in lower accuracy. The same pattern of results is seen for
TWINSCAN_EST, the mouse genome sequence is used as gene specificity (data not shown).
the informant database. For NSCAN and N-SCAN_EST,

mouse, rat and chicken genomes are used as the informant Impact on an annotation pipeline using full length cDNA
databases. Human ESTs are from dbEST. For all methods, sequences
pseudo genes are masked out first [41]. A complete pipeline for predicting exon-intron structures

must give precedence to full length cDNA alignments over
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Trainability of ESTseq parameters. The human and worm
genes were each divided into two halves, one for training and
one for testing. ESTseq parameters were estimated sepa-
rately from half the human genes and half the worm genes.
Each set of parameters was then tested separately on the
other half of the human genes and the other half of the worm
genes. The same models were used for both human and
worm ESTseqs (5th-order Markov Models for the coding
regions, UTRs, Introns and intergenic regions, 43-base-long
2nd-order WAM for splice acceptor sites and 9-base-long
2nd-order WAM for the splice donor sites).

all other sources of evidence. The degree to which such a
pipeline relies on ESTs and de novo gene prediction
depends on how extensive is the set of available full
length cDNAs. For example, we recently built a system in
which the first stage is aligning full-ORF cDNA sequences
to their native locus using our new cDNA-genome aligner,
Pairagon [21]. The CDS GenBank annotations of the
cDNA sequences were used to convert these alignments
into gene structures. Where there is no full-length cDNA
to align, we used N-SCAN_EST together with ESTseq cre-
ated from BLAT alignments. This system was independ-
ently evaluated on the human ENCODE regions as part of
the recent EGASP community evaluation [22,23] and
found to be comparable in accuracy to the ENSEMBL
pipeline (slightly better by most measures).

In order to investigate the contribution of N-SCAN_EST to
the Pairagon+N-SCAN_EST pipeline, we compared the
sensitivity and specificity of Pairagon's cDNA alignments
alone to that of the entire pipeline with N-SCAN_EST, at
various levels of cDNA coverage. Accuracy at the exon
level is plotted in Figure 6 (gene level results are qualita-
tively similar). The specificity of both systems is inde-
pendent of cDNA coverage. As expected, including N-
SCAN_EST predictions decreases specificity somewhat.
However, including N-SCAN_EST predictions increases
the sensitivity approximately as much as it decreases spe-
cificity, even at the maximum level of cDNA coverage,
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Figure 6

Accuracy of Pairagon cDNA alignments alone compared to
Pairagon+N-SCAN_EST as a function of the number of
cDNAs used. A total of 445 cDNA:s aligned to the 31 human
ENCODE test regions. The x axis shows the percentage of
these 445 that were used. From left to right, 5% of unused
cDNAs were randomly picked and added to those used pre-
viously.

resulting in an even trade-off. As cDNA coverage
decreases, the tradeoff favors the combined system more
and more. The sensitivity of the cDNA-only system
declines linearly with the number of input cDNAs,
whereas the sensitivity the combined system remains high
even when cDNA coverage is very low.

Discussion

Our method for integrating information from EST align-
ments with an HMM-based gene predictor has four key
features:

1) It can be trained to take advantage of the statistical
characteristics of specific sets of EST alignments.

2) It substantially improves the accuracy (both sensitivity
and specificity) of gene prediction on genes that have
aligned ESTs.

3) It improves accuracy on genes that do not have aligned
ESTs when they are interspersed with genes that do.

4) It predicts genes at least as accurately as the pure-HMM-
based predictors when no ESTs align to the target genome.

Thus, the use of EST information comes at no cost.
TWINSCAN_EST and N-SCAN_EST have the key benefit
of a de novo gene finder — namely, the ability to find com-
pletely novel genes without sequence similarity to known
genes — yet they are more accurate on genes for which EST
information is available. Compared to other de novo gene
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finders, TWINSCAN is the most accurate program availa-
ble for nematodes [18]. Likewise, N-SCAN is the most
accurate de novo predictor available for mammals as meas-
ured by exact CDS gene prediction and exact exon predic-
tion [15,18,24]. Other programs are either more specific
but less sensitive (EXONIPHY) [25] or more sensitive but
less specific (AUGUSTUS-dual, Stanke, unpublished) in
predicting individual coding nucleotides. Thus, we would
recommend using the EST versions of these programs on
any genome for which there is EST information.

We also showed that combining N-SCAN_EST with a
state-of-the-art system for aligning full length cDNAs
yields a pipeline whose exon-prediction accuracy shows
relatively little dependence on the number of available
cDNA sequences. Thus, low cost EST sequencing can be
substituted for expensive sequencing of full length cDNAs
with limited accuracy reduction.

The real goal of gene prediction is not to find known genes
but to find novel genes that can be verified experimen-
tally. N-SCAN_EST has proven very useful in this regard.
As part of an ongoing project we are using RT-PCR and
sequencing to obtain novel human cDNA sequences. In
these experiments, we target predicted introns with at least
one splice site that is not in a region previously known to
be transcribed - that is, not in an intron or exon defined
by the alignment of any human mRNA or EST. By target-
ing predictions from N-SCAN_EST, we have verified more
than a thousand novel introns. Thus, in addition to its
application for annotating genomes with few full length
cDNAs, N-SCAN_EST is also useful for well-studied
genomes like that of Homo sapiens.

Conclusion

TWINSCAN_EST and N-SCAN_EST are more accurate
than TWINSCAN and N-SCAN, while retaining their abil-
ity to discover novel genes to which no ESTs align. Thus,
we recommend using the EST versions of these programs
to annotate any genome for which EST information is
available.

Methods

ESTseq models for each state

In our implementation, the ESTseq models are homoge-
neous Markov chains for UTR, intron, and coding states,
and position-specific Markov chains (sometimes called
WAMs) for donor and acceptor site models.

Procedure for masking 50% of the ESTseq for each gene

Let [0, 1] stand for a gene region. A random number a in
the range [0, 1] is generated, then all ESTseq bases in the
region [a, a+0.5] were masked with "N" if a< = 0.5 or bases
in region [a, 1] U [0, a-0.5] were masked with "N" if a>0.5.
As a result, at least 50% of each gene region was not cov-
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ered with any EST alignment. TWINSCAN_EST was then
run on the entire genome with these masked ESTseqs.

Sequences

The C. elegans genome sequence version WS130 was
downloaded from the WormBase website [26-28]. The C.
briggsae genome sequence version cb25.agp8 was down-
loaded from the Sanger Institute [29]. Approximately
300,000 C. elegans ESTs were downloaded from dbEST (1/
20/2005 version) [19,30]. The genome sequence for the
GAZE dataset was downloaded from the GAZE website
[31]. The informant database (C. briggsae) and EST data-
base for the GAZE dataset were the same as for the whole
C. elegans genome WS130.

Human ESTs were downloaded from dbEST on January
20t 2005. The informant database for TWINSCAN is the
mouse genome [32] Build 33 (mm5 on the UCSC
browser). Other informant datasets for N-SCAN include
mouse, rat [33] (UCSC rn3) and chicken [34] (UCSC
Galgal2) genomes [14,15].

Genome alignments

For worm datasets, conservation sequences were gener-
ated from WU-BLAST [35] alignments of the whole C. ele-
gans genome against the C. briggsae genome. First, C.
briggsae sequences longer than 150 kb were cut into 150
kb sequences with 20 kb overlap, and then the Blast data-
base was generated from all sequences after they had been
masked by NSEG with default parameters. BLASTN
parameters were "M =1N=-1Q=5R=1B=10000V =
100 Icfilter filter = seg filter = dust topcomboN = 1".

The human chromosomes were split into 1 Mb fragments
first, and then conservation sequence was constructed for
each fragment.

ESTseqs

C. elegans ESTs were aligned to WS130 by using stand
alone version 25 of BLAT [36]. ESTseqs were generated
using only those EST alignments in which the number of
matches was at least 95% of the length of the entire EST,
including unaligned portions. These alignments were pro-
jected onto genomic sequence to generate ESTseq as
shown in Figure 1. For the GAZE dataset, similar proce-
dures were done.

Human ESTs were aligned to the whole human genome
by BLAT. An alignment was included only if its number of
matches was at least 98% of the length of the entire EST.
Those selected alignments were projected to the genomic
sequence to generate ESTseqs as shown in Figure 1. The
ESTseq of each chromosome was then split into 1 Mb frag-
ments corresponding to the genomic sequences.
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ESTseq parameter estimation

ESTseq parameter estimation is similar to conservation
sequence parameter estimation. Given ESTseqs and the
corresponding gene structures, distinct sets of parameters
are estimated for the coding regions (excluding transla-
tion initiation and termination signals), UTRs, intron
states, donor and acceptor splice site signals, and transla-
tion initiation and termination  signals. For
TWINSCAN_EST on C. elegans, 1st-order Markov chains
were used for coding, UTR, intron states, and the transla-
tion initiation and termination signals. A 43-base-long,
2nd-order WAM was used for acceptor splice site signals
and 9-base-long, 2nd-order WAM was used for donor
splice site signals. Regions between 1000 bases and 150
bases upstream of the start of translation and downstream
of the stop of translation were used as intergenic regions.
Intergenic regions' ESTseqs were used as the null model
for each state.

For N-SCAN_EST on human, the single 5' UTR state in
TWINSCAN is replaced by four 5' UTR states. Those states
are: a) unspliced UTR from transcription start site (TSS) to
the translation start site; b) initial noncoding exon (from
the TSS to the splice donor); ¢) internal noncoding exon
(from acceptor to donor) and d) the noncoding segment
of the exon from acceptor splice site to the start of transla-
tion [see 14 for details]. 5th-order Markov models were
used for all ESTseq models except the acceptor and donor
splice site models, which were the same as for worm.

When 5t order models are used for the worm data, as for
human, all accuracies are within a fraction of a percent of
those reported in this paper.

For training and evaluation purpose, human RefSeq
mRNAs excluding the predicted XM_ accessions [37-39],
aligned to human genome Build 35/hgl7 were down-
loaded from the UCSC genome browser [40]. The RefSeq
annotation was then cleaned by removing genes with in
frame stop codons. There were 17,798 transcripts remain-
ing, 17,120 of which contain UTR annotations. In order to
estimate the ESTseq parameters, single-gene ESTseqs were
cut out from the whole chromosome ESTseq with an addi-
tional 1000 bases on each end as intergenic regions.
Parameters were estimated from these single-gene ESTseqs
and the corresponding gene structures.

N-SCAN_EST and Augustus+ comparison on human
chromosome 22

In order to do a fair comparison to AUGUSTUS+, BLAT
alignments of all spliced human ESTs on human chromo-
some 22 (Build 35/hgl17) were downloaded from the
spliced human EST track in the UCSC genome browser
[40] on March 12%h, 2006. These EST alignments were
input into both Augustus+ and N-SCAN_EST. EST param-

http://www.biomedcentral.com/1471-2105/7/327

eters for N-SCAN_EST were estimated from the cleaned
RefSeq annotations on chromosome 1, 2, 20 and 21. EST
Parameters for Augustus+ were estimated by its author
from chromosome 21.

Result evaluation

For the WS130 dataset, TWINSCAN_EST's performance
was tested by 8-fold cross validation. The whole genome
was split into fragments of about 500 kb. Each fragment
was randomly assigned to one of the eight groups.
TWINSCAN_EST was trained on fully confirmed genes
from seven of the eight groups and run on the fragments
from the eighth group to avoid training and testing on the
same data set. For TWINSCAN_EST on the GAZE data set,
no cross validation was applied. Parameters were esti-
mated from all fully confirmed genes of WS130.
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