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Abstract
Background: Quantitative descriptions of amino acid similarity, expressed as probabilistic models
of evolutionary interchangeability, are central to many mainstream bioinformatic procedures such
as sequence alignment, homology searching, and protein structural prediction. Here we present a
web-based, user-friendly analysis tool that allows any researcher to quickly and easily visualize
relationships between these bioinformatic metrics and to explore their relationships to underlying
indices of amino acid molecular descriptors.

Results: We demonstrate the three fundamental types of question that our software can address
by taking as a specific example the connections between 49 measures of amino acid biophysical
properties (e.g., size, charge and hydrophobicity), a generalized model of amino acid substitution
(as represented by the PAM74-100 matrix), and the mutational distance that separates amino acids
within the standard genetic code (i.e., the number of point mutations required for interconversion
during protein evolution). We show that our software allows a user to recapture the insights from
several key publications on these topics in just a few minutes.

Conclusion: Our software facilitates rapid, interactive exploration of three interconnected topics:
(i) the multidimensional molecular descriptors of the twenty proteinaceous amino acids, (ii) the
correlation of these biophysical measurements with observed patterns of amino acid substitution,
and (iii) the causal basis for differences between any two observed patterns of amino acid
substitution. This software acts as an intuitive bioinformatic exploration tool that can guide more
comprehensive statistical analyses relating to a diverse array of specific research questions.

Background
Molecular biology has made great progress in observing
and quantifying the patterns by which amino acids
exchange for one another within protein sequences over
time. A key motivation here has been to create amino acid

substitution matrices (such as the PAM and BLOSUM
matrix families), which lie at the heart of mainstream bio-
informatics procedures, from algorithms that determine
whether [1] and how exactly [2] two proteins are homol-
ogous, to those that predict protein tertiary structure by
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comparison with known folds [3]. However, these matri-
ces represent generalized patterns of change "averaged"
across all proteins: although they typically encompass the
idea that patterns of substitution will vary with evolution-
ary distance, other systematic sources of variation are
overlooked. An increasing literature supports the idea that
this generalization may compromise the sensitivity of
sequence comparison for various specialized subsets of
proteins (e.g., for particular protein families [4-8], or for
genomes that have evolved under unusual mutation
biases or selection regimes [9-11]). Thus a worthy chal-
lenge is to seek the underlying ontology that can link indi-
vidually derived, specialized models of amino acid
substitution into a common framework: if we can ulti-
mately replace generalized patterns of observed change
with a flexible, quantitative model of amino acid substitu-
tion, then this offers significant potential to increase the
sophistication of standard bioinformatics procedures.
Such research may in fact be viewed as a subset of current
efforts to find a general, chemical ontology for bioactivity
(e.g., [12-14]) where researchers face the same challenge
of unifying diverse observations into a model that predicts
molecular interactions from first principles.

In this context, it has long been understood that amino
acid substitution matrices reflect a combination chemical
and evolutionary factors: most intuitively the biophysical
properties (known within chemical disciplines as "molec-
ular descriptors") of the amino acids [15,16] and the
mutational distance of their encodings within the genetic
code [5,17,18]. However, establishing accurate, quantita-
tive connections between the outcomes of molecular evo-
lution and amino acids' molecular descriptors remains a
complex issue under active research (e.g., [19-21]).

In this context, Nakai et al. created an innovative database,
the AAindex [22], comprising both amino acid substitu-
tion matrices (20 × 20 matrices in which each element
reflects some measure of the exchangeability of a pair of
amino acids) and amino acid indices (vectors of 20 ele-
ments, each element being a value that describes some
physiochemical property such as size or hydrophobicity,
for one of the twenty amino acids encoded by the stand-
ard genetic code). In a later publication that expanded this
database, Tomii and Kanehisa [23] suggested procedures
for correlating any amino acid molecular descriptor with
an observed exchange rate (e.g., substitution matrix) and
for clustering indices together by similarity.

This latter technique of index clustering, is especially use-
ful when exploring the relationship between indices,
given that properties of widespread interest have often
been measured in many different ways by different
researchers. (For example, the latest version of the AAin-
dex database [24] contains 29 different measurements of

a property that contains the term "hydrophobicity" in its
description.) Moreover, this comparison allows easy visu-
alization of non-intuitive correlations (e.g., hydrophobic-
ity and volume). The authors applied similarity-based
methods to their AAindex database to build a minimum
spanning tree: a graph-theoretic structure that connects dis-
crete elements together based on similarity, by minimiz-
ing the overall sum of the distances of the direct
connections. The result is a data structure in which ele-
ments are grouped together based on similarity (a detailed
description and justification is given in the work of Tomii
and Kanehisa who first applied this methodology to visu-
alizing amino acid similarity [23]). This minimum span-
ning tree showed the underlying structure (clustering) for
the 402 indices of their database. Since this time, numer-
ous further indices and matrices have been developed:
some have been incorporated into updates of the AAin-
dex, while others remain isolated in the scientific litera-
ture (e.g., [10,25]).

In this context, we have developed free, user-friendly,
publicly available web-based software that enables
researchers to repeat and extend the ideas of Nakai et al.,
[22] and Tomii and Kanehisa [23] using interactive data
visualization. We thus present the Amino Acid Explorer, a
web tool that facilitates quantitative exploration of simi-
larity between physiochemical properties of amino acids
and their evolutionary dynamics. Our tool allows users to
explore the similarity between any of the 83 matrices and
any subset of the 494 indices housed by AAindex version
6.0, and to include any custom index or matrix (e.g., from
recent scientific literature or from unpublished research,
as a matrix derived from an alignment of proteins in a par-
ticular functional class, or an index derived by combining
several physiochemical properties). We have embedded
this analysis tool within a comprehensive web context:
both a moderated user forum http://www.evolving
code.net/forum/viewforum.php?f=24 in which to discuss
problems, findings or questions and an open wiki http://
www.evolvingcode.net/
index.php?page=Amino_Acid_Indices in which the com-
munity of those researching the interface of biochemistry
and protein evolution may contribute their knowledge.

Implementation
Our web tool, which may be accessed at http://
www.evolvingcode.net:8080/aaindex/, comprises two
major parts: one client side, one server side. The client side
consists of the graphical interface that runs as a Java applet
within a user's browser. The server side (residing on http:/
/www.evolvingcode.net), is a web application that per-
forms all computations on the data, and is part of a larger
computational infrastructure created around UMBC
AAIndex database. Figure 1 shows an overview of our
tool's architecture. Additionally, a short paragraph
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describing UMBC AAIndex database is located at the end
of this section.

User interface and visualization
The user interface of our tool is a Java applet that runs in
a user's browser. It allows the user to (i) select any subset
of the AAIndex indices (or custom indices) to be clustered
using the minimum spanning tree method, (ii) choose an
appropriate distance calculation method (to be used dur-
ing the spanning tree computation), and (iii) choose a
matrix or matrices to compare with the indices of a span-
ning tree.

Specifically, having built a spanning tree, the application
can compute distances between all the indices in this tree
and a user defined matrix; it displays these distances by
shading the elements of the spanning tree with a color-
coded scale. Additionally, it can use a second color-coded

scale to display which of two user-defined matrices each
index of the spanning tree is closest to (in other words,
what makes these two matrices different from one another
in terms of the indices under consideration?).

Drawing the spanning tree
Graph drawing and visualization are currently open
research topics in computer science [26]. Although an
agreed method exists for creating the graph (calculating a
spanning tree), finding an optimal spatial positioning for
nodes and drawing edges in a readable way (e.g., grouping
nodes that are directly connected together, while mini-
mizing crossed edges) remain active areas of research. A
large number of different software packages implement a
variety of state-of-the-art graph drawing methods, which
differ significantly in speed, quality of the drawing, and
interactivity (i.e., allowing the user to influence the final
shape of the graph being drawn). Our visualization tool

Overview of Amino Acid Explorer ArchitectureFigure 1
Overview of Amino Acid Explorer Architecture.
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uses a slightly modified form of the open source-package
TouchGraph [27] to render the minimum spanning tree
that was computed server-side. (Modifications to the orig-
inal TouchGraph code are limited to changes that redefine
the default parameters for flexibility of the edges, and
minor modifications required to integrate the code into
our applet.) A full description of TouchGraph can be
found at their web site; in essence, it uses an iterative
"force-based layout" algorithm (in which nodes each
projects a force that repel other nodes, while edges act like
springs that can be compressed or stretched) to move,
though a series of incremental improvements, from a ran-
dom graph layout to an optimal representation. The
whole incremental process is visible, and the user can
intervene at any point by dragging nodes to locations that
seem to be better suited. In our application, this is most
likely to be useful when users request a spanning tree for
a large set of amino acid indices, under which conditions
the force-based layout may become stuck at a local opti-
mum, visible to the user as a representation in which one
or a few key edges cross one another.

Visualizing distances between a matrix and a set of indices
Our application represents the distances between matrices
and indices in two modes. In the first mode, each node in
the spanning tree (representing a single amino acid index)
is color-coded to represent its measured similarity to a sin-
gle, user-defined reference matrix. The color scale runs
from blue (most distant) to red (most similar). Distances
are measured as described below. The second mode (dif-
ferential mode) shows how two substitution matrices differ
in terms of the amino acid indices of a spanning tree. This
mode uses a color-coded scale to denote which of two
matrices is closest to each node (index). In the figures
shown here, the color scale is green (matrix 1) to brown
(matrix 2) so as to avoid any confusion with Mode #1
described above. The degree of color saturation denotes
the magnitude of the difference (i.e., strong colors indi-
cate that the two matrices are very different in terms of this
index).

Computations
All significant computation for this tool occurs on the
server-side, because it often involves most or all of the
data stored in the database (thus transfer to a client-side
applet could take prohibitive time for users with low-
bandwidth connections).

Computation of a minimum spanning tree
The software calculates a minimum spanning tree using
Prim's algorithm, as described by Cormen et al. [28]. Since
this algorithm minimizes the total sum of distances
between directly connected indices, the definition of dis-
tance here is of prime importance. Tomii and Kanehisa
[23] used a statistical correlation measure between two

indices (each is a vector of 20 numbers representing an
amino acid property). Our software allows users to
employ this metric, but also to explore another notion of
distance, namely Euclidean distance (calculating distance
between two indices as distance between two points in 20-
dimensional space). This approach is often taken to com-
pare normalized vectors in multi dimensional spaces [29].
More generally, our software allows users to restrict the set
of amino acids that are taken into account when calculat-
ing distance (e.g., it is possible to consider only hydro-
phobic amino acids, or only those encoded by GC-rich
codons), whichever metric of distance is being used.

Computation of distance between a matrix and a set of indices
In order to compute the distance between a matrix and a
set of indices, our software uses the correlation method
described by Tomii and Kanehisa [23]. This method first
converts each index (a vector of 20 values, one for each
amino acids) into a matrix by calculating the simple arith-
metic distance between each pair of amino acids, as
defined by the index. It then calculates the correlation
coefficient between these two matrices. While the Eucli-
dean distance method may be used to build a minimum
spanning tree of indices, which have been normalized to
facilitate direct comparison, this method would is inap-
propriate for matrix/index comparisons because matrix
values have not been normalized (i.e., matrix elements
may extend beyond the interval from 0 to 1 and thus
Euclidean distance between any one element of an index
and elements of a matrix would be misleading. Linear
normalization of matrix elements would itself be inappro-
priate since many matrices, such as the PAM series, com-
prise values that are expressed in logarithmic units).
Therefore, our software always uses the Tomii and Kane-
hisa method of simple correlation to compare a matrix
with an index. If the user has selected only a subset of the
20 amino acids for tree building, then calculations of dis-
tance between a matrix and the indices of a spanning tree
consider only the appropriate subset of matrix elements.

UMBC AAIndex database
We created the UMBC version of the AAIndex database as
a local version of the original AAindex data (created by
GenomeNet Japan [30]) to facilitate the manipulations
required by our interactive software. Specifically, our local
implementation converted all data of the original AAin-
dex to XML format, generated interfaces that enable pre-
cise local and remote access to all aspects of the database,
and normalized all amino acid index data.

XML is a standardized language that is designed to sim-
plify sharing of information among independently cre-
ated systems. In particular, it is easily readable by
machines (there are many code libraries that allow access
to XML data by programs written in almost any program-
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ming language), and thus facilitates conversions to other
languages, both to formats that are intended to be read by
humans (e.g., web pages or PDF files) and to other com-
puter formats. Our UMBC AAIndex database allows direct
user access via internet either in "raw" form (plain XML
data) or transformed to a web page that is designed to be
easily read by a human. In the former capacity, our imple-
mentation of this database has been designed for simple
access by either programs residing on our server, or by
simple HTTP requests from remote machines. When
bandwidth for data transfer is an issue for some third-
party users, our architecture also allows deployment of
programs directly at the server for a more direct access.
Both of these latter points reflect our aim to facilitate
other researchers who would like to expand and improve
the functionality we offer for the AAindex data.

The indices in the database have been normalized by lin-
early scaling all the values of each index from 0 (the small-
est value of the original index) to 1 (the greatest value of
the original index). This simplifies and makes more intu-
itive the comparison of values between different indices,
which may originally have had values expressed using dif-
ferent units. (Note that this normalization does not influ-
ence the results obtained by the correlation coefficient
method used by Tomii and Kanehisa [23], which may be
reproduced exactly by our software in a matter of sec-
onds.)

Results
Here we present three simple, example analyses to illus-
trate the types of exploration that our software allows.
Each illustrates a conceptually different question that the
tool reduces to a simple "point and click" exercise. We
have chosen to focus on the relationship between bio-
physical properties of amino acids, patterns of molecular
evolution, and the structure of the standard genetic code.
However, it would be trivial to find an equivalent set of
example analyses that focused on protein folding or
homology searching. Indeed, our visualization software
can be used to investigate any area of bioinformatics that
builds on understanding how amino acids' molecular
descriptors influence the patterns by which amino acids
substitute for one another during evolution.

In Figure 2, we show an analysis (taking approximately 40
seconds to produce) in which we build a minimum span-
ning tree of indices relating to amino acid size, charge,
and hydrophobicity. Interestingly, while measures of
charge and size form coherent units (boxes A and B
respectively), the more numerous measures of hydropho-
bicity form three major branches. Notably, index 388,
Polar Requirement [31], is a measure of amino acid polar-
ity that has been used extensively in developing evidence
for the idea that the pattern by which amino acids were

assigned to codons within the standard genetic code
results from natural selection to minimize the change in
amino acid hydrophobicity caused by point mutations
[32-35]. Although this minimum spanning tree empha-
sizes the legitimacy of treating Polar Requirement as a
measure of hydrophobicity (its authors originally intro-
duced the metric as an estimate of stereic affinities
between nucleotides and amino acids [36]), the tri-partite
spanning tree for the concept of hydrophobicity illustrates
the potential dangers of over-emphasizing any one meas-
ure of hydrophobicity. In this context, it is helpful to note
that a second "branch" of amino acid hydrophobicity
measures includes Kyte and Doolittle's [37] "hydropathy"
(index 151) which is also strongly reflected by the codon
assignments of the standard genetic code [32].

In Figure 3, we show a second analysis (taking approxi-
mately 5 seconds to produce, given the tree of Figure 2) in
which we measure the similarity of each index in our orig-
inal minimum spanning tree to a classic amino acid sub-
stitution matrix: the PAM 74–100 [5]. Here we see that
generally, measures of amino acid hydrophobicity corre-
late well with observed patterns of amino acid substitu-
tion, though interestingly, Polar Requirement is by no
means the strongest of these (an observation pertinent to
the debate over cause and effect of hydrophobicity as a
dominant explanatory variable of generalized amino acid
substitution patterns [38,10]). Amino acid volume shows
some correlation with substitution patterns, but charge
(as measured by these indices) is by far the least related
property. This provides a quick, empirical justification for
the general patterns predicted, for example, by Grantham
[4]. It also matches analyses of which fundamental amino
acid properties are reflected within the codon assignments
of the standard genetic code [32,37].

In Figure 4, we show a further analysis (taking approxi-
mately 10 seconds in total to produce, given the tree of
Figure 1) that explores how the PAM74-100 matrix differs
from Fitch's matrix of "mutational distance between
amino acids within the standard genetic code" [6] in
terms of amino acid size, charge and hydrophobicity. We
find that in general, measures of hydrophobicity and vol-
ume are closer to the PAM matrix (i.e., are more correlated
with observed patterns of amino acid substitution),
whereas the small cluster of amino acid indices relating to
charge correlate more strongly with the genetic code based
matrix. On a simple level, this quick analysis shows that
the standard genetic code does indeed contain an element
of non-random codon assignments with respect to amino
acid charge, as reported in an erratum by Haig and Hurst
[40] that replaced their initial rejection of such a link [32].
At a deeper level, these results are germane to debates over
the flow of causality that links amino acid physiochemical
properties to observed patterns of amino acid substitution
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within proteins – the mainstream view is that physio-
chemical properties dominate the pattern by which
amino acids substitute for one another, particularly over
large stretches of evolutionary time [5]. However, there
has been some debate as to whether (and to what extent)
such patterns can be caused by neutral evolution that sub-
stituted amino acids based on their mutational proximity
within the standard genetic code, given that the code is
non-randomly organized with respect to key amino acid
properties [10,41,38]. Our quick analysis indicates that
physiochemical considerations really are, in fact, more
important to long-term protein evolution than can be
explained by codon assignments (in that the physiochem-
ical properties are more strongly correlated with observed
substitution patterns than with mutational distance

within the genetic code; i.e., physiochemical similarity
comes to dominate patterns of substitution as evolution
proceeds).

This same feature of the AAIndex Explorer tool could
equally well be used to quickly visualize which properties
(and which amino acids) are responsible for the differ-
ence between any two substitution matrices (e.g., between
a "generalized" or global model of amino acid substitu-
tion, as found in a PAM or BLOSUM matrix, and any
observed pattern of interchange within a specific protein
family or phyletic lineage).

A minimum spanning tree of size, charge and hydrophobicity for the 20 amino acids of the standard genetic codeFigure 2
A minimum spanning tree of size, charge and hydrophobicity for the 20 amino acids of the standard genetic 
code. Specifically, this tree is built from the 67 amino acid indices that contain the words "hydrop" and/or "polar," "size," "vol-
ume," "charge," and "electr" as part of their description. This includes most of the indices that relate to the general concepts of 
amino acid size, charge, and hydrophobicity. Boxes A and B represent "natural" clusters formed by the minimum spanning tree 
of charge and size, respectively.
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Conclusion
In this paper, we present software that facilitates rapid,
interactive exploration of data pertaining to three inter-
connected topics: (i) the multidimensional molecular
descriptors of biochemical properties for the twenty pro-
teinaceous amino acids, (ii) the correlation of these bio-
physical measurements with observed patterns of amino
acid substitution (i.e. substitution matrices), and (iii) the
causal, biocehmical basis for differences between any two
observed patterns of amino acid substitution. This soft-
ware acts as an intuitive bioinformatic exploration tool
that can guide more comprehensive statistical analyses
relating to a diverse array of specific research questions.

Availability and requirements
Project name: Amino Acid Explorer

Project home page: http://www.evolvingcode.net:8080/
aaindex/tools/

Operating system(s): Platform independent

Programming language: Java

Other requirements:

• Use via EvolvingCode's website

The minimum spanning tree recolored to reflect distance to a PAM matrixFigure 3
The minimum spanning tree recolored to reflect distance to a PAM matrix. Specifically, the minimum spanning tree 
of size, charge, and hydrophobicity (Figure 2) is recolored to indicate the similarity of each amino acid index to the PAM74-100 
amino acid substitution matrix [5].
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❍ Web browser (tested with Internet Explorer, Netscape
and Mozilla under Windows and Linux, Safari under Mac
OS X 10.3.9)

❍ Java 1.4.2 plug-in for the web browser (or higher ver-
sion)

• Full installation on an independent server

❍ Java 1.4.2 plug-in for the web browser (or higher ver-
sion) on the client side

❍ JDK 1.4.2 environment on the server

❍ XML Database compliant with XML:DB API (tested with
eXist database)

❍ Servlet Web Container matching Servlet API 2.4 specifi-
cations (tested with Tomcat 5.0.28)

❍ Xalan XSLT processor

License: Apache-style open source license

Any restrictions to use by non-academics: None

Authors' contributions
BB created the local implementation of the AAindex data-
base, including XML schemas, coded the spanning tree

The minimum spanning tree recolored to show each index's similarity to one of two substitution matricesFigure 4
The minimum spanning tree recolored to show each index's similarity to one of two substitution matrices. Spe-
cifically, the spanning tree of size, charge, and hydrophobicity (Figure 2) is recolored to indicate whether each amino acid index 
is more highly correlated with the PAM74-100 amino acid substitution matrix (green) or a matrix of amino acids' proximity 
within the standard genetic code [8] (brown).
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