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Abstract

Background: A complete understanding of the regulatory mechanisms of gene expression is the
next important issue of genomics. Many bioinformaticians have developed methods and algorithms
for predicting transcriptional regulatory mechanisms from sequence, gene expression, and binding
data. However, most of these studies involved the use of yeast which has much simpler regulatory
networks than human and has many genome wide binding data and gene expression data under
diverse conditions. Studies of genome wide transcriptional networks of human genomes currently
lag behind those of yeast.

Results: We report herein a new method that combines gene expression data analysis with
promoter analysis to infer transcriptional regulatory elements of human genes. The Z scores from
the application of gene set analysis with gene sets of transcription factor binding sites (TFBSs) were
successfully used to represent the activity of TFBSs in a given microarray data set. A significant
correlation between the Z scores of gene sets of TFBSs and individual genes across multiple
conditions permitted successful identification of many known human transcriptional regulatory
elements of genes as well as the prediction of numerous putative TFBSs of many genes which will
constitute a good starting point for further experiments. Using Z scores of gene sets of TFBSs
produced better predictions than the use of MRNA levels of a transcription factor itself, suggesting
that the Z scores of gene sets of TFBSs better represent diverse mechanisms for changing the
activity of transcription factors in the cell. In addition, cis-regulatory modules, combinations of co-
acting TFBSs, were readily identified by our analysis.

Conclusion: By a strategic combination of gene set level analysis of gene expression data sets and
promoter analysis, we were able to identify and predict many transcriptional regulatory elements
of human genes. We conclude that this approach will aid in decoding some of the important
transcriptional regulatory elements of human genes.
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Background

With the genome sequences of many organisms com-
pleted, revealing the regulatory mechanisms of gene
expression is the important aspect of genomics [1]. Recent
innovative technologies such as microarray and chroma-
tin immunoprecipitation combined with chip (ChIP -
CHIP), and the whole genome sequencing of many organ-
isms are producing enormous amounts of data that are
useful in elucidating the transcriptional regulatory mech-
anisms of genes. Whole genome sequences provide infor-
mation on the cis-acting regulatory elements of each gene.
Gene expression data provide information on how the
expression of each gene changes in a given condition, and
the combination of chromatin immunoprecipitation
(ChIP) with chip technology provides genome wide bind-
ing information concerning a transcription factor [2].

Many bioinformaticians have developed methods and
algorithms for predicting transcriptional regulatory mech-
anisms from sequence data and gene expression data [3-
6,8-12]. In one branch, a comparative sequence analysis
of noncoding regulatory elements has helped to find new
regulatory elements within many genes. New motifs have
been discovered from evolutionarily conserved regions
[13], from a list of co-regulated genes [14], or a list of
functionally related genes [15,16]. Others have developed
diverse algorithms that combine diverse sources of data to
predict transcriptional regulatory mechanisms. To men-
tion a few, Bussemaker et al. used a linear model to com-
bine gene expression data with putative regulatory motifs
and predicted significant regulatory elements [6]. Beer et
al. [12] used probabilistic modeling in conjunction with
diverse gene expression data and showed that regulatory
elements can successfully predict the expression of certain
genes. Bar-Joseph et al., and Gao et al. combined binding
data with gene expression data to identify regulatory net-
works [7,9]. Others have inferred transcriptional elements
by correlating the amount of transcription factor itself and
its target genes [5,8,10].

However, most of above mentioned studied involved
yeast which has much simpler regulatory networks than
the human and has many genome wide binding data and
gene expression data under diverse conditions [2,8,9,12].
Studies of genome wide transcriptional networks of
human genomes are far behind those of yeast. A few stud-
ies reported on the development of tools that aids
researchers in identifying putative transcriptional regula-
tory elements from a given gene expression study, but are
not suitable for a meta-analysis of many gene expression
studies [11,17].

Here, we report on a new computational method in which
gene expression data analysis is combined with promoter
analysis to infer the transcriptional regulatory elements of
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human genes. Our method is similar to Gao et al.'s
approach in the use of correlation across multiple condi-
tions [9], but is different in that this method used the
composite expression of genes having the same predicted
TFBSs rather than binding data which are available for
only a few transcription factors in the human. The
method, although simple in concept and calculation, was
used to successfully identify many known TFBSs of genes
and to predict many putative TFBSs that are worthy of fur-
ther study.

Results

Algorithm

A flowchart of our algorithm is shown in Figure 1. Two
important aspects are the calculation of the composite
expression of genes having the same TFBS (referred to
herein as Z score) using gene sets of TFBSs (a collection of
genes having the same TFBS) as the first order analysis and
a second order analysis in which the correlation between
Z scores of gene sets of each TFBS and the fold-change val-
ues in gene expression for each gene over multiple micro-
array data sets is determined. The Z score is a normalized

[ Gene Expression Omnibus | [ TRANSFAC | [ DBTSS database |

L \ Matinspector /

‘ — ‘ Gene set analysis with gene sets of TFBS ‘

l

Matrix of fold-change values Matrix of Z scores (of TFBSs)
over many data sets over many data sets

\ '

Calculate correlation between fold-change values
and Z scores over many data sets

|

‘ Identify statistically significant TFBS for each gene ‘

Calculate fold-change values between
two groups from microarray data sets

Figure |

Schematic diagram of the procedures used in this study.
Gene expression data sets were retrieved from GEO.
Human promoters with experimentally verified transcription
start sites were retrieved from the DBTSS database and ana-
lyzed for TFBSs with the TransFac version 3.0 database using
the Matlnspector program. For each microarray data set, the
fold-change values between two experimental groups were
calculated and used in gene set analyses with gene sets of
TFBSs. This procedure was repeated over multiple data sets,
resulting in a matrix of fold-change values over multiple data
sets and a matrix of Z-scores over multiple data sets. The
correlations between fold-change values and Z-scores over
multiple data sets were calculated. Finally, statistically signifi-
cant TFBSs were identified for each gene.
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gene set enrichment score that describes the overall
behavior of a gene set in a microarray data set [18].

Analysis in one dataset

Given a microarray data set, there are two ways to infer
which TFBSs are important for the observed changes in
gene expression. One approach is to select genes that are
significantly changed and then identify over-represented
TFBSs among the promoters of those selected genes
[14,17]. The other approach is to use changes in whole-
genome expression and pre-defined gene sets of TFBSs to
identify candidate TFBSs [19]. We based our method on
this latter approach. To test whether our method could
correctly identify important TFBSs from microarray data
sets, we analyzed gene expression data for the response of
human macrophages to treatment with HIV-1 gp120 [20].
The infection of macrophages by HIV-1 induces the
expression of a variety of cytokines, chemokines, adhe-
sion molecules, and apoptosis-related genes [20,21].
Among the many transcription factors involved in this
response, NFkB is the most important [22]. Our analysis
of the statistical significance of the 190 TFBSs used in the
analysis showed that the NF«B binding sites (V$NFKB_C)
had statistically significant Z scores (Table 1), thus show-
ing that our approach could correctly detect important
TFBSs in a given data set, as has been done in other similar
approaches [19].

As another example of identifying TFBSs associated with
specific biological conditions, we analyzed gene expres-
sion data sets for normal tissue expression. We analyzed
the following data sets GDS181, GDS422-6, GDS596,
GDS1985-8, and GDS1096 downloaded from the GEO
site, and, as an example, show the result for GDS422-6
(Table 2) that contains expression profiles for 12 different
normal tissues obtained using the Affymetrix U95A plat-
form. To calculate tissue specific gene expression, we first
calculated the mean expression of all 12 tissues; then, for
each 12 tissues, we calculated the tissue specific gene
expression by subtracting the mean expression of 12 tis-
sues from the gene expression for each specific tissue. We

http://www.biomedcentral.com/1471-2105/7/330

proceeded as described above and identified a number of
TFBSs that are associated with specific tissues. To name a
few, TFBSs for hepatocyte nuclear factor-1 (HNF-1), HNF-
4, and COUP-TF were identified in the liver specific gene
expression profile, a TFBS for neuron restrictive silencer
factor (NRSF) was identified in the brain and spinal cord
gene expression profiles, and a TFBS for myocyte enhancer
factor 2 (MEF-2) was identified in the skeletal muscle gene
expression profile. Similar results were obtained when we
analyzed the GDS181, GDS596, GDS1985-8, and
GDS1096 data sets.

Analysis in multiple data sets

We next tested whether the second-order analysis
designed to observe a correlation between the fold-change
values in gene expression and Z scores of the TFBSs over
multiple data sets could be used to correctly identify
important regulatory elements of a gene. Two well-known
genes, IL8 and PCNA, are shown as examples (Figure 2).
IL8 encodes a chemokine that is induced in diverse cell
types in response to inflammation, mainly through the
activation and nuclear translocation of NFkB [23]. PCNA
is a cofactor of DNA polymerase delta that plays a role in
increasing the processivity of leading strand synthesis dur-
ing DNA replication and is mainly regulated by E2F1 tran-
scription factors [24]. The analysis of the fold-change
values of IL8 and the Z scores of TFBS V$NFKAPPABG65_01
over 127 independent data sets yielded a significant corre-
lation (r2=0.716, p< 2.2 x 1016, g < 1.9 x 10-12; Pearson
correlation test) (Figure 2A). The fold- change values of
PCNA and the Z scores of VS$E2F_01, the TFBS for E2F1
transcription factors, were also significantly correlated (12
=0.368,p<7.33 x 1014, q< 1.07 x 10-11) (Figure 2B). On
the contrary, the correlation between the fold change val-
ues of IL8 and the Z scores of the TFBS V$E2F 01 was
insignificant (Figure 2C). The correlation between the
fold changes of PCNA and the Z scores of
V$NFKAPPABG65_01 showed a modest significance (12 =
0.0616; p < 0.0049; q < 0.04) (Figure 2D). These data
show that it is possible to identify the main TFBS of a gene
by correlating the fold-change values of the gene and the

Table |I: Z-scores of TFBSs in an HIV-1 gp120 treated macrophage data set.

TFBS Z score p-value g-value
V$NFKB_C 3.508 0 0.012
V$GATAI_04 2,617 0.009 0.082
V$NFKB_Q6 2.379 0.017 0.114
V$NFKAPPAB_OI 2.177 0.029 0.169
V$NFI_01 2.148 0.032 0.176
V$NFKAPPAB65_01 2.131 0.033 0.177
V$TAXCREB_02 1.713 0.087 0.315
V$AP4_Q6 1.696 0.09 0.32
V$GATAI_0I 1.524 0.128 0.409
V$OCTI_02 1.428 0.153 0.467
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Table 2: Identification of TFBSs involved in tissue specific gene expression

TFBS_ID TFBS Tissue Z score p_value q_value
V$NRSF_01 NRSF brain 6.12 9.54E-10 1.62E-07
V$SRF_Qé6 SRF heart 4.63 3.68E-06 0.0007
V$SRF_C SRF heart 4.09 4.33E-05 0.0041 |
V$SRF_Ol SRF heart 3.74 0.0002 0.01151
V$MEF2_01 MEF-2 heart 3.47 0.0005 0.02441
V$HNFI_C HNF-1 kidney 3.93 8.54E-05 0.01623
V$HNFI_0l HNF-1 liver 7.89 2.89E-15 3.28E-13
V$GRE_C GR liver 4.85 1.22E-06 6.91E-05
V$HNF4_01 HNF-4 liver 4.39 I.15E-05 0.00043
V$HNFI_C HNF-1 liver 3.72 2.00E-04 0.00559
V$COUP_O0I COUP-TF, HNF-4 liver 3.5 5.00E-04 0.01059
V$API_C AP-| lung 4.13 3.64E-05 0.00682
V$NFKAPPAB65_01 NF-kB lung 3.66 0.0002 0.0233
V$API_Q6 AP-| prostate 3.67 0.0002 0.02802
V$MEF2_02 MEF-2 skeletal muscle 453 5.96E-06 0.00099
V$NRSF_01 NRSF spinal cord 3.87 0.0001 0.02026
V$IRFI_OlI IRF-1 spleen 3.99 6.70E-05 0.00936
V$NFKAPPAB65_ 01 NF-KB spleen 3.81 0.0001 0.00985
V$NFKAPPAB_OI NF-xB spleen 3.55 0.0004 0.01815
V$E2F_02 E2F thymus 4.65 3.29E-06 0.00043
V$CETSIP54_02 c-Ets-1 thymus 4.18 2.93E-05 0.00126
V$IRFI_OlI IRFI thymus 4.2 2.65E-05 0.00126
V$E2F_0I E2F thymus 4.09 4.39E-05 0.00142
V$CETSIP54_01 c-Ets-1 thymus 4.01 5.98E-05 0.00155
V$E2F_Q6 E2F thymus 3.74 0.0002 0.00396
V$NRF2_01 NRF-2 thymus 3.58 0.0003 0.00564
V$OCTI_07 Oct-1 thymus 3.7 0.0015 0.01993
V$OCTI_05 Oct-1 thymus 3.17 0.0015 0.01993
VSNFY_Qé6 NF-Y thymus 2.85 0.0043 0.04663
Z scores of TFBSs over multiple independent microarray =~ the overall matrix similarity was 0.98 for

data sets.

Selection of the optimal overall similarity cut-off value for
each Matinspector position weight matrix (PWM)

The reliability of predicting TFBSs in a promoter sequence
depends on the cut-off values of the overall similarity of
the position weight matrix (PWM). Less stringent cut-off
values yield more false-positive predictions but fewer
false-negative predictions. Most previous studies have
applied two or three different cut-off values (i.e., 0.8, 0.85,
and 0.9) to all TFBSs unequivocally. We addressed this
issue by applying a wide range of cut-off values for the
overall matrix similarity for each TFBS and then observed
the degree of correlation in multiple microarray data sets.
As expected, we found that the choice of cut-off values had
a significant effect on the overall performance of our algo-
rithm. Two examples, using the TFBSs
V$NFKAPPABP65_01 and V$ISRE_01, demonstrate this
point (Figure 3). When we varied the overall matrix simi-
larity from 0.7 to 1.0 in increments of 0.02, the correla-
tion coefficient was the highest when the cut-off value for

V$NFKAPPABG65_01 and 0.96 for V$ISRE_01. The opti-
mal cut-off value for each TFBS varied widely from 0.72
(i.e. V$P53_01) to 1.00 (i.e., VSCREB_01). The cut-off
values for all TFBSs used in this study and the number of
promoters predicted for each cut-off value is listed in
Additional file 2.

Estimation of the accuracy of TFBSs prediction by
comparing with known transcription regulatory elements
in TRED database

Our method predicted many TFBSs for each gene (8845
genes in the U95A data set and 12803 genes in the U133A
data set). The overall prediction rate was 21.4% (U95A)
and 21.5% among a total of 190 * 8845 TFBSs (U95A)
and 190 * 12803 genes (U133A) at a false discovery rate
(g-value) of 0.05. We estimated the accuracy of predicting
the TFBSs by a comparison of known transcriptional reg-
ulatory elements in the TRED database that contains gene
transcriptional regulation information including TFBSs
with available experimental evidence [25]. Among the
four levels of experimental evidence (known, likely,
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B. PCNA vs. VSE2F_01
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Patterns of correlation between the fold-change values and Z-scores of TFBSs over multiple data sets for IL8 and PCNA. a. Cor-
relation between the fold-change values for IL8 and Z-scores of VSNFKAPPAB65_01 over 127 microarray data sets. b. Corre-
lation between the fold-change values for PCNA and Z-scores of V$E2F_01. c. Correlation between the fold-change values for
IL8 and Z-scores of V$E2F_01. d. Correlation between the fold-change values for IL8 and Z-scores of VSE2F_0I. The Pear-

son's correlation coefficient was used to calculate the degree of correlation between the two arrays and the t-test was used to

evaluate the significance of the correlation (see Methods).

maybe, and predicted) in the TRED database, we used
only 'known' evidence that was validated by a literature
search [25].

Among 5004 known TFBSs in 1724 genes in the TRED
database, there were 2721 known TFBSs in 1366 genes in
the U95A platform and 2847 known TFBSs in 1450 genes

in the U133A platform. We applied a t-test to each corre-
lation coefficient calculated in our analyses to infer the
significance of each TFBS prediction and applied the false
discovery rate method to adjust the p-values produced in
multiple hypothesis testing. A g-value below 0.05 was
regarded as significant and the percentage of successful
predictions was calculated. 43.1% of 2721 known TFBSs
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Selection of optimal matrix similarity cut-off value for each TFBS. Two TFBSs (V$NFKAPPAB65_01 and V$ISRE_OI) are shown
as examples. When predicting putative TFBSs from promoter sequences using the Matlnspector program, the core similarity
cut-off value was set as 0.75, and the overall similarity cut-off value was varied from 0.7 to 1.0 by increments of 0.02.

in 1366 genes were predicted for the U95 data set and
43.9% of 2847 known TFBSs in 1450 genes were pre-
dicted for the U133 data set (Table 3).

Previous studies have suggested that gene Y contains a
binding site for transcription factor X if gene expression
changes of transcription factor X and gene expression
changes of gene Y are significantly correlated with each
other over multiple data sets [5,10,26]. Our method is dif-
ferent from previous studies in that the Z scores of gene
sets of TFBSs rather than changes in gene expression of
each TF were used. To determine how our method per-
forms compared with previous methods, we evaluated the
performance of the method for predicting transcriptional

regulatory elements from a correlation between the gene
expression changes of each TF and each gene using the
same data sets and a statistical testing procedure. We
found that 25.8% of the known TFBSs among 1366 genes
were predicted for the U95 data set and 26.8% of known
TFBSs among 1450 genes were predicted for the U133
data set (Table 3).

Evaluation by comparing two independent predictions
from two different data sets

In the second evaluation, we analyzed the degree of corre-
lation between the predicted TFBSs from U95A data sets
and the predicted TFBSs from U133A data sets. We
assumed that a good correlation between predictions

Table 3: Accuracy of the prediction of TFBSs: comparison with known TFBSs of genes.

Matrix Factor
Platform u9s Uli33 u9s Ul33
q_value count percent count percent count percent count percent

0.001 378 13.4 390 13.2 185 6.6 218 7.4
0.005 610 21.6 659 22.3 311 1.1 347 11.8
0.01 773 27.4 800 27.1 389 13.9 436 14.9

0.05 1216 43.1 1295 439 722 25.8 787 26.8

0.1 1524 54.1 1650 56.0 1003 359 999 34

| 2819 100 2949 100 2797 100 2935 100
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from independent microarray data sets would further sup-
port the reliability of our algorithm. To ensure independ-
ency between the U95A and U133A microarray data sets,
we removed data sets for common biological events and
used the remaining data sets. We specifically removed
GDS156, GDS817, GDS854, and GDS915 from the U95A
data sets and GDS287, GDS472, GDS820, GDS855, and
GDS914 from the U133A data sets (Additional file 1). We
compared the predictions made from U95A and U133A
data sets in two dimensions; one being a gene-to-gene
comparison and the second a TFBS-to-TFBS comparison.
As expected, we found a high percentage of significant cor-
relations between the predicted TFBSs from U95A and the
predicted TFBSs from U133A data sets (Figure 4A and 4C).
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On the contrary, two independent data sets that were ran-
domly sampled from a normal distribution showed a pat-
tern of distribution for correlation coefficients that were
similar to the standard normal distribution (Figure 4B
and 4D). Specifically, 74.3% of 8728 genes showed a sig-
nificant correlation at a p-value of 0.05, while only 4.9%
of 8728 genes showed significant correlation at a p-value
of 0.05 (Table 4).

Examples of a genome-wide prediction of TFBSs: NFxB

To demonstrate biological significance of our predictions,
a TFBS for NFkB is shown as an example from the 190
TFBSs examined. The list of genes that are significantly
correlated with VSNFKAPPAB65_01 over 127 independ-

B

3000

2500 - n

2000 - i i

1500 +

Count

1000 +

500 -

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 06 0.8 1.0

Correlation coefficients

1400

1200 4

1000 4

800 -

Count

600 4

400 -

200 -

0 ; ; ; | |
-08 -06 -04 -02 00 02 04 06 08

Distribution of correlation coefficients between two independently prepared predictions of TFBSs. A. Distribution of correla-
tion coefficients of 8738 genes between 190 TFBSs predictions from U95A and 190 TFBSs predictions from UI33A data sets.
B. Distribution of correlation coefficients of 8738 genes between two groups each of which was randomly selected from a
standard normal distribution. C. Distribution of correlation coefficients of 190 TFBSs between 8738 predictions from U95A
and 8738 predictions from UI33A data sets. D. Distribution of correlation coefficients of 190 TFBSs between two groups each

randomly selected from standard normal distribution.
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Table 4: Evaluation by comparing two independent predictions using two different data sets

U95A vs. UI33A

Random Control

p value cumulative count
0.0001 4929
0.001 5450
0.005 5836
0.01 6022
0.05 6486
0.1 6699
0.2 6937
0.3 7095
0.4 7226
0.5 7319
0.6 7400
0.7 7478
0.8 7542
0.9 7616
I 8728

cumulative percent

56.5
62.4
66.9
69
743
76.8
79.5
8l1.3
82.8
83.9
84.8
85.7
86.4
87.3
100

cumulative count cumulative percent

0 0
10 0.11
42 0.48
85 0.97
430 4.9
805 9.2
1722 19.7
2614 299
3450 395
4365 50
5241 60
6112 69.9
6988 80
7896 90.4
8728 100

ent data sets is shown in Figure 5 and Additional file 3.
The genes in the list include those encoding various chem-
okines (CCL20, CXCL1, CXCL2, CXCL3, CCL2, CXCL5,
and IL8), cytokines (IL6), adhesion molecules (ICAM),
NFkBs (NFKBIA, NFKB1, and NFKB2), and interferon-
induced genes (INFAR2, IRF1, TNFAIP3, and TNFAIP2,
etc.), all of which are known targets of NFxB, along with
many genes that are not currently known as NF«B regu-
lated genes (data now shown) [16]. In addition, we found
that many genes showing a high correlation with
V$NFKAPPABG65_01 also showed a significant correlation
with TFBSs, such as V$AP1_Q6, V$AP4_Q6, V$STAT1_01
and V$STAT3_01 (Figure 5). V$AP1 and V$STAT1 are
TFBSs that are over-represented among the NFxB-regu-
lated genes, and thus were included in models for NF«B-
regulated, immunologically related gene promoters [16].
These results show that our approach was able to identify,
in addition to individual TFBSs, cis-regulatory modules
(CRMs) of each gene, (i.e., collections of TFBSs that func-
tion together to regulate the expression of a gene).

Discussion

In this study, a computational approach is proposed for
predicting the transcriptional regulatory elements of indi-
vidual human genes using both gene expression data sets
and promoter sequences in a genome-wide manner. Our
approach uses our recently developed tool, parametric
analysis of gene set enrichment, which produces a Z score
which is useful in the analysis of multiple gene expression
data sets.

An important issue encountered in predicting TFBSs from
a promoter sequence with position weight matrices is to
select an optimal cut-off value for a matrix similarity. Pre-
vious researchers, although recognizing its importance,

didn't systematically select optimal cut-off values for each
TFBS, but applied merely two or three different levels of
cut-off values (for example, 0.8, 0.85, and 0.9) to all TFBSs
[17]. When we varied the cut-off values from 0.7 to 1.0 in
increments of 0.02, we found that the optimal cut-off
value for each TFBS varied widely from 0.72 to 1.00,
showing the importance of a systemic approach in the
selection of optimal cut-off values (Figure 3 and Addi-
tional file 2). However, a few points are worth mention-
ing. First, there may be a concern that using the most
stringent cut-off value would lead to a smaller number of
genes in a gene set and, as a result, predicted TFBSs would
be restricted only to those which were used to create the
initial gene sets (a circularity problem). We tested whether
such a problem actually occurs but found that many
TFBSs that were not included in the initial gene set were
predicted even when the most stringent cut-off value was
used (data not shown). Second, in cooperative binding,
which is prevalent in many cooperating transcriptional
modules, one factor can have an especially weak binding
site escaping any type of statistical detection. When the
most stringent cut-off value is used, our method is likely
to miss this weak binding site. Thus, it may be helpful to
try a few less stringent cut-off values to avoid missing
weak binding sites or reduce false negative predictions.

Another important point when transcriptional regulatory
networks are inferred from gene expression data is that
many transcription factors (TFs) are regulated by posttran-
scriptional as well as transcriptional mechanisms. Thus,
some TFs exert their altered activity on target genes
through changes in the amount of their mRNA, while
other TFs utilize other mechanisms such as nuclear trans-
location, phosphorylation, proteolytic degradation, or
interaction with small ligands [12]. Therefore, recent stud-
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NFKAPPB50_01
NKFAPPB65_01

STAT1_01
NFKAPPB_01 STAT3_ 01
NFKB_C, NFKB_Q6 STAT 01 VMAF_01

Identification of NFkB-regulated genes by selecting significant correlations between the fold-change values of the genes and Z-
scores of VENFKAPPAB65_01 among multiple data sets. Correlation coefficients were converted into t-scores. Java Treeview
was used to represent visually the matrix of t-scores over all TFBSs and genes. Genes that correlated highly with
V$NFKAPPAB65_01 are shown. Several TFBSs showing high correlation with genes regulated by VENFKAPPAB65_01 are

marked.

ies that have focused on TFBSs itself rather than TFs have
enjoyed great success [12]. To determine which methods
are better in identifying human transcriptional regulatory
networks, we compared two kinds of measures of tran-
scriptional activity, Z scores of gene sets of TFBSs and the
amount of TF mRNA itself. Our results showed better per-
formance for the Z scores of gene sets of TFBS over TF
mRNA levels (Table 3), suggesting that Z scores of gene
sets of TFBS might reflect diverse mechanisms in changes
in TFs in the cell and might be better suited to infer tran-
scriptional networks than the amount of TF mRNA.

We computationally validated our prediction of TFBSs by
observing the number of experimentally known TFBSs in
the TRED database that could be predicted by our
method. While we used TRED database in this work, we
should mention that there are more complete, literature-
based, but commercial, databases (for example, Genom-

atix Suite) available. The results of validation of predicted
TFBSs using the TRED database showed a successful pre-
diction rate of 43.1% (U95A) and 43.9% (U133A) at a
false discovery rate (q-value) of 0.05. This corresponds to
false negative rate of 56.9% and 56.1%. The second vali-
dation (Figure 4, Table 4) analysis showed that our
method for predicting TFBSs from gene expression data
was able to extract real signals from noise irrespective of
the data set used. The two data sets (U95A and U133A) we
used were from different platforms, have different gene
contents, and, above all, involved different experimental
conditions, but showed high correlations with each other
between TFBSs predictions. This suggests that it is possible
to consistently infer transcriptional regulatory elements,
irrespective of the data sets used. This also suggests that
cells use a limited number of transcription regulatory ele-
ments to adjust themselves to diverse environmental con-
ditions. The combinatorial nature of transcription factors
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is one way to ensure an effective adaptation to diverse
conditions, and is utilized in many genes. Many research-
ers have applied the combinatorial nature of transcription
factors to the computational prediction of transcriptional
networks with great success [12,27]. We plan to adopt the
combinatorial analysis to our method and expect to fur-
ther improve this method.

Many genes are regulated by different TFBSs under differ-
ent conditions. With enough data sets in diverse condi-
tions, our approach should identify different TFBSs under
different conditions in regulating gene expression. We
tested if our approach was able to identify different TFBSs
under different conditions on a few selected genes and
actually found that phenomena (data not shown). At
present, we didn't systematically analyze the two data sets
(U95A and U133A) to identify such condition-dependent
TFBSs because data sets included in this study didn't have
diverse experimental conditions, but we think that identi-
fying condition-dependent TFBSs is an important work
that should be achieved when enough data sets are avail-
able.

We understand that a successful prediction rate of 43.1%
and 43.9% is far from satisfactory, but considering several
limitations in our approach, the method is promising. To
mention a few limitations, we restricted our analysis of
promoter sequence to 1200 bp (between -1000 bp and
+200 bp relative to the transcription start site) of a gene,
but many regulatory elements in human genes, in contrast
to yeast genes, reside outside this proximal promoter
region. The second limitation is that a sufficient number
of gene expression data sets are not currently available to
include the diversity of conditions needed. We used 127
and 138 conditions with two platforms, while yeast
researchers are able to use more than 1,000 conditions in
a computational study [28].

Conclusion

A correlation between the Z scores of gene sets of TFBSs,
produced by gene set analysis, and the fold changes in
gene expression across multiple conditions permitted suc-
cessful identification of many functionally important
TFBSs of human genes. We successfully identified many
known TFBSs of human genes and predicted numerous
TFBSs of genes that are worthy of further study. We also
showed that the Z scores of gene sets of TFBSs better rep-
resented changes in the activity of TFs in a cell than tran-
scription factor mRNA itself. In a single gene expression
data set, our method was able to identify transcription reg-
ulatory elements that caused the gene expression changes
that are observed for many genes. Elucidating the regula-
tory elements of entire genomes is the next important task
in genomics and requires innovations in both experimen-
tal techniques and computational methods. We hope our

http://www.biomedcentral.com/1471-2105/7/330

approach will aid in decoding the important transcrip-
tional regulatory elements of genes by strategically com-
bining gene expression data with genomic sequence data.

Methods

Promoter and prediction of TFBS

Human promoter sequences for which transcription start
sites are accurately known were downloaded from the
DBTSS (Database of Transcriptional Start Sites) [29]
which contains upstream sequences at -1000 to +200 rel-
ative to the transcription start site [30]. TFBSs were pre-
dicted using the Matlnspector program with position
weight matrices (PWMs) of the TransFac database (ver.
3.0) included in the Matlnspector program [31]. We set
the MatInspector core similarity to 0.75 and varied the
overall matrix similarity from 0.7 to 1.0 in 0.02 incre-
ments for each TFBS. We used TRED (Transcriptional Reg-
ulatory Element Database) database [32] to obtain a list of
known transcriptional regulatory elements for genes [25].

Gene expression data sets and data analysis

The microarray data sets used in this study were down-
loaded from the Gene Expression Omnibus (GEO) web-
site [33]. We used only data sets calculated using MAS5
(microarray suite 5) algorithm to ensure the same process-
ing of all data sets [34]. The list of data sets is given in
Additional file 1. The microarray data set describing the
gene expression changes of macrophages treated with
HIV-1 gp120 was generously provided by Dr. Cicala [20].
We used data sets GDS181, GDS422-6, GDS596,
GDS1985-8, and GDS1096 to study gene expression in
normal human tissues. Each data set was analyzed as fol-
lows. First, each sample within a gene expression data set
(GDS) was normalized by the global mean of each sample
to obtain a global mean of 1000. Signal values lower than
100 were then increased to 100 and the log base 2 was
taken. All subsequent calculations were done using log2-
transformed values. For a gene with multiple probes, we
took the mean value of the multiple probes. Our data sets
encompassed various experimental conditions including
a comparison between two groups (for example, tumor vs.
normal), a comparison among multiple conditions, and
time course experiments. We calculated the log2-trans-
formed fold change values between two groups. When
one data set had multiple experimental conditions, each
condition was regarded as a separate data set in calculat-
ing the log2-transformed fold change values. We chose to
analyze data sets of the Affymetrix U95A or U133A plat-
forms because many data sets are available for those two
platforms.

Parametric analysis of gene set enrichment

One hundred ninety different gene sets for TFBSs were
constructed from the predicted TFBSs for 14776 human
promoters. We calculated the composite expression of
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genes having the same predicted TFBS (hereafter referred
to as the Z score) for each TFBS in each microarray data set
using gene set analysis [18]. The Z score in our analysis is
defined as

_(X-—w)=n
B 5

Z

, where X is the mean of fold change values of genes hav-
ing the same predicted TFBS, x the mean of fold change
values of total genes in a data set, and & the standard devi-
ation for the fold change values of total genes in a data set,
and n the size of the gene set. The Z score serves as a meas-
ure of how far the composite expression of genes having
the same predicted TFBS deviates from the mean of the
fold change values of the total genes in a given data set.
The correlation between Z scores and fold change values
among multiple microarray data sets was calculated using
Pearson's correlation coefficient. The significance of each
correlation coefficient was inferred from a t-test using the
following mathematical formulae.

When the number of samples is n and Pearson's correla-
tion coefficient is r:

n—2

t=r1r%*
1-r2

The statistical significance of the t-value is evaluated using
the t-test with n-2 degrees of freedom [9,35]. One possible
concern in our approach is that the Z score and the fold
change for a gene expression data for which is included in
the calculation of the Z score are, strictly speaking, not
independent variables. However, because each gene set is
large (see Additional file 2), we consider that this lack of
independence is not a serious practical concern. Java
Treeview was used to visually represent the matrix of t-
scores over all TFBSs and genes[36]. The method of false
discovery rates was used to adjust p values for multiple
hypothesis testing [37]. The adjusted q values were calcu-
lated using the qvalue package of the Bioconductor
project [38].

Validation of predicted TFBSs

We validated our predicted TFBSs in two ways. We first
calculated the number of known transcriptional regula-
tory elements of genes in the TRED database that could be
successfully predicted by our method [25]. Second, we
used two independent gene expression data sets (U95A
and U133A) in predicting the TFBSs, and compared the
extent to which two predictions were correlated with each
other.

http://www.biomedcentral.com/1471-2105/7/330
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