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Abstract

Background: Comparison of large protein datasets has become a standard task in bioinformatics.
Typically researchers wish to know whether one group of proteins is significantly enriched in
certain annotation attributes or sequence properties compared to another group, and whether this
enrichment is statistically significant. In order to conduct such comparisons it is often required to
integrate molecular sequence data and experimental information from disparate incompatible
sources. While many specialized programs exist for comparisons of this kind in individual problem
domains, such as expression data analysis, no generic software solution capable of addressing a
wide spectrum of routine tasks in comparative proteomics is currently available.

Results: PROMPT is a comprehensive bioinformatics software environment which enables the
user to compare arbitrary protein sequence sets, revealing statistically significant differences in
their annotation features. It allows automatic retrieval and integration of data from a multitude of
molecular biological databases as well as from a custom XML format. Similarity-based mapping of
sequence |Ds makes it possible to link experimental information obtained from different sources
despite discrepancies in gene identifiers and minor sequence variation. PROMPT provides a full set
of statistical procedures to address the following four use cases: i) comparison of the frequencies
of categorical annotations between two sets, ii) enrichment of nominal features in one set with
respect to another one, iii) comparison of numeric distributions, and iv) correlation of numeric
variables. Analysis results can be visualized in the form of plots and spreadsheets and exported in
various formats, including Microsoft Excel.

Conclusion: PROMPT is a versatile, platform-independent, easily expandable, stand-alone
application designed to be a practical workhorse in analysing and mining protein sequences and
associated annotation. The availability of the Java Application Programming Interface and scripting
capabilities on one hand, and the intuitive Graphical User Interface with context-sensitive help
system on the other, make it equally accessible to professional bioinformaticians and biologically-
oriented users. PROMPT is freely available for academic users from http://webclu.bio.wzw.tum.de/

prompt/.
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Background

Molecular bioinformatics was born as a science of com-
paring individual DNA and amino acid sequences with
each other. Over the past three decades important biolog-
ical insights have been obtained by establishing unex-
pected sequence similarity between seemingly unrelated
proteins (e.g., Koonin et al. [1]). More recently, modern
high-throughput technologies (genome sequencing,
expression profiling, mass spectrometry) injected tremen-
dous amounts of sequence data and associated experi-
mental information into the public databases, creating the
need for collective comparisons of large sequence groups
(e.g., whole proteomes). The transition from pairwise
sequence comparison to comparing large protein datasets
against each other is similar to switching from finding dif-
ferences between individuals to comparing populations
of whole countries. Is wine consumption in France higher
than in England? Do Germans drive faster than Ameri-
cans? Analogous queries applied to biological molecules
prevail in post-genomic bioinformatics. In many genome
sequencing papers one finds a bar chart contrasting the
new sequence with other genomes in terms of sequence
motif composition. While analysing gene clusters
obtained by expression analysis it is typical to ask whether
one gene group is significantly enriched in certain func-
tional categories with respect to another one. Are proteins
with many interaction partners different from less prolific
interactors [2]? Are essential genes more evolutionary
conserved than non-essential ones [3]? The list of such
questions is endless. Answering some of them involves a
mere counting exercise while others require the applica-
tion of sophisticated bioinformatics approaches and care-
ful statistical analyses.

Mining protein properties at large scale has been espe-
cially productive in computational structural genomics
where it helped to establish basic facts about structural
complements encoded in complete genomes. For exam-
ple, it was shown that membrane proteins constitute
roughly 30% of each proteome [4]. The patterns of globu-
lar fold occurrence in different organism groups were care-
fully investigated [5]. The mechanisms of protein
structure adaptation to extreme environments were
revealed by comparing the genomes of thermophilic
[6,7], halophilic [8], psychrophilic [9], and barophilic
[10] species with their counterparts living under normal
conditions.

A recurrent bioinformatics task in comparative proteom-
ics involves mapping and integrating information from
disparate sources. While reporting experimental results as
well as theoretical predictions one may refer to proteins
using the UniProt [11], GenBank [12], or RefSeq [13]
nomenclature, or custom IDs for sequences not yet sub-
mitted to public databases. The situation is additionally

http://www.biomedcentral.com/1471-2105/7/331

complicated by frequent genome updates which may
result in new, previously missed ORFs identified, existing
sequences corrected, as well as the removal of misanno-
tated ORFs. As a result, establishing unambiguous corre-
spondence between protein sequence entries and
associated experimental data may represent a difficult,
albeit trivial challenge.

Countless customized software tools with varying degrees
of complexity have been independently written in
research labs throughout the world to address protein
comparison and mapping tasks, although there are signif-
icant commonalities in the technical steps that need to be
implemented. The authors of this contribution, too, wrote
their share of throw-away perl scripts and quick-shot Java
programs to compare GroEL substrates with the rest of the
Escherichia coli lysate [14], crystallizable and non-crystal-
lizable proteins [15], disease-associated proteins and
those without such association [16], abundant and non-
abundant proteins (Ishimama et al., in preparation), as
well as completely sequenced genomes [17] and func-
tional properties of alternatively spliced genes [18]. It is
precisely the fatigue from re-inventing the wheel over and
over again that motivated us to develop a bioinformatics
framework for large-scale protein comparisons.

Much to our surprise, we realized that general solutions
for comparing and analysing large sets of proteins in the
space of arbitrary annotation attributes are currently
hardly available or limited to certain application areas.
We are aware of only two software projects addressing the
need for large scale comparative analysis. The comprehen-
sive Genome Properties resource [19] allows comparing
complete prokaryotic genomes based on a multitude of
pre-defined property assertions. The system is primarily
focused on metabolic information, does not allow user-
supplied protein attributes, does not provide statistical
tests to validate differences between genomes, and is not
available for local installation. GeneMerge [20] is an
excellent tool for detecting over-representation of certain
functional or categorical descriptors in a given subset of
proteins relative to the general set based on rigorous sta-
tistical tests, but it provides neither integration with bio-
informatics databases nor a graphical user interface.

Here we describe a platform-independent system named
PROMPT (Protein Mapping and Comparison Tool) capa-
ble of addressing a wide spectrum of routine tasks in com-
parative proteomics. PROMPT enables the user to
compare arbitrary protein sequence sets, revealing statisti-
cally significant differences in their annotation features.
Protein annotation can be imported from a variety of
standard bioinformatics databases as well as from generic
XML description files. Facilities are provided for linking
experimental information obtained from different
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sources to appropriate genes despite discrepancies in gene
identifiers and minor sequence variation. The entire func-
tionality of the system is available via a full-featured
server-independent graphical user interface. At the same
time, a Java API is provided for integration with user
applications.

Implementation

Functional overview

PROMPT operates with three types of information associ-
ated with proteins: database IDs, amino acid sequences,
and annotation attributes. The latter may be any protein
feature manually assigned, experimentally measured, or
calculated from sequence; such features may be nominal
and/or numeric. Examples of numeric features are molec-
ular weight, pl, abundance, and the number of interaction
partners. Nominal features can be sequence motifs, key-
words, functional categories, EC numbers, and so on.
Sequences are primarily used by PROMPT to establish the
correspondence between proteins imported from differ-
ent sources and thus having incompatible database IDs.
This is done by similarity-based mapping and careful han-
dling of exceptions and minor sequence variations.
Sequence data can be either obtained directly from public
databases, or supplied by the user as flat files using one of
the commonly accepted formats as well as a custom XML
format.

Once annotation features have been imported and
assigned to appropriate proteins, actual large scale com-
parisons of protein properties, data interpretation, and
statistical analyses can be conducted. The central task con-
sists of comparing two sets of proteins and finding signif-
icantly enriched or depleted features in one of the sets.
Results can be viewed in tabular form, visualized by vari-
ous types of plots, and exported to other applications.

As seen in Figure 1, a general PROMPT workflow involves
three stages: i) data import, ii) data processing which
includes mapping, comparison, and statistical tests, and
iii) visualization and presentation of results for subse-
quent analyses. Additionally, the data can be exported
and saved at each step.

Technology

PROMPT is written in Java 1.5. The Graphical User Inter-
face (GUI) was built with Java Swing, and the help system
utilizes Java Help Extensions. The Apache log4j package
[21] handles message logging and reporting. All input,
test, engine and visualisation classes are loaded dynami-
cally by the GUI using Java reflections. Scripting function-
ality is realized with the BeanShell package [22].
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Software architecture

PROMPT is partitioned into three self-contained layers -
the input layer, the processing layer, and the visualization
layer- which are interconnected via clearly defined inter-
faces. These interfaces ensure interoperability between a
wide variety of input sources, algorithms, visualisation
techniques and export methods by defining cross-layer
communication in such a way that an algorithm, once
developed, will work with any input module that provides
the requested input interface. It does not matter, for exam-
ple, whether the sequence data comes from a local Uni-
Prot XML file [11], an SQL database or a Web service. This
approach allows the application of PROMPT's algorithms
to new and currently unknown data formats and sources.
Conversely, newly added algorithms can immediately
reuse all of the available input and output modules. The
same applies to new import modules that can be used
with all applicable algorithms as soon as the required
interfaces have been implemented. Similar to the
approach adopted in Java Beans [23] all PROMPT mod-
ules are encapsulated by the troika of Init, Run, and
GetResults methods that perform initialization, actual
computation and the returning of results, respectively.
This design pattern provides a comfortable and uniform
handling of all parts of the PROMPT framework. Further-
more, the clear separation between individual layers
ensures reproducibility of results as the data can be saved
and evaluated at every step.

Data retrieval and integration

Data import from flat files is predominantly based on Bio-
Java [24] which is used to parse multi-FASTA, EMBL [25],
Genbank [12], and UniProt [11] formats. In particular,
the UniProt XML format is supported. Additionally, data
can be directly imported from two MIPS databases - PED-
ANT [17] and SIMAP [26] - using data access objects pro-
vided by these two resources. User extensions can be easily
incorporated by creating Java classes that implement or
extend the Java interfaces provided by PROMPT.

Alternatively user-specific data can be loaded in
PROMPT's custom XML format. Such an XML file (Figure
2) can contain any number of numeric or nominal
attributes for a set of elements that we, for simplicity,
assume here to be proteins (but could also be any other
kind of object including protein sequence domains, DNA
sequences, molecular structures, phenotype data, and so
on). A numerical attribute could be e.g. the number of
predicted transmembrane segments or molecular weight.
Examples of nominal attributes are EC numbers or func-
tional categories. Annotation properties are represented as
XML nodes with the name property. They have an id
attribute that serves as a unique reference to the property
within the XML file. Additionally, the property nodes have
an attribute of the name type that can have either the value
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numeric or symbolic for numeric or nominal data, respec-
tively. Within the property elements the annotation data
for each protein are stored as XML nodes in the form
<input id = "XX" value = "YY"> where YY represents anno-
tation data for the protein with the identifier XX. A numer-
ical attribute can be any number in Anglo-Saxon notation,
e.g. 10, 0.7, or 1E-6. Nominal attributes of a protein con-
tain one or many arbitrary strings separated by semico-
lons, e.g. "energy; metabolism; ATP". Optionally, XML files
can contain a property element of the type setdef which
defines a set of elements (proteins). A formal Document
Type Definition (DTD) of the XML structure is given in the
supplementary information [see Additional file 1].

Due to the generic XML import capability the system can
be fed with arbitrary annotation without considering its
semantics, making PROMPT applicable to data analysis in
any knowledge domain, not necessarily limited to molec-
ular bioinformatics. Additionally, data in widely used tab-
delimited text and WEKA's ARFF [27] files can be proc-
essed. A full list of available data import options can be
found in Table 1.

Sequences and annotation available in major public data-
bases may be fetched by their identifiers via the
SeqHound [28] web services (Figure 3). All the user needs
to do is to supply a list of UniProt [11] or GenBank [12]
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<dataset label="Escherichia_coli_k12">
<property id="setdef" type="setdef" >
<input id="P68191" value="MKSNRQARHIL..." />
<input id="P00882" value=" MTDLKASSLR..." />

</property>

<property id="transmembrane segments" type="numeric">
<input id="P68191" value="0" />
<input id="P00882" value="6" />

</pro.[5erty>

<property id="funcat" type="symbolic" >
<input id="P68191" value="04.02" />
<input id="P00882" value="01.01;01.02" />

</dataset>

Figure 2

Example PROMPT XML File. The file contains a set definition property that encompasses all E.coli proteins together with
their amino acid sequences. Additionally, annotation information stored in the numeric property transmembrane segments and

in the symbolic property funcat is provided.

identifiers and the corresponding information will be
downloaded automatically in the background. All actions
are tracked by a fully-configurable logging facility; if
ambiguous IDs or errors are encountered, warnings will
be issued. Remotely retrieved data are cached locally to
avoid repeated re-fetching of the same data items during
processing.

Similarity-based sequence mapping

If input data contain proteins with incompatible database
IDs, correspondence between individual entries can be
established by sequence comparisons. PROMPT auto-
mates all-against-all BLAST [29] searches (Figure 3), pro-
ducing (n*(n-1))/2 alignments, where n is the number of
proteins in the dataset. The user is then prompted to
choose the extent to which sequence differences can be
tolerated for specific purposes. The list of typical minor
variations between essentially the same gene products
includes missing start methionines, different versions of
the same genomic ORF, and splice isoforms. For example,
the brain tumor protein BRAT_DROME in Drosophila mel-

anogaster has seven synonymous UniProt [11] accession
numbers and 9 associated GenBank [12] entries; accord-
ing to UniProt [11] its amino acid sequence has been
revised after the primary submission. Using the mecha-
nism described above, a given list of GenBank [12] iden-
tifiers can be instantly mapped onto UniProt [11]
accession numbers, PEDANT [17] protein codes, or EMBL
[25] IDs. The PROMPT software facilitates adding new
input data types to the mapping procedure by providing
an interface for custom input adapters written in Java.

Computable sequence features

In addition to annotation features contained in input files
a number of selected characteristics can be calculated
directly from protein sequences, mainly using BioJava
[24]. These include isoelectric point, the distance of the
isoelectric point from neutrality, molecular weight in Dal-
tons, sequence length, grand average hydrophobicity
(GRAVY) and the total hydrophobicity of all residues.
Additionally the number of alternating hydrophobic/
hydrophilic strands is calculated as described in Wong et
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Table I: Overview of possible data inputs. Shown are the types of input that can be processed by PROMPT. The Generic XML format
can contain any numeric or nominal properties provided by the user.

Format: Folder with multiple Individual file with List of Identifiers = Elements may Elements may
files, each containing one or more contain sequences contain annotation
one element elements attributes

FASTA X X

GenBank X X X

EMBL X X

Swiss-Prot X X X X X

UniProt XML X X X X X

Generic XML X X X

Tab-delimited X X X

WEKA X X

al. [16]. We will be gradually adding additional computa-
ble sequence properties driven by our own research needs
as well as user requests.

Statistical analyses

Formally, we are addressing the task of comparing two
(protein) datasets in the space of N supplied features.
PROMPT contains a set of generic engines to analyse and
compare nominal as well as numerical attributes. In addi-
tion to generating basic descriptive statistics such as mean,
standard deviation and median for the distribution of
each feature, statistical tests are performed to determine
whether the input sets differ significantly with respect to a
feature of interest. All statistical tests are encapsulated as
Java classes and predominantly use the free open source
statistical software R [30] or its commercial counterpart S-
PLUS [31] as reliable calculation engines. The linkage to
R/S is accomplished by PROMPT automatically, assuming
R/S is installed in default locations. Alternative and

detailed R/S configuration settings can be provided by the
user via the GUI config dialog, the XML configuration file,
environmental parameters or by or by direct API usage.
Although all tests can be chosen manually, PROMPT typ-
ically applies the appropriate tests automatically depend-
ing on the user's type of input and addressed question.
Basically, PROMPT distinguishes four different generic
cases: i) comparison of the frequencies of categorical
annotations between two sets, ii) enrichment of nominal
features in one set with respect to another one, iii) com-
parison of numeric distributions, and iv) correlation of
numeric variables. These four types of analyses are
described in more detail below and are also exemplified
in Table 2.

(i) Feature comparison

The questions handled within this use case are: Are certain
categories (e.g. protein functional classes) more frequent
in one set or in the other? If yes which ones? And are these

Table 2: Summary of PROMPT's generic comparison methods and the corresponding examples presented. The symbol x in the data
column means corresponding data values for the same protein, whereas a comma simply states that two sets of values are utilized.

Example Type of data used

PROMPT method2: Applied statistical methods ¢

Fold comparison of GroEL { Nominal }, { Nominal }

substrates with the whole

proteome
Fold enrichment of GroEL { Nominal }, subset of {
substrates Nominal }

Abundance distribution of essential
vs. all proteins

{ Numeric }, { Numeric }

Protein abundance vs. mRNA { Numeric x Numeric }

expression

Categorical feature comparison ® ¢ Chi-Square test

Categorical feature enrichment © * Sampling from hypergeometric
distribution with correction

* Mann-Whitney (MW) and
Kolmogorov-Smirnov (KS) of the
whole distribution

* MW and Chi-Square test of each
bin separately

* Pearson correlation coefficient
and

* Pearson correlation test

Numeric distribution comparison

Numeric feature correlation

a Extensive description of each method can be found in the context sensitive help integrated in the PROMPT GUI, or in the manual supplied with

PROMPT.

b Both groups with categorical data can be independent from each other.

¢ One group must be drawn from the other group.
d As described in the Methods section
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Protein set B
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Sequences are
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sequences

Query
Web-
services
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sequences

Compare A and B by BLAST,
find equivalent sequences

Results

Figure 3
Data input and mapping workflow.

differences statistically significant based on respective p-
values? PROMPT computes a Chi-Square test for each cat-
egorical value that occurs in both sets. Formally, let A =
{ay, a5 ..., a;} and B = {by, b,, ..., b; } be sets with i and j
distinct objects and let V be the set of nominal categories
that can be attributed to the objects. Then each set ele-
ment can have zero, one or more categorical values
assigned. Furthermore let N, and N, be the number of
objects of the set A and B that have at least one category of
V assigned. Then frq, = N, |(N4 +Ng ) and frqz = Ny | (N,
+Np ) are the relative frequencies of elements with
attributes. Thus only the objects for which annotation
data is available are considered.

For each category v € V that is found attributed to objects
of A and B a Chi-Square test with the following observa-
tion and expectation variables is performed:

Set B
ID3

No equivalent

ID5
Mapped identifiers

Observation

Obs, (v) = |{ae Alve attributes(a)}| and obs, (v) respec-
tively for the set B, i.e. the number of objects in A and B
that have the attribute v assigned.

Expectation

expy (v) = (obs, (v)+obsy (v)))* frq, and expy (v) = (obs,
(v)+obsg (v)))* frgg, i.e. under the assumption that all var-
iables are independent and identically distributed, exp,
(v) and expy (v) are the number of observations that we
would expect if the category v is uniformly distributed in
A and B.

The calculation of the Chi-Square test is performed using
the Jakarta commons math implementation [32] as the
pure JAVA implementation is faster than delegating this
simple test.
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b4 PROMPT GUI (=13

File Import Mapping Analyse Tests Export

Type Description
FastaFile membrane.fasta
FastaFile lysate.fasta

GenericXMLFile

Escherichia_coli_K12_update...

GenericXMLFile

Hpylori93. xml

i@ Result

Help

GenericXMLFile

Ureaplasma_urealyticum_ser. ..

Type File Description
Compare;symbolic;onlyInS... [result13 FuncatLevell | Escherichia... | —
Compare:symbolicionlyIns,.. [result14 FuncatLevell | Escherichia. ..
Compare:symbolicienrichm. .. [result1S FuncatLevell | Escherichia...
AaDistribution result16 membrane.fasta <-> lysat...
Compare: numeric resultl? pl | Escherichia_coli_K12_...

Compare:numeric:statvalues result1s

pl | Escherichia_coli_K12_...

MannWhitney result19 Compare:numeric : pI | Es...
IMannWhitney result20 Compare:numeric : pI | Es...
[Mannwhitney result21 Compareinumeric ;: pl | Es... |«

B Infos | Processing Messages

significant is the result and both numeric distributions differ.

KS_pvalue

setA_mean
setA_std is the standard dewiation
setA_median is the median

setB_... the same for the other set of numeric values.

This result shows descriptive statistics like mean or median and the results of statistical tests. The lower the p-values the more )

is the p-value of a Kolmogorov-3mirnov test between all values of both sets
MW _Pvalue is the p-wvalue of a Mann-Whitney test between all values of both sets

is the mean of all numeric values of the first protein set

Infos l [0 Messages |

Figure 4

Graphical User Interface (GUI). Shown is a typical workspace session with input data and results. The information panel in
the bottom part of the screen provides context sensitive information related to the current user action.

(ii) Feature enrichment

The second method requires the same type of nominal
data as in the previous case, but with the additional pre-
condition that one set is a true subset of the othere.g. A
B. Typical questions that can be answered with this
method are: Are up-regulated genes enriched in certain
functions? Does the GroEL chaperonin prefer substrates
with certain structural folds? Do cancer-associated pro-
teins show non-random enrichment of certain functional
families or transcription factor binding sites?

Analogous to the case (i) for each category v € V that is
found attributed to objects of A and B, the over- or under
representation is calculated and an e-score returns the
likelihood that the difference would be found by random.

The e-score is calculated as described in Castillo-Davis et
al. [20] using a hypergeometric distribution with conserv-
ative Bonferroni correction.

(iii) Comparison of numeric distributions

Are proteins of thermophilic organisms shorter than those
of mesophilic organisms [7]? With PROMPT, this ques-
tion can be answered immediately using its generic
method to compare numeric distributions (see our web
page, [see Additional file 2]). More generally, the ques-
tions that can be answered are: do both sets differ with
respect to their means, e.g. are they shifted? Are the distri-
bution functions different? Additionally, for more
detailed analyses the distributions can be compared
within freely definable intervals, enabling the user to

Page 8 of 15

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:331

Pt fhzme Pt e a1 Mann Whitney
Vilcoxon tests on vectors of data. =
Description: e
Avitutes
Oraselact
Performs one and two sample
RSB () Tuwo sded
— Wilcoxon tests on vectors of
Greater
Ciom data.
v
o* Carnel .
‘J Q Attribute Description
bek Lo} Dataselect R syntax, the Engine result A~
B objects are accessed with result

and their number for example
result0$an==..,

= Mann Whitney X
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b tests on vectors of data. Alternative  character string specifying the
alternative hypothesis, must be
one of "two.sided” (default),
“greater” or "less". You can
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Formula
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Figure 5

Screenshots of a typical statistical test dialog. A. The
Mann-Whitney test dialog in the simple handling mode with
reduced parameters. B. The same test in the advanced view
with all options allowing full control. C. The built-in help
with general description of the test and its parameters. The
statistical background information was derived from the R
documentation.

examine whether the protein sets differ within specific
ranges of variable values, even if no global differences can
be found.

Given two sets of numerical values, PROMPT applies the
Mann-Whitney test with the null hypothesis of both dis-
tribution functions being equal versus the alternative of
the two distribution functions being not equal. The test is
sensitive towards differences in the mean, but not towards
different variances. Given a continuous distribution func-
tion, the two-sample Kolmogorov-Smirnov test checks the
null hypothesis that both variables are equally distrib-
uted. Both tests can only be applied under the assumption
of the variables being independent. They have the advan-
tage that they do not assume the data to follow any spe-
cific statistical distribution. By providing the Mann-
Whitney and the Kolomogorov-Smirnov test, PROMPT
covers both discrete and continuous input data.

For both datasets the key statistical values (such as mini-
mum, maximum, mean, median and standard deviation)
as well as histograms with equal binning are calculated.
The relative difference of observed values is computed and
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its significance tested by a Chi-Square test. The Mann-
Whitney test is applied to the values of all histogram inter-
vals in order to test whether the distribution functions of
the two datasets are identical within each bin.

(iv) Correlation of numeric variables

PROMPT provides a generic method to check for correla-
tion between two numeric variables. First, the Pearson
correlation coefficient is calculated which is not based on
any assumptions about the variables' distributions. Sec-
ondly, the Pearson correlation test is performed which
expects samples from two independent, bivariate nor-
mally distributed distributions. The null hypothesis is that
no correlation either negative or positive exists.

Graphical user interface and scripting capabilities

All implemented algorithms can be comfortably run via a
stand-alone application with a graphical user interface
(GUI), as well as from custom scripts or JAVA programs.
The GUI provides a dynamical workspace where input
data and results can be managed, analyses performed, sta-
tistical tests executed and the results examined, visualized
or further processed (Figure 4). All available input adapt-
ers, statistical tests and algorithms can be accessed
through a menu bar. The menu bar and the GUI itself are
fully configurable and extensible by new in-house or
third-party modules through XML configuration files or
configuration dialogs. The GUI workspace allows confi-
dent handling of multiple data sources, analyses, and
results, and supports saving and loading any of the input
or result objects to/from files. Moreover, the entire work-
space can be stored in a compressed form and restored
later so that the work on a particular project can be sus-
pended and resumed by the user at any time. The work-
space files are portable and can be transferred to other
computer systems and shared between different users.

The PROMPT GUI includes information and message log-
ging panels. The information area displays extensive con-
text-sensitive information about a chosen menu entry or
about a selected result entry, providing the user with
appropriate hints regarding data integration facilities,
available analysis engines, and their results. The message
panel shows all logging notes and gives full insight into
the analysis progress which is especially useful if longer
calculations, such as BLAST similarity searches, are being
run. The level of detail and the scope of the logging facility
are fully configurable. The data input and retrieval mod-
ule dialogs guide the user through the data acquisition
process and explain various data import features. Like-
wise, the comparison engines and statistical tests provide
context-specific dialogs prompting the user to set or
change appropriate parameters. For example, all 27 statis-
tical tests provide individual dialogs (either in simple or
advanced mode), tool-tip information, and test specific
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Example of an interactive browsable figure. Shown is a
comparison of EC numbers found in the annotation of two
protein sets. By clicking on the bars the user can zoom in and
out the different levels of the Enzyme Nomenclature.

documentation explaining the meaning of the test and its
parameters. These dialogs are rendered automatically
from the parameter description of the tests (Figure 5).

Furthermore, a fully searchable and browsable documen-
tation is integrated in the GUI [see Additional file 3]. The
GUI provides appropriate actions that match to a chosen
result type in a pop-up menu that can be accessed by a
right-button mouse click. Via this functionality figures can
be generated directly out of the GUI. The GUI checks auto-
matically which of the available plotting classes are appli-
cable to a given data type and allows one to select the
desired type of figure.

All of the input, analysis and visualisation functionality is
accessible from custom Java programs by utilizing the
PROMPT framework classes. Additionally, it is possible to
use the whole set of features by writing simple BeanShell
[22] scripts as demonstrated in the accompanying exam-
ples. BeanShell has the full power of the Java language
including access to all Java libraries, and extends it with
common scripting capabilities such as loose types, com-
mands, and method closures similar to those in Perl and
JavaScript. In addition to Beanshell scripts, PROMPT can
execute conventional Java source code files directly, with-
out the need to compile them. The complete PROMPT
framework with all necessary helper classes is provided as
one single jar library, eliminating the need to conduct
extensive Java path configuration.

Data visualisation and export
The results of all analyses can be further examined in a
graphical spreadsheet view of PROMPT or exported as tab-

http://www.biomedcentral.com/1471-2105/7/331

delimited-, comma-separated- or Microsoft Excel docu-
ment. Additionally, for the majority of results customized
figures can be generated automatically and either saved in
the bitmap-oriented portable network graphic (PNG) for-
mat or in vector formats such enhanced postscript (EPS)
or enhanced windows meta-format (EMF). This allows
seamless import of PROMPT results into standard office
applications. In some cases, figures produced may be fur-
ther fine-tuned manually. For example, all underlying
data and R [30] language commands corresponding to the
figures constructed by using R as plotting engine can be
saved into files. This allows easy customization without
the need to run PROMPT analyses again. Another feature
is interactive figures (using JFreeChart [33]) as illustrated
with the Enzyme-classification viewer of a Swiss-Prot
property comparison. By clicking on the enzyme classes it
is possible to browse through the different hierarchical
levels analysing the functions of interest (Figure 6). The
hierarchical category browser is currently restricted to the
enzyme classification as available in SwissProt [34]; fur-
ther categories will follow in subsequent releases of
PROMPT. All generic graphical views allow for zooming
in or out, inspecting numeric values associated with indi-
vidual items on the plot, and adjusting the figure appear-
ance in various ways.

Results

Here, we demonstrate the functionality of PROMPT based
on three well documented test cases. Each case study high-
lights different elementary analysis modes of PROMPT.
All used data can be found on the PROMPT home page
([35], [see Additional file 2]), where we additionally pro-
vide detailed step-by-step instructions for all cases along
with up-to-date information.

In the first case we have reproduced our own previously
published analysis of GroEL substrates from E.coli [14]. In
this work, essentially the entire GroEL-substrate proteome
consisting of approximately 250 proteins was identified
by a combination of biochemical analyses and quantita-
tive proteomics. What protein features determine sub-
strate specificity of GroEL? To answer this question we
imported into PROMPT 20 annotation features for all
E.coli proteins directly from the PEDANT genome data-
base and compared GroEL substrates with 3202 E.coli
lysate proteins [36]. The only significant difference
reported between these two protein datasets was in terms
of their structural folds. Using PROMPT's nominal com-
parison method we could easily demonstrate that the
GroEL substrates are significantly enriched in proteins
possessing the TIM-barrel fold (Figure 7). Possible evolu-
tionary implications of this phenomenon are discussed in
Kerner et al. [14]. Thus, PROMPT allows finding signifi-
cant enrichments and differences of categorical features
between two sets of elements. Furthermore, the generic
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W groel_substrates_ecolixml| ™ lysate.xml| ™ Difference

Example of a categorical comparison analysis. Frequency of SCOP folds in GroEL substrates compared with the whole
E.coli lysate. Only folds that were found at least two times in both sets and that were significantly different at a significance level
of 0.05 are shown. The stars on top of the red bars show that the differences are significant with the p-values: < 0.05 *, < 0.01
** and < 0.001 *** The figure is a screenshot of an interactive built-in visualisation module provided by PROMPT. All interac-
tive plots allow easy adjustments (changing font sizes, title, axis labels, etc.) and can be saved as graphic files.

solution allows an analysis independent of the feature
semantic and problem domain.

In the second example we repeat the analysis of protein
expression in yeast from Ghaemmaghami et al. [37]. This
case highlights the ease of using external data with
PROMPT, comparing numerical distributions and per-
forming correlation analyses. Absolute protein abun-
dance levels and steady-state mRNA expression levels in
S.cerevisae were already available as tab-delimited text files
associated with the publications by Ghaemmaghami et al.
[37] and Holstege et al. [38], and could be imported easily
using PROMPT's tab-delimited input facility. The first
question we addressed was whether protein abundance
correlates with mRNA expression levels. In addition to
calculating the Pearson correlation coefficient PROMPT
assesses its statistical significance by performing a correla-
tion test. For visualization of results PROMPT will suggest
appropriate options which in this case include a static

scatter plot of abundance versus mRNA levels with loga-
rithmic axes and linear- as well as polynomial loess regres-
sion lines (Figure 8A). Besides the statistical test results,
descriptive key data such as minimum, maximum, mean,
median and standard deviation are always returned by
PROMPT and can be analysed, sorted and further proc-
essed within a comfortable spread sheet viewer as seen in
Figure 8B.

Another question investigated by Ghaemmaghami et. al.
[37] was whether essential proteins are more abundant
than non-essential proteins. Within a few seconds the
results reported by the authors could be reproduced using
PROMPT's generic method to compare numerical distri-
butions. Specifically, we compared the abundance distri-
butions of all yeast proteins vs. the essential proteins.
Applicable statistical tests were automatically performed
by PROMPT. First, the value distributions were compared
with the Kolmogorov-Smirnov and Mann-Whitney tests
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Results of a correlation analysis. A. Scatter plot of protein abundance against steady-state mMRNA expression levels in
yeast. The solid and dotted lines show the local polynomial loess fitting curve and the linear regression, respectively. The axes
are scaled logarithmically. The box plots visualise the value distribution of each variable. B. PROMPT's spread sheet viewer
with the Pearson correlation coefficient of 0.44, a highly significant p-value of 0.0 (values below 10-3% are rounded to zero), and
further statistical key values. All analysis results can be exported to tab-delimited, comma separated, or Microsoft Excel files.

based on the complete data set. Secondly, we attempted to
identify potential local differences between the two distri-
butions by binning the data and comparing individual
bins of both groups separately. This demonstrates that
essential proteins are significantly underrepresented
within the logarithmic abundance ranges 8 to 11 and sig-
nificantly overrepresented within the range 13 to 16. The
bin intervals can be chosen either automatically or manu-
ally guided by a user-friendly graphical dialog box [see
Additional file 4]. The resulting comparison of the protein
abundance levels of essential proteins versus the complete
yeast proteome is shown in Figure 9.

In the final example we use PROMPT to automatically
retrieve protein sequences by sequence identifiers from
public databases and to calculate some of their basic prop-
erties such as the isoelectric point. As input we used two
lists of GenBank [12] identifiers of membrane and globu-
lar proteins of E.coli. In this experiment we use only multi-
spanning membrane proteins with more than 6 mem-
brane spanning regions predicted by TMHMM 2.0 [39] to
avoid any noise from false positive predictions or small
membrane-coupled proteins. As seen in the supplemen-

tary information [see Additional file 5], longer membrane
proteins are less hydrophobic than shorter ones. The
observed high correlation between the protein length and
its hydrophobicity (expressed as the GRAVY index) of -0.7
is significant with a p-value of 3 E-54. Sequence based
properties can also be used in any other generic analysis.
For example, the additional figures [see Additional file 6]
show a comparison of the automatically derived pl values
of membrane and lysate proteins. In addition to the meth-
ods based on amino acid sequences, PROMPT provides
statistical analyses and comparisons of symbol frequen-
cies of arbitrary alphabets. Thus, in addition to finding
over- or under-represented amino acids in a given protein
dataset [see Additional file 7], it is also possible to calcu-
late the enrichment/depletion of other symbols such as
those taken from the three-state secondary structure
alphabet with Helix (H), Strand (E) and Coil (C) as ele-
ments.

Discussion and conclusion

PROMPT is a platform-independent, multi-purpose
stand-alone software system for solving a broad spectrum
of standard problems in comparative proteomics. It is
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M all proteins ™ essential only ™ Difference

Comparison of two numeric distributions by PROMPT. Here normalized abundance distributions of all observed pro-
teins (blue) and essential proteins only (green), as well as the relative difference (red) are shown. These distributions are signif-
icantly different (Kolmogorov-Smirnov p-value 6.2 E-12, Mann-Whitney p-value 1.7 E-13). Additionally the stars on top of the
red bars show the specific intervals in which the difference is significant. The p-values are indicated by the number of stars: p-

value *< 0.05, ** < 0.0 and *** < 0.001.

implemented as a highly-reusable and extensible frame-
work for analysing biological data. With its rich data inte-
gration functionality and built-in statistical tests,
PROMPT facilitates data mining and hypothesis testing.

PROMPT makes possible incorporation of new algo-
rithms by providing hulls, layers and infrastructure. The
availability of both scripting-capability and an intuitive
GUI with a context-sensitive help system makes PROMPT
equally accessible to both professional bioinformaticians
and biologically oriented users. The structure of PROMPT
is well adapted for batch processing and automation.

Unlike the multitude of specialized analytical tools,
PROMPT has been designed as a versatile general plat-

form for routine analyses and comparisons in the field of
molecular bioinformatics. The current version of
PROMPT includes a large set of generic comparison meth-
ods and statistical tests applicable to any nominal and
numeric data as shown in Table 2. User-specific exten-
sions and custom methods can be seamlessly integrated
by providing Java classes that implement the interfaces
defined in the PROMPT documentation and by adding
additional entries to the application's configuration file.
Although PROMPT is easily extensible by third-parties, we
encourage members of the scientific community to sug-
gest new PROMPT features that may be of particular inter-
est to their research. In the long run we hope to make
PROMPT a community resource for comparative pro-
teomics.
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Availability and requirements

Project name: PROMPT "Protein Mapping and Compari-
son Tool"

Project home page: http://webclu.bio.wzw.tum.de
rompt,

Operating system(s): Platform independent
Programming language: Java

Other requirements: Java 1.5 or higher, R 2.0 (r-
project.org) or higher, NCBI Blast 2.1.3 or higher (blastall

and formatdb binaries)

License: Source code and executables are freely available
for academic users from our web site.

Any restrictions to use by non-academics: Licence
required
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and approved the final manuscript.

Additional material

Additional File 1

Document Type Definition (DTD) of PROMPT's generic XML format
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-331-S1.pdf]

Additional File 2

Screenshot of the PROMPT web page. Here, we provide the latest news
and PROMPT versions along with useful information. Additionally, all
case studies shown in this paper including the underlying data are freely
available as detailed work-through tutorials.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-331-S2.png]

Additional File 3

Built-in help system. Comprehensive and intelligent online help with
example data and a demonstration workspace allows easy usage of
PROMPT without prior knowledge.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2105-7-331-S3.png|

http://www.biomedcentral.com/1471-2105/7/331

Additional File 4

Binning wizard for setting up interval borders. A. First dialog page. The
user can either let PROMPT automatically estimate the interval borders,
of specify a fixed interval width or the number of intervals. The selected
options shown create histogram intervals that have a width of 1, no deci-
mal places, and the range from 6 to 21. B. Optional second dialog page.
Here the proposed binning can be previewed and altered. Note that we
used the special keywords -INF and +INF for negative and positive infinity
in the first and last interval to specify that all values less than 7 or higher
than 20 fall into these bins.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-331-4.pdf]

Additional File 5

Example of a built-in interactive scatter plot. Protein length of E.coli
lysate proteins is plotted against their hydrophobicity. The Pearson corre-
lation coefficient is -0.69 with a p-value of 2.8E-54. By pressing and hold-
ing the left mouse button it is possible to zoom in the desired area. Clicking
on an individual point on the plot leads to numeric values associated with
this point being displayed.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-331-S5.png]

Additional File 6

Usage of derived sequence based properties in a generic analysis of
PROMPT. Here the isoelectric point (pl) distributions of the E.coli lysate
and membrane proteins are compared using the numeric comparison
method. PROMPT calculates the pI values automatically if protein
sequences are available.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-331-S6.png|

Additional File 7

Screenshots of PROMPT's visualisations of the sequence based symbol
analysis methods. In this example we compared two protein sets with
respect of their amino acid composition. The positive and the negative
datasets are constituted by the proteins known to crystallize and the pro-
teins whose structure was only resolved by NMR, respectively (Smialowski
etal., 2005). A. Here the frequencies of each amino acid in both proteins
are plotted. For example: a frequency of 5% for threonine in the positive
protein dataset means that out of all residues 5% are T's. B. Using the
same data as in A, here the frequency differences of all sequence elements
are shown. For example, the positive value of 0.5% for Y means that this
amino acid is about a half percent more frequent is the first dataset. Bars
with red color have a significant p-value according to the Mann-Whitney
test. C. Additionally the frequency distributions of all amino acids can be
shown as box plots as exemplified by cysteine here. D. Complementary to
a box plot depiction PROMPT provides histogram visualizations.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-331-S7.pdf]
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