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Abstract

Background: Word sense disambiguation (WSD) is critical in the biomedical domain for improving the precision
of natural language processing (NLP), text mining, and information retrieval systems because ambiguous words
negatively impact accurate access to literature containing biomolecular entities, such as genes, proteins, cells,
diseases, and other important entities. Automated techniques have been developed that address the WSD
problem for a number of text processing situations, but the problem is still a challenging one. Supervised WSD
machine learning (ML) methods have been applied in the biomedical domain and have shown promising results,
but the results typically incorporate a number of confounding factors, and it is problematic to truly understand
the effectiveness and generalizability of the methods because these factors interact with each other and affect the
final results. Thus, there is a need to explicitly address the factors and to systematically quantify their effects on
performance.

Results: Experiments were designed to measure the effect of "sample size" (i.e. size of the datasets), "sense
distribution" (i.e. the distribution of the different meanings of the ambiguous word) and "degree of difficulty" (i.e.
the measure of the distances between the meanings of the senses of an ambiguous word) on the performance of
WSD classifiers. Support Vector Machine (SVM) classifiers were applied to an automatically generated data set
containing four ambiguous biomedical abbreviations: BPD, BSA, PCA, and RSV, which were chosen because of
varying degrees of differences in their respective senses. Results showed that: |) increasing the sample size
generally reduced the error rate, but this was limited mainly to well-separated senses (i.e. cases where the
distances between the senses were large); in difficult cases an unusually large increase in sample size was needed
to increase performance slightly, which was impractical, 2) the sense distribution did not have an effect on
performance when the senses were separable, 3) when there was a majority sense of over 90%, the WSD
classifier was not better than use of the simple majority sense, 4) error rates were proportional to the similarity
of senses, and 5) there was no statistical difference between results when using a 5-fold or 10-fold cross-validation
method. Other issues that impact performance are also enumerated.

Conclusion: Several different independent aspects affect performance when using ML techniques for WSD. We
found that combining them into one single result obscures understanding of the underlying methods. Although
we studied only four abbreviations, we utilized a well-established statistical method that guarantees the results
are likely to be generalizable for abbreviations with similar characteristics. The results of our experiments show
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that in order to understand the performance of these ML methods it is critical that papers report on the baseline
performance, the distribution and sample size of the senses in the datasets, and the standard deviation or
confidence intervals. In addition, papers should also characterize the difficulty of the WSD task, the WSD
situations addressed and not addressed, as well as the ML methods and features used. This should lead to an
improved understanding of the generalizablility and the limitations of the methodology.

Background

The use of large-scale experimental and information tech-
nologies has dramatically increased the pace of produc-
tion of biomedical findings, and the number of scientific
articles has grown rapidly as well, which makes it impos-
sible for human to retrieve or keep up to date with all the
related information from the literature. During the last
few years, there has been a surge of interest in information
extraction and text mining of the biomedical literature
[1,2]. When mining the biomedical literature, a big chal-
lenge is the problem of ambiguity inherent in natural lan-
guage because one textual term may have several different
meanings or senses (homonymy). A number of natural
language processing systems in the biomedical domain
reported decreased precision due to the ambiguity prob-
lem [3,4]. Weeber [5] found that in order to replicate
Swanson's literature-based discovery of the involvement
of magnesium deficiency in migraine, it was important to
resolve the ambiguity of an abbreviation mg, which can
denote either magnesium or milligram.

WSD is very critical for the biomedical text processing
community but also very difficult because of the rapid
growth of new words and new senses due to a large
increase in discovery of biomedical entities. In 2000, the
UMLS Metathesaurus [6], a comprehensive resource that
specifies and categorizes biomedical concepts, contained
9,416 ambiguous terms, and in 2004, the number
increased to 21,295, an increase of 126% within 4 years
[7]. More importantly, this figure does not include the
many terms associated with gene or gene products, and
therefore the amount of ambiguity is likely to be much
larger. Studies associated with gene names have shown
that the ambiguity problem is complicated because a gene
term: 1) may refer to a gene or another type of biomedical
term [8], or to a general English word [9]; 2) may be used
to denote an RNA, a protein, or a gene [10]; or 3) may be
highly ambiguous across multiple species [11]. If each
ambiguous gene symbol in an article were accompanied
by its corresponding long form, the disambiguation task
would be much easier. However, Schuemie [12] analyzed
3,902 biomedical full-text articles and found that only
30% of the gene symbols in the abstracts were accompa-
nied by their corresponding full names, and only 18% of
the gene symbols in the full text were accompanied by
their gene names. Schijvenaars [13] showed that 33% of
the human genes in their thesaurus were affected by

homonymy. Chen [11] found that 85.1% of mouse genes
were ambiguous with other gene names and 233% addi-
tional 'gene' instances were retrieved when gene names
that were also English words were included when process-
ing the literature.

To demonstrate the extent of the ambiguity problem in
MEDLINE we searched MEDLINE abstracts to determine
how many abstracts contained gene symbols that were
ambiguous with general English words or biomedical
terms. Using data from Entrez Gene[14], the gene-specific
database at the National Center for Biotechnology Infor-
mation (NCBI), we formed two ambiguous word lists for
the mouse organism: a gene-English list (containing
mouse gene symbols ambiguous with general English
words) and a gene-UMLS list (containing mouse gene
symbols ambiguous with biomedical terms from UMLS).
Then we searched 82,922 abstracts that are known to be
related to mouse genes (based on gene2pubmed file from
Entrez Gene, downloaded on 1/2006) to determine the
number of abstracts that contained at least one ambigu-
ous word in each of the above two lists respectively, so
that we could determine the percent of abstracts that con-
tained a word that was ambiguous with an English word
or with a UMLS term respectively. We repeated the same
procedure for the fly and yeast organisms as well. Results
showed that for the mouse organism alone, 99.7%
(82694/82922) of the abstracts were affected by an ambi-
guity between a gene symbol and a general English word,
and 99.8% (82736/82922) were affected by an ambiguity
between a gene symbol and a UMLS term. For the fly
organism, both numbers were also over 99%, while the
number was much less for the yeast organism: 4.6% and
3.1% respectively. To demonstrate that the ambiguity
problem is not limited to a small set of words, we system-
atically removed ambiguous words with a frequency
(ratio between the number of abstracts containing the
word and the total number of abstracts searched) higher
than a threshold and re-calculated the percentage of
abstracts that contained the remaining ambiguous words.
In order to reduce the percent of abstracts with ambiguity
from gene-English and gene-UMLS to a relative low level
(7.2% and 13.4% respectively), ambiguous words with
frequencies higher than 0.05% would have to be
removed, which covered 30.0% (319 out of 1,065 words)
and 30.8% (636 out of 2064 words) of all the ambiguous
words in the two lists respectively. The same study, which
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was also performed for the Fly organism, showed similar
results, but with slightly higher ambiguity rates. This study
shows that the ambiguity among gene symbols, English
words and other biomedical terms is extensive and the
distribution of ambiguity is very sparse. This study there-
fore demonstrates that word sense disambiguation is crit-
ical for biomedical text mining and retrieval tasks because
ambiguous words have a substantial affect on perform-
ance. For the details of the ambiguity study, please refer to
the sub-section "Gene Ambiguity for mining MEDLINE"
in the Methods section.

Research in automated WSD can be traced back to the
1950s [15]. A number of WSD methods have been
addressed for the general English domain. More recently,
supervised machine learning (ML) technologies have
received considerable attention and have shown promis-
ing results [16-18]. Bruce [19] applied a Bayesian algo-
rithm and chose features based on their "informative"
nature. They tested their methods on the interest corpus,
which is a corpus consisting of 6 different senses for the
word interest, and achieved a precision of 79%. Lee [20]
evaluated a variety of knowledge sources (including the
parts-of-speech of neighbouring words, single words in
the surrounding context, local collocations, and syntactic
relations) and supervised learning algorithms (including
Support Vector Machines (SVM), Naive Bayes, AdaBoost,
and decision tree algorithms) for WSD on the SENSEVAL-
1 and SENSEVAL-2 [21] data. Using all of the knowledge
sources, the SVM method achieved the highest accuracy
rate of 65.4%. Mohammad [22] studied the contribution
of lexical features and syntactic features to WSD, and
results showed that simple lexical features (words in con-
text and collocation) used in conjunction with part of
speech information achieved better results (an accuracy of
66.7% on Senseval-2 set) than other feature combina-
tions.

Another type of WSD approach uses established knowl-
edge from curated terminology systems [23,24]. In the
biomedical domain, Schijvenaars [13] developed a simple
thesaurus-based algorithm to disambiguate human gene
symbols using training data from PubMed abstracts and
annotations from the Online Mendelian Inheritance in
Man(OMIM)[25]. The system achieved an accuracy rate of
92.7% on an automatically generated testing set. Schijve-
naars's study described an effective method for gene dis-
ambiguation, but the evaluation results were limited to
certain conditions. The automatically generated testing set
contained human genes symbols that appeared as long-
form and short-form pairs (e.g. prostate specific antigen
(PSA)) in articles, where at least 6 articles were deter-
mined to be associated with each gene sense. However, in
situations where the gene symbol in the paper is ambigu-
ous with a common English word or other type of bio-
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medical word, which is not an abbreviation (i.e. the long
form-short form pair is not applicable), the performance
of the method is not known: a complete non-abbreviated
word may have different characteristics in the text than an
abbreviation. For example, this method may not be
appropriate for testing a word such as "blind", which is
not an abbreviation, but refers to both a gene and a gen-
eral English word. An additional issue is that this study
limited the disambiguation of gene symbols to gene
senses and one other category called "non-gene sense",
but the actual sense in this category was not resolved. This
could be critical for NLP systems accessing phenotypic or
disease-related information. An additional limitation of a
knowledge-based method is that terms associated with
phenotypic senses or general English senses may have lit-
tle reliable background knowledge available. Therefore,
this type of method may not be applicable and ML
approaches may be useful. Recently, Humphrey[26] pro-
posed another type of statistical-based method to resolve
the ambiguity problem within the UMLS Metathesaurus.
They used a Journal Descriptor Indexing (JDI) method,
which is ultimately based on statistical associations
between words in a training set of MEDLNE citations and
a small set of journal descriptors assumed to be inherited
by the citations. On a testing set with 45 ambiguous
strings from NLM's WSD Test Collection, the overall aver-
age precision for the highest-scoring JDI version was
0.7873 compared to 0.2492 for the baseline method.

Supervised ML methods have also been applied to WSD in
the biomedical domain. Hatzivassiloglou[10] developed
a disambiguation system to determine the class of a
known biomedical named entity by choosing one of three
pre-defined senses: gene, RNA, protein. He investigated
the contribution of different features: positional informa-
tion of surrounding words, capitalization information,
stop-words and similarly distributed word removal, and
stemming, and obtained accuracy rates up to 85% with
optimised feature combination. Ginter [27] introduced a
new family of classifiers, which were based on an ordering
and weighing of the feature vectors obtained from word
counts and word co-occurrence in the text. This method
was used to determine whether a term was a gene versus a
protein and achieved 86% accuracy. Podowski [28] built
a two-step classification system to disambiguate gene
symbols: the first classifier determined whether the word
was a gene versus a non-gene, and the other determined
the appropriate gene for a symbol classified as a gene by
the first classifier. They reported an F-measure of over 0.7
for genes with sufficient number of known document ref-
erences. Liu [29] investigated the effect of window size
and claimed that biomedical ambiguous words needed a
larger window size than general English ambiguous
words. In Liu's [8] paper, the gold standard data set was
automatically constructed utilizing the fact that authors
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sometimes define abbreviations when they are first intro-
duced in documents using parenthesized expressions [e.g.
Androgen therapy prolongs complete remission in acute myelob-
lastic leukemia (AML)] and that the same abbreviation had
the same sense within a document. The training data set
was automatically annotated using unambiguous syno-
nyms, and for some senses, there were limited samples
(e.g. PCA with the sense "posterior communicating
artery" consisted of only 5 abstracts) for certain datasets.
In this study, we used 4 abbreviations from Liu's abbrevi-
ation list. However, we used a different method to collect
the datasets because we wanted to control the sample sizes
of the senses for our experiments. Leroy [30] tried to
reduce the training sample size by supplying external
knowledge from the UMLS for supervised machine learn-
ing algorithms, but the results were not promising. Gau-
dan [31] developed an algorithm based on use of SVMs to
resolve abbreviations in Medline and claimed a precision
of 98.9% and a recall of 98.2% on their testing set. In their
study, rare senses (senses appearing in less than 40 docu-
ments) were excluded from the testing set. This makes the
disambiguation task easier because it reduces the problem
of sparse senses. In addition, the training set was created
based on long-form and short-form pairs, where ambigu-
ous words not having long-forms were not tested. There is
a good review of current research of WSD in biomedical
domain by Schuemie [32].

Most of the above papers reporting on the use of ML for
WSD follow a similar pattern. A set of ambiguous words
is selected, a corpus for each word is collected, and the dif-
ferent senses within the corpus are annotated (automati-
cally or manually). A feature vector is then formed based
on the context of the ambiguous word, a supervised
machine-learning algorithm is used on a portion of the
corpus to train a classifier for the word, and the classifier
is tested on the remaining corpus. The main variations are
usually in the selection of features and choice of machine-
learning algorithms. Experiments are usually performed
on a fixed amount of documents (i.e. 1,000 abstracts) per
an ambiguous word, where the entire set consists of all the
senses, and the sense distribution is generally uneven.
Results (usually error rate or accuracy) are reported and an
analysis of a few issues is often described, but the results
of different experiments are usually not comparable
because multiple confounding issues affect them. These
papers are important in that they report on useful meth-
ods and provide insights and overall results. However, a
deeper and more systematic analysis is needed in order to
obtain a better understanding of the different factors
affecting the performance of ML methods for WSD. In this
paper, we discuss a number of issues explicitly and
describe some experiments that simulate a variety of situ-
ations where different sense distributions, different sam-
ple sizes, different levels of difficulties, and different cross
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validation methods are studied and the effects are quanti-
fied. We subsequently based our assessment of perform-
ance on error rates and associated standard errors.
Although some issues we have addressed in this paper
have been mentioned by other papers, our work differs
from related work because we focus on a systematic study
of issues affecting performance and quantify their effects
in order to further understanding of the components of
the error rate, which should lead to an improved and
more generalizable methodology. Our method also dif-
fers from related work because the sample size for each
sense is always fixed, whereas in related work the sample
size for the entire corpus is generally fixed but not the
sample sizes of the senses.

Results

Four ambiguous abbreviations: BPD, BSA, PCA, and RSV,
were used in this study. They were chosen because they
were associated with varying degrees of differences
between their respective senses. For example, two of the
senses of PCA studied are very similar whereas two senses
of BSA are very different. Table 1 lists the detailed infor-
mation about the abbreviations and their senses, and the
Methods section explains the differences in more detail.
For each abbreviation, we measured error rates of the SVM
classifier under different combinations of sample size,
sense distribution, cross validation scheme (5-fold vs. 10-
fold), and multi-class SVM algorithms (for BPD only,
which has 3 different senses). For details of the testing
data set and experimental design, please refer to the Meth-
ods section.

Tables 2, 3 and 4 display the results for BSA, PCA and RSV,
each of which has two senses. The distribution shown
with bold font in column 1 is the estimated distribution
of the senses, which is calculated based on the number of
retrieved articles for each sense and the number of
retrieved articles for all the senses. Column 2 is the
number of total samples from all senses. The range of
sample size per sense ranges from 10-40, with increments
of 10 per sense. Average error rates (Err. Rate) and average
standard errors (SE) were reported for each combination
of distribution and sample size (see Methods section).

With a distribution of (0.5, 0.5) and 5-fold cross-valida-
tion, the error rate for BSA dropped from 21.83% at sam-
ple size 20 to 3.11% at sample size 120. With the same
sample size change, the error rate for PCA dropped from
43.00% to only 28.53%. Results for BPD are shown in
Table 5, which contains the results from three different
multi-class SVM algorithms. We used Friedman's test [33]
to compare the different multi-class algorithms, and strat-
ified the analysis by probability distribution using sample
size (four levels) and multi-class algorithm (three levels)
as the two factors in the ANOVA table. The analysis,
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Abbreviation Sense # Sense # of retrieved articles Sense Distribution
BPD BPDI borderline personality disorder 1584 32%
BPD2 bronchopulmonary dysplasia 2335 47%
BPD3 biparietal diameter 1032 21%
BSA BSAI bovine serum albumin 13352 89%
BSA2 body surface area 5815 11%
PCA PCAI posterior cerebral artery 1165 67%
PCA2 posterior communicating artery 584 33%
RSV RSVI respiratory syncytial virus 5295 60%
RSV2 rous sarcoma virus 3520 40%

adjusted appropriately for multiple testing, revealed that
only the pair ("one-vs-rest’, "one-vs-one") differed and
there was no statistically significant difference (at overall
level a0 = 0.1) between "mc-svm" and "one-vs-rest" SVM
algorithms. This agrees with work by Rifkin and Klatau
[34]. A description of the different multi-class algorithms
is provided in the Methods section

Figures 1, 2 and 3 show the error rate versus the sample
size for each distribution of the BSA, PCA and RSV data

sets with 5-fold cross-validation. As the figures indicate,
the reduction of the error rate as a function of the sample
size is more dramatic for BSA than for PCA. For BSA there
is about a four-fold reduction in the error rate when the
sample size increases from 20 to 80 for sense distributions
(0.5, 0.5), (0.6, 0.4) and (0.7, 0.3), while there is a two-
fold reduction for sense distribution (0.8, 0.2) and no
reduction for (0.9, 0.1). In contrast, for RSV, a two-fold
reduction of the error rate was observed for distributions
(0.5, 0.5), (0.6, 0.4), (0.7, 0.3) and (0.8, 0.2) for an

Table 2: Results for BSA data set. Annotation of the table: Dist: Distribution of senses; S. Size: sample size; Err. Rate: Error Rate; SE:

Standard Error of error rates; CV: cross-validation;

BSA 5-fold CV 10-fold CV
Dist S. Size Err. Rate SE Err. Rate SE
(0.5, 0.5) 20 21.83% 10.05% 19.67% 9.04%
40 11.17% 5.33% 11.08% 5.05%
80 5.08% 2.60% 5.04% 2.44%
120 3.11% 1.72% 2.61% 1.48%
(0.6, 0.4) 20 23.50% 10.21% 21.00% 9.21%
40 12.67% 5.75% 12.08% 5.34%
80 5.75% 2.82% 5.00% 2.48%
120 3.58% 1.85% 3.28% 1.67%
(0.7, 0.3) 20 24.33% 10.59% 23.00% 9.74%
40 14.67% 6.11% 12.75% 5.39%
80 7.17% 3.16% 6.67% 2.87%
120 4.86% 2.17% 4.00% 1.85%
(0.8,0.2) 20 19.33% 9.82% 19.33% 9.27%
40 15.33% 6.31% 14.08% 5.72%
80 9.13% 3.58% 8.00% 3.16%
120 5.22% 2.23% 4.53% 1.96%
(0.9, 0.1) 20 10.17% 7.55% 10.00% 7.07%
40 10.17% 5.33% 10.00% 4.99%
80 8.00% 3.38% 771% 3.13%
120 6.42% 2.48% 6.03% 2.26%
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Table 3: Results for PCA data set. Annotation of the table: Dist: Distribution of senses; S. Size: sample size; Err. Rate: Error Rate; SE:

Standard Error of error rates; CV: cross-validation;

PCA 5-fold CV 10-fold CV
Dist S. Size Err. Rate SE Err. Rate SE
(0.5,0.5) 20 43.00% 12.14% 41.00% 11.25%
40 34.58% 8.21% 34.33% 7.68%
80 37.17% 5.44% 29.46% 5.14%
120 28.53% 4.45% 31.47% 4.13%
(0.6, 0.4) 20 37.83% 11.62% 38.50% 11.04%
40 36.42% 8.12% 35.92% 737%
80 25.54% 5.41% 24.88% 5.06%
120 28.22% 4.25% 29.25% 3.96%
(0.7,0.3) 20 33.67% 11.48% 33.50% 10.90%
40 33.08% 8.06% 33.08% 7.62%
80 29.67% 5.38% 24.29% 4.98%
120 26.83% 4.36% 27.83% 4.11%
(0.8,0.2) 20 23.67% 10.48% 24.50% 9.99%
40 21.83% 7.01% 20.58% 6.61%
80 28.00% 5.09% 19.25% 4.61%
120 22.92% 3.97% 25.03% 3.65%
(0.9, 0.1) 20 12.33% 8.14% 12.00% 7.59%
40 10.92% 5.48% 11.08% 5.20%
80 14.04% 4.10% 12.50% 3.79%
120 10.42% 3.11% 11.14% 2.98%
(0.67,0.33) 20 38.33% 11.89% 36.33% 10.96%
40 30.17% 7.93% 29.50% 7.46%
80 28.25% 5.43% 24.83% 5.00%
120 29.47% 4.50% 35.33% 4.15%

increase in the sample size from 20 to 80. The distribution
(0.9, 0.1) behaved the same as BSA.

For BSA and RSV there was no significant effect of the
sense distributions on the error rates for all different sam-
ple sizes, but for PCA the effect of the sense distribution
on the error rate was significant. Multiple comparisons,
adjusted for multiple testing, indicated that when the
overall significance level is 0.1, the sense distributions
(0.5, 0.5) and (0.6, 0.4) impact the error rate. These
results show that almost balanced sense distributions and
rather large training sample sizes reduce the error rate to
approximately half of our best guess, which is using the
majority sense.

To address the issue of whether a meaningful reduction in
the error rate was achieved by increasing the sample size,
we performed further statistical analysis on the results of
the BSA and PCA data set. To test the null hypothesis of
no differences in the error rates among the different sam-
ple sizes (and overall probability distribution) for the BSA

and PCA abbreviations, we used Friedman's test. Then we
performed sub-analysis using the sign-test (see Methods
section for details). The results are summarized as follows
and they apply to both 5-fold and 10-fold cross-validation
schemes. When the senses are well separated, any increase
in the sample size results in a statistically significant
decrease of the error rate. This holds for all sense distribu-
tions and it is in agreement with the finding that for BSA
there was no significant effect of the sense distributions
on the error rates for the different sample sizes used. There
are, however, differences when the meanings of the senses
are not well separated (e.g. PCA). As the Friedman's test
indicated, the effect of the sense distribution on the error
rate is significant. When the sense distribution is (0.5, 0.5)
there are statistically significant differences between the
pairs of error rates produced under sample size (20 and
120), the sample sizes (40 and 120) and the sample sizes
(80 and 120). The differences in the error rates produced
under sample sizes (20 and 40) and (20 and 80) are bor-
derline significant (overall level oo = 0.05). When the sense
distribution is (0.6, 0.4), an increase in the sample size
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Table 4: Results for RSV data set. Annotation of the table: Dist: Distribution of senses; S. Size: sample size; Err. Rate: Error Rate; SE:

Standard Error of error rates; CV: cross-validation;

BSA 5-fold CV 10-fold CV
Dist S. Size Err. Rate SE Err. Rate SE
(0.5, 0.5) 20 26.50% 10.52% 27.00% 9.72%
40 18.83% 6.83% 17.83% 6.29%
80 12.79% 4.09% 12.17% 3.78%
120 10.58% 3.10% 10.69% 2.93%
(0.6, 0.4) 20 27.83% 10.78% 27.67% 10.09%
40 20.25% 7.00% 19.50% 6.52%
80 13.67% 4.25% 12.83% 391%
120 11.53% 3.20% 10.39% 2.90%
(0.7,0.3) 20 27.33% 10.84% 26.33% 10.18%
40 19.00% 6.81% 17.83% 6.23%
80 13.96% 4.27% 13.08% 391%
120 11.56% 3.23% 10.86% 2.97%
(0.8,0.2) 20 21.50% 10.20% 19.50% 9.20%
40 17.08% 6.60% 16.75% 6.17%
80 14.00% 4.29% 13.29% 3.96%
120 11.69% 3.26% 10.75% 2.96%
(0.9, 0.1) 20 11.00% 777% 10.67% 7.25%
40 10.58% 5.42% 10.33% 5.05%
80 9.54% 3.66% 9.33% 3.41%
120 8.67% 2.86% 8.36% 2.65%

from 20 to 40 and from 80 to 120 does not produce sta-
tistically significant differences in the corresponding error
rates. For all other sense distributions, an increase in the
sample size did not produce a significant reduction in the
error rate - that is, there are no statistically significant dif-
ferences between the error rates. We would like to stress
here a limitation of the current study. This is the fact that
the experiments were carried out only 30 times: this rather
small number of replication of the experiments may have
contributed to observing borderline significance.

Figure 4 shows plots of the error rate versus sample size for
each distribution of the BPD data set based on the 5-fold
cross validation using the "one-vs-rest" algorithm. The
plots for the four different sense distributions are very
similar and actually agree with results obtained indicating
that the effect of the different distributions on the error
rate is insignificant. Figure 5 shows error rate versus sam-
ple size plots for three different abbreviations (BSA, RSV,
and PCA) at the same distribution (0.5, 0.5). It was pre-
sented to show the degree of difficulty among different
abbreviations. As expected, the error rate had the follow-
ing order: BSA <RSV <PCA, which indicated that similar
meanings were more difficult to classify. Results from 5-
fold cross-validation showed no statistical difference with

results from 10-fold cross-validation, which indicated 5-
fold cross-validation might be used in evaluation in order
to save computational power (for a discussion of the rela-
tive merits of 5-fold cross-validation vs. 10-fold cross-val-
idation, see[35]).

Discussion

Issues and our experiments

"Sample size', "sense distribution" and "degree of diffi-
culty" were three of multiple confounding issues that
affect the performance of a WSD classifier. Results from
our experiments demonstrated that these three factors
were intrinsically connected. Notice that as expected, with
any distribution, the error rate generally decreased as the
sample size increased. However the observed decrease in
error rate was more dramatic in the cases where the differ-
ent senses were well separated. For example, in BSA, the
error rate dropped to approximately 5% when the sample
size was 80 and the sense distributions were almost bal-
anced, and it was approximately 8% for other distribu-
tions with the same size. Notice also the relatively small
standard deviations that are associated with those error
rates. Moreover, when two senses of a word are very differ-
ent, then the reduction that is observed in the error rate is
meaningful in the sense that it is generally outside the lim-
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Table 5: Results for BPD data set. Annotation of the table: Dist: Distribution of senses; S. Size: sample size; Err. Rate: Error Rate; SE:

Standard Error of error rates; CV: cross-validation;

BPD 5-fold CV 10-fold CV
mc-svm one-vs-rest one-vs-one mc-svm one-vs-rest one-vs-one
Dist. S. size Err. SE Err. SE Err. SE Err. SE Err. SE Err. SE
Rate Rate Rate Rate Rate Rate
(0.33, 30 26.56% 8.77% 25.78%  8.68% 29.22%  9.06% 23.89% 8.05% 23.44% 7.96% 2622% 831%
0.33,
0.33)
60 13.89% 4.89% 13.39% 4.83% 15.83% 5.18% 11.89%  4.30% 11.56% 4.23% 13.78%  4.62%
120 7.67% 2.66% 7.08% 2.55% 8.44% 2.80% 7.00% 2.40% 6.39% 231% 8.06% 2.58%
180 6.06% 1.96% 5.70% 1.90% 6.69% 2.05% 5.70% 1.79% 5.20% 1.72% 6.24% 1.88%
(0.6, 30 26.33% 891% 25.33% 8.75% 26.89% 8.97% 24.67% 821% 23.89% 8.06% 25.44% 8.30%
0.2,0.2)
60 16.28%  5.27% 15.56%  5.16% 17.67%  5.44% 15.33% 4.85% 14.00% 4.65% 16.33% 4.97%
120 10.11%  3.05% 9.22% 2.93% 10.50%  3.10% 9.36% 2.78% 8.50% 2.66% 10.00% 2.87%
180 7.72% 2.21% 6.89% 2.09% 8.09% 2.26% 6.93% 1.98% 6.37% 1.91% 7.41% 2.04%
(0.8, 30 18.11%  7.82% 18.11% 7.83% 19.00% 7.99% 1833% 7.41% 18.22%  7.40% 19.00% 7.53%
0.1,0.1)
60 1478%  5.10% 1428%  5.03% 15.39%  5.18% 14.67% 4.79% 13.83% 4.67% 14.78% 4.81%
120 9.31% 2.95% 8.69% 2.85% 9.50% 2.98% 8.56% 2.67% 8.06% 2.59% 8.75% 2.70%
180 6.87% 2.09% 6.59% 2.05% 7.17% 2.14% 6.35% 1.91% 5.87% 1.84% 6.61% 1.94%
(0.32, 30 24.22% 8.58% 23.33% 8.44% 26.67% 8.84% 23.00% 7.93% 21.67% 7.71% 25.22% 8.17%
0.47,
0.21)
60 15.89% 5.21% 14.89%  5.08% 16.83%  5.34% 14.11%  4.66% 13.33%  4.55% 15.39%  4.80%
120 9.19% 291% 7.92% 2.71% 10.25%  3.07% 8.36% 2.64% 7.53% 2.50% 9.50% 2.80%
180 6.07% 1.95% 5.48% 1.85% 6.78% 2.07% 5.39% 1.73% 4.61% 1.61% 6.07% 1.85%

its of (error rate) + (1 SE) for increases in the sample size
from 20 to 40 to 80. In contrast, when the separation
between the two senses is poor (i.e. when the senses of an
abbreviation are similar to each other), increasing the
sample size does not help much, and a very large increase
in size is needed for a small reduction in the error rate. In
particular, we notice that when the sense distribution (P1,
P2) was very unbalanced (i.e. 0.9, 0.1), then the error rate
was almost equal to the minority sense proportion. All
these findings indicate that the effectiveness of an increase
in the sample size is very dependent on the degree of dif-
ficulty. When the degree of difficulty is very high, increas-
ing the sample size will not help much unless an
extraordinarily large size is used, which would be very
costly.

There are different types of WSD and some are more diffi-
cult than others. For example, if two senses are syntacti-
cally different, a reliable part of speech tagging method
could be effective in resolving the ambiguity. For senses
that correspond to the same syntactic category, the simi-
larity of their semantic categories will affect the difficulty
of the task (i.e. the bovine serum albumin sense of BSA is

substantially different from the body surface area sense).
Even for senses within the same semantic class, two close
senses will be much more difficult to classify than two
unrelated meanings. For example, in RSV, both senses
(i.e. respiratory syncytial virus and rous sarcoma virus) are
associated with a "virus" concept, but the two concepts are
very different types of viruses, and therefore the contexts
in which they occur are likely to be different as well. As
shown in Figure 5, PCA, which has two very close senses,
had much higher error rates than BSA, which has two
unrelated senses. Therefore, when comparing the per-
formance of different WSD systems, data sets with the
same degree of difficulty should be used. Resnik [36]
stated the importance of the semantic similarity of senses
and proposed a method to compute performance, which
takes similarity of senses into account. Our study is differ-
ent because it quantified the effect of similarity of senses,
and studied the relation between "similarity of senses"
and other issues such as "sample size" and "sense distribu-
tion". When considering gene symbol disambiguation, we
could categorize the tasks as involving four different types
of disambiguation: 1) classifying whether a term is a noun
or another syntactic part of speech, such as a verb, in
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Figure |

Error Rate versus Sample Size with different sense
distributions of BSA data set. This figure shows the plots
of "error rate" versus "sample size" with different sense dis-
tributions of BSA data set (case where the 2 ambiguous
senses are very different) using 5-fold cross-validation.

which case the term cannot be a gene; 2) classifying
whether a term refers to a gene or a non-gene sense (e.g. a
general English word or other biomedical term); 3) classi-
fying which gene a term refers to if it is ambiguous with
multiple genes or which non-gene sense a term refers if it
is ambiguous with multiple non-gene senses; 4) classify-
ing which product (gene, RNA, Protein) a term refers to if
it is known to be a particular gene. Podowski's [28] work
covered task types 2 and 3, while Hatzivassiloglou's [10]
work addressed task type 4. Many evaluations report their
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Figure 2

Error Rate versus Sample Size with different sense distribu-
tions of PCA data set. This figure shows the plots of "error
rate" versus "sample size" with different sense distributions
of PCA data set (case where the 2 ambiguous senses are very
similar) using 5-fold cross validation.

Figure 3

Error Rate versus Sample Size with different sense
distributions of RSV data set. This figure shows the plots
of "error rate" versus "sample size" with different sense dis-
tributions of RSV data set (case where the 2 ambiguous
senses both refer to viruses but the viruses are different
types of viruses) using 5-fold cross validation.

results for a set of words, but the difficulty levels and types
of disambiguation task types are not stratified.

To be able to identify whether there are significant differ-
ences in the error rates due to different sample sizes and
sense distributions while controlling for the abbreviation
used, we used Friedman's procedure. Notice that if we
stratify by the abbreviation, the mean error rates form a
two-way table where the columns correspond to different
sample sizes and the rows correspond to different sense
distributions. The significance of this methodology is that
it provides a comprehensive way to quantify the effects of
sample size and sense distribution on the error rate. For
BSA, RSV and BPD, we found that the effect of the sense
distribution on the error rate was insignificant. For PCA
this effect was significant. The effect of different sample
sizes on the error rate was significant for BSA, RSV, and
BPD. For PCA, although the effect of sample size on the
error rate was significant, this effect was observed only
when the sample size was increased from 20 to 120, and
for fairly balanced sense distributions such as (0.5, 0.5)
and (0.6, 0.4). For those two distributions, an increase
from 20 to 80 was also significant. Smaller increases in the
sample size had an insignificant effect.

We performed further sub-analysis using non-parametric
multiple comparisons to identify the pairs of sample sizes
that differ when the abbreviations BSA and RSV were ana-
lyzed. This analysis revealed that in the case of BSA the
improvements in terms of error rate were statistically sig-
nificant across distributions as the sample size increased
from 20 to 40. For the case of RSV, a much more substan-
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tial four-fold increase in the sample size was needed in
order to observe an appreciable decrease of the error rate.
Effects of "sense distribution" have been addressed in
other papers [30,37] because it is believed that the per-
formance of a WSD classifier may change if the distribu-
tion of the different senses is unbalanced. For example,
when there is a majority sense for an ambiguous word, the
improvement of a WSD classifier is believed to be very
small. Results from our study showed there was a differ-
ence only when the distribution was very uneven and the
task was difficult. For example, for PCA, when the major-
ity sense was over 0.8, the error rate started to decrease and
when it was over 0.9, the error rate dramatically decreased
so that use of the majority sense was as effective as the ML
methods, but with much less cost.

Other confounding issues of WSD

Other issues in addition to sample size, distribution of
senses, and difficulty of the task also affect the perform-
ance and subsequent assessment of WSD classifiers, as
noted below:

* Features used

As often discussed in various papers, different features
were evaluated to see their contribution to classifier per-
formance [10,20,29]. From these papers, there was no sin-
gle combination of features that seemed to be associated
with the best results for any type of WSD task. This could
also be due to the existence of other confounding factors
in the datasets that were used. In our study, we controlled
for this factor by using "bag-of-word" features in all exper-
iments, but it would be interesting to see if the perform-
ance improves when different feature vectors are used

* ML algorithm

Most papers reported that different ML algorithms did not
show much difference on performance [29,30]. But some
reported that certain classification algorithms were better
than others. For example, Mooney [16] did a comparison
study among a naive Bayes classifier, perceptron, decision-
tree learner, k-nearest-neighbor classifier, logic-based dis-
junctive normal form, conjunctive normal form and a
decision-list learner, and the results showed that the naive
Bayes and perceptron classifiers performed significantly
better than all others. It is still an unclear issue, probably
due to the interaction of different combinations of issues.
The comparison between different classifiers should be a
carefully controlled experiment. The notion that a lower
absolute error rate is indicative of the superiority of a clas-
sifier is generally flawed because it ignores the possibility
that the differences in the different experiments per-
formed are not statistically significant [38]. Statistical tests
[39,40] can be used to compare different classifiers.

http://www.biomedcentral.com/1471-2105/7/334

* Baseline reported

It is very important that the baseline of a classification task
is reported because it shows how much of an improve-
ment there is using a classifier as compared to the base-
line. As shown in our experiments, when there is a
majority sense of 0.9 or more, the performance of a WSD
classifier may seem high, but that is not due to the classi-
fier. Several papers [29,30] realized this issue and reported
results for the baseline. More specifically, they excluded
samples with a majority sense larger than a threshold
because they realized the contribution of the classifier
would not be much for those cases.

* Results with confidence intervals

When reporting the results (i.e. error rate), not all papers
reported confidence intervals (or a similar metric, such as
standard deviations). When comparing the performance
of WSD classifiers, those metrics are critical because they
indicate whether or not an improvement is statistically
significant; if there is a large deviation, there may not actu-
ally be an improvement even though one error rate is
smaller than the other.

* Feasibility

One of the problems of supervised machine learning for
WSD is the need for an annotated training (and testing)
data set for each ambiguous word, which may require a
huge effort. There are two approaches that address this
problem: 1) designing an efficient sampling method to
lower the cost of manual sense tagging [41], or 2) use of
an automated method to generate sense-tagged data
[8,42], but this may not always be possible or may inad-
vertently introduce bias. In our study, we proposed a sim-
ple "full-term substitution" method, which is described in
more detail in the Methods section, to automatically gen-
erate training data, but this is only applicable for abbrevi-
ations.

In this study, we used a "full-form substitution" method
to automatically generate the data set for the experiments,
which is an artificial training set. We compared the esti-
mated sense distribution from our method with that of
Liu's method [8] and found they were similar for most of
the abbreviations (e.g. RSV, BPD, BSA), and that the
majority senses based on use of each method were the
same. We did not compare the substitution method with
other methods for WSD. In addition, we used an SVM
classifier for all the experiments. Since the goals of our
study did not include the comparison of different algo-
rithms, we do not present related results here. Other stud-
ies showed that different ML algorithms had similar
performance for WSD tasks [29,30]. Thus, it is likely that
our findings are applicable to other ML methods because
similar issues have been discussed in the general ML liter-
ature [43].
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Earlier studies have investigated a number of the issues
discussed here in the context of constructing better classi-
fiers. A discussion of some of the issues involved can be
found in [43]. Here, we examined these issues in the con-
text of word sense disambiguation. The methodology we
used to quantify the impact of various factors on the error
rate, and hence on the performance of the WSD classifier,
is a well-known, theory-based, statistical methodology.
The methodology is easy to apply, it provides a principled
way of studying the effects of the different factors on the
error rate, and since it is based on a strong theoretical
foundation, it guarantees that the results to apply to all
abbreviations with similar characteristics. Therefore,
although we studied only four abbreviations, the results
concerning sample size, sense similarity, and distribu-
tions are likely to be generalizable for abbreviations with
similar characteristics. The results presented here agree
with general results presented in the literature on the per-
formance of classifiers [43-45].

Future work

To further analyze the effects of "sample size", "sense dis-
tribution" and "degree of difficulty" on the error rate, an
error decomposition model will be explored. Methods to
measure the degree of distances among different senses
are also being studied.

Conclusion

In this paper, we aimed to further an understanding of the
different factors affecting the performance of ML tech-
niques for WSD by systematically simulating a variety of
situations where different sample size, sense distribution,
degree of difficulty, and cross validation methods were
used. We evaluated the performance of SVM classifiers for
those situations. Results from our experiments showed
that: 1) increasing the sample size generally reduced the
classifier error rate, but this was limited mainly to well-
separated senses (such as senses with different semantic
types or senses with the same semantic types but unre-
lated meanings); in difficult cases an unusually large
increase in sample size was needed to increase perform-
ance slightly, which was costly and impractical, 2) the
sense distribution did not have much effect on classifier
performance for cases where the senses were separable, 3)
when there was a majority sense of over 90%, choosing
the majority sense seemed to be the most effective strategy
because the cost was low as was the error rate, 4) the error
rate was proportional to the similarity of senses, and 5)
there was no statistical difference between results using 5-
fold or 10-fold cross-validation. In this paper, we also
demonstrated that ambiguity of biomedical entities is a
significant problem, which has a substantial impact on
text mining and retrieval tasks in the biomedical domain.
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ML methods are still needed for WSD, which is critical for
increasing the accuracy of biomedical natural language,
text mining, and information retrieval systems. ML meth-
ods are especially important for those cases that cannot
readily be addressed using knowledge-based methods.
Therefore it is important that we understand the different
elements affecting their performance. In order to improve
our understanding of the ML methods, it is critical that in
addition to reporting on overall results, papers also report
on the baseline performance, the distribution of senses in
the datasets, the standard deviation or confidence inter-
vals, the types of ambiguity addressed, and the difficulty
of the task as well as the methods and features used.

Methods

After manually reviewing a set of WSD papers in the bio-
medical domain, different issues associated with perform-
ance were enumerated. For an initial study, we conducted
experiments to evaluate the effect of three confounding
issues: "sample size", "sense distribution" and "degree of
difficulty”, and we used an automatically generated data
set. A discussion of the results and issues can be found in
the Results and Discussion sections.

Data set for experiments

Four abbreviations were used in the experiments. Table 1
lists the detailed information about the abbreviations and
their senses. These abbreviations were originally specified
in the ABBR data set [8]. We chose them by considering
the different levels of semantic similarity among their
senses. BSA denotes two senses that have very different
meanings, but PCA denotes two senses that have very sim-
ilar meanings; the two senses of RSV are both associated
with a virus, but the viruses are very different types;
finally, BPD denotes three very different senses. The origi-
nal data set for PCA contained 6 different senses, but we
only used the two that were very similar for our experi-
ments. We used a simple "full-form substitution" method
to automatically generate a data set for the experiments
described in this paper, and this dataset was partitioned
into training and testing sets. To perform the "full-form
substitution" for each sense of an abbreviation, PubMed
articles published before October 2005 were searched
using an exact string match for the full-form of the sense.
The full-form in the title or abstract of the article was then
replaced with the ambiguous abbreviation, and the
appropriate sense was noted separately. Table 1 shows the
number of articles that were obtained for the different
abbreviations and senses. The estimated sense distribu-
tion was calculated from the number of retrieved articles
and displayed in the last column. For each sense, we
recorded all the retrieved PMIDs, randomly selected 250,
and then obtained the corresponding abstracts to form a
data pool, from which all the experiments were drawn.
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Feature vector and machine-learning algorithm

For all the experiments in this paper, we used the simple
"bag-of-word" method to construct the feature vector. All
the words in the title and abstract of the articles were used
as features for machine learning and an SVM algorithm
was used to generate a classifier. We used a package called
"Spider" [46] to perform all the SVM training and testing.
For abbreviations with only two senses (BSA, PCA, RSV),
a binary SVM classifier was used. For BPD, which has three
different senses, three different multi-class SVM methods
[47]: "mc-svm", "one-vs-rest", "one-vs-one", were used.
"Mc-svm" implements the algorithm with a decision func-
tion which considers all classes at once, while "one-vs-
rest" and "one-ve-one" are constructed by combining sev-
eral binary SVM classifiers. "One-vs-rest", also known as
"one-against-all", constructs N binary SVM classifiers for a
classification task with N classes. The ith binary SVM clas-
sifier is trained by considering all instances associated
with the ith class as positive examples and the others as
negative instances. It applies the N classifiers and chooses
the one with the highest confidence. "One-vs-one", also
known as "one-against-one", constructs N(N-1)/2 binary
SVM classifiers where each is trained with data from two
classes: one as positive and one as negative. It applies
these N(N-1)/2 SVM classifiers and the class assignment is
determined by a voting strategy (e.g. the class chose by the
maximum number of SVM classifiers wins). The perform-
ance was measured using both a 5-fold and a 10-fold
cross-validation method.

Experiments

For abbreviations with two senses (BSA, PCA, RSV), we
simulated 5 different combinations of sense distribution,
which were (0.5, 0.5), (0.6, 0.4), (0.7, 0.3), (0.8, 0.2),
(0.9, 0.1), and also used an additional combination,
which was the estimated distribution of the senses. For
example, a sample testing set with size 20 and sense distri-
bution (0.5, 0.5) means 10 samples in the set are with one
sense and the other 10 samples are with the other sense.
The estimated sense distribution is listed in the last col-
umn of Table 1, which is calculated based on the number
of retrieved articles for each sense and the number of
retrieved articles for all the senses. For BSA and RSV, the
estimated distributions were the same as one of the 5 sim-
ulated distributions, and therefore the experiments used
only 5 combinations for those two. For PCA, the esti-
mated distribution was (0.67, 0.33). Four different sam-
ple sizes were used (20, 40, 80 and 120), and for each, a
proportional sample for each sense was obtained based
on the particular distribution. For BPD, which has 3
senses, 4 distribution patterns were used: (0.3,0.33,0.33),
(0.6,0.2,0.2), (0.8,0.1,0.1) and (0.32, 0.47, 0.21), where
the last one was the estimated distribution. For each dis-
tribution pattern, 4 different total sample sizes were used:
30, 60, 120 and 180. Error rates for each combination of
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sense distribution and sample size were averaged using 30
runs.

Statistical methodology

To quantify the effects of sample size, sense distribution
and difficulty of the task on the error rate, appropriate sta-
tistical methods were used. Friedman's test is the non-par-
ametric analogue of a two-way analysis of variance
(ANOVA) table. No assumptions are made about the orig-
inal distribution (e.g. normal vs. other) of the documents.
Analysis of variance models are versatile statistical tools
for studying the relation between error rates and sense dis-
tribution, sample size, and degree of difficulty of a task.
These models do not require making assumptions about
the nature of the statistical relation, nor do they require
that sense distribution, sample size or degree of difficulty
to be quantitative variables.

To understand the effects of increased sample size on the
error rate, we stratified by the sense distribution and then
tested the null hypothesis of no difference between the
error rates obtained under the different sample sizes using
the sign test. The sign test is a non-parametric test that
does not impose any distributional assumptions, such as
normality, on the data. It is useful for testing whether one
random variable in a pair tends to have larger (smaller or
simply different) values than the other random variable in
the pair. In our case, the random variables in the pair are
the error rates obtained under the different sample sizes
used. For each abbreviation, each sense distribution and
each cross-validation scheme we have 6 pairs of random
variables corresponding to different combinations of the
sample size. For each combination of error rates we have
a sample of 30 observations. To exemplify, assume the
pair consisted of the error rates obtained under sample
size 20 and 40. Then the set of observations was com-
prised of those error rates obtained from the 30 simula-
tion runs. The null hypothesis would be that the median
error rate when the sample size is 20 equals the median
error rate when the sample size is 40. Because, for each
sense distribution, we had 6 such comparisons to make
we adjusted for multiple testing by setting the overall sig-
nificance level oo = 0.05 and then divided this by 6 to
obtain individual level of 0.0084 (Bonferroni Adjust-
ment).

We computed the standard deviation of the error rate as
follows. Recall that for each abbreviation, each sense dis-
tribution and each sample size we run the experiment 30
times. Let p(i) denote the error rate for the ith data set, i =
1,2,...,30. The error rate was computed using both a 5-fold
and a 10-fold cross-validation scheme. Let the size of the
training set be denoted by n. For example, when the total
sample size is 20 and 5-fold cross validation is used the
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size of the training set is 16, while if the sample size is 80
the size of the training set is 64. For each of the 30 runs we
estimated the standard error using the for-

mula:\/p(i)(l—p(i))/n . The estimate of the standard

error was then obtained by averaging the above values
over the 30 runs.

Gene ambiguity for mining MEDLINE

To determine the extent of the gene ambiguity problem in
MEDLINE, we searched MEDLINE abstracts to determine
how many abstracts contained gene symbols that were
ambiguous with general English words or biomedical
terms. We formed a mouse gene symbol list by retrieving
all gene symbol/name/synonyms from Entrez Gene[14],
the gene-specific database at the NCBI, for the mouse spe-
cies. Then we compared this gene symbol list with a gen-
eral English word list (Webster's 2nd international
dictionary) and with the UMLS term list (from UMLS
Metathesaurus 2005AA, removing all bio-molecular enti-
ties with semantic types "Gene or Genome", "Biologically
Active Substance", "Amino Acid", "Peptide or Protein",
"Enzyme", "Immunologic Factor and Receptor”, please
see[11] for details) via case-insensitive exact string match.
Two ambiguous gene symbol lists were formed as a result
of the comparisons: a gene-English list (containing gene
symbols ambiguous with general English words) and a
gene-UMLS list (containing gene symbols ambiguous
with biomedical terms). We also formed a pool of
MEDLINE abstracts by collecting all abstracts that were
related to mouse genes using gene2pubmed file from Entrez
Gene (downloaded on 1/2006), which led to 82, 922
abstracts in the pool. We performed a case-insensitive
search on each abstract in the pool to determine the
number of abstracts that contained at least one word in
each of the above two lists respectively, so that we could
determine the percent of abstracts that contained a word
that was ambiguous with an English word or with a UMLS
term respectively. However there is a concern that a very
limited set of words may have accounted for the vast
majority of ambiguity. Therefore, for each ambiguous
word, we calculated its frequency, which is defined as the
ratio between the number of abstracts containing the
word and the total number of abstracts in the pool. For
example, the word "brown" occurred in 399 abstracts
therefore had a frequency 0f 399/82922 = 0.48%. For each
threshold, we removed ambiguous words with frequen-
cies higher than that threshold and re-calculated the per-
centage of abstracts that contained the remaining
ambiguous words. Meanwhile, we also recorded the per-
centage of ambiguous words that were removed from the
ambiguous word-list for different thresholds. We
removed words with frequencies higher than 10%, 1%,
0.1% and 0.05% from the two lists of the mouse organ-
ism. Results showed that the percentages of abstracts con-

http://www.biomedcentral.com/1471-2105/7/334

taining the remaining ambiguous words were 80.9%,
46.2%, 13.5% and 7.2% respectively for gene-English
ambiguity, and 89.8%, 68.6%, 24.0% and 13.4% respec-
tively for gene-UMLS ambiguity. The percentages of
ambiguous words that were removed from the list for dif-
ferent thresholds(10%, 1%, 0.1%, 0.05%) were 0.8%(8/
1065), 4.8%(51/1065), 20.3%(216/1065), 30%(319/
1065) for gene-English ambiguity and 1.0%(20/2064),
3.8%(79/2064), 21.2%(437/2064) and 30.8%(636/
2064) for gene-UMLS ambiguity. The same study, which
was also performaned for the Fly organism, showed simi-
lar results, but with slightly higher ambiguity rates. For a
more complete description of this study and the results,
please [see additional file 1].
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Figure 4

Error Rate versus Sample Size with different sense
distributions of BPD data set. This figure shows the plots
of "error rate" versus "sample size" with different sense dis-
tributions of BPD data set (where there are 3 ambiguous
senses that are different) using 5-fold cross validation and
"one-vs-rest" algorithm.
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Error Rate versus Sample Size for BSA, RSY and PCA
with sense distribution of "'(0.5,0.5)". This figure shows
the plots of "error rate" versus "sample size" for BSA, RSV

and PCA data sets with fixed distribution of "(0.5, 0.5)" using
5-fold cross validation.
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