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Abstract
Background: A structure alignment method based on a local geometric property is presented and
its performance is tested in pairwise and multiple structure alignments. In this approach, the
writhing number, a quantity originating from integral formulas of Vassiliev knot invariants, is used
as a local geometric measure. This measure is used in a sliding window to calculate the local writhe
down the length of the protein chain. By encoding the distribution of writhing numbers across all
the structures in the protein databank (PDB), protein geometries are represented in a 20-letter
alphabet. This encoding transforms the structure alignment problem into a sequence alignment
problem and allows the well-established algorithms of sequence alignment to be employed. Such
geometric alignments offer distinct advantages over structural alignments in Cartesian coordinates
as it better handles structural subtleties associated with slight twists and bends that distort one
structure relative to another.

Results: The performance of programs for pairwise local alignment (TLOCAL) and multiple
alignment (TCLUSTALW) are readily adapted from existing code for Smith-Waterman pairwise
alignment and for multiple sequence alignment using CLUSTALW. The alignment algorithms
employed a blocked scoring matrix (TBLOSUM) generated using the frequency of changes in the
geometric alphabet of a block of protein structures. TLOCAL was tested on a set of 10 difficult
proteins and found to give high quality alignments that compare favorably to those generated by
existing pairwise alignment programs. A set of protein comparison involving hinged structures was
also analyzed and TLOCAL was seen to compare favorably to other alignment methods.
TCLUSTALW was tested on a family of protein kinases and reveal conserved regions similar to
those previously identified by a hand alignment.

Conclusion: These results show that the encoding of the writhing number as a geometric measure
allow high quality structure alignments to be generated using standard algorithms of sequence
alignment. This approach provides computationally efficient algorithms that allow fast database
searching and multiple structure alignment. Because the geometric measure can employ different
window sizes, the method allows the exploration of alignments on different, well-defined length
scales.

Background
As the number of protein structures continues to grow,

structure comparison techniques have become an increas-
ingly crucial bioinformatics tool. Because protein struc-
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tures evolve more slowly than protein sequences,
structure comparison can be used to assess distant evolu-
tionary relationships and common functions for pairs
that do not have high sequence similarity (cf. [1]). Struc-
ture alignment is also an important tool for protein classi-
fication and structural genomic initiatives. Despite the
importance of structure comparison, a number of funda-
mental issues remain unresolved. One of the central prob-
lems is the mathematically difficult task of scoring and
optimizing the structural alignment of three-dimensional
objects. Most protein comparison algorithms treat pro-
teins as rigid bodies and measure the quality of the super-
position using distance-based measures such as RMSD
(Root Mean Standard Deviation). Even after considerable
effort [2-6], no algorithm has emerged as the method of
choice for structure alignment [7].

Rigid body superpositions with distance metrics are less
than optimal because subtle twists or bends in a protein
structure can have a profound influence on the scoring of
the alignment. These are often corrected by considering
local alignments or introducing gap penalties. Recently, a
number of new algorithms have been developed that
allow for the flexible alignment of local fragments [8,9]. A
particularly difficult comparison is presented by proteins
with a hinge that separates similar domains. A slight alter-
ation in the hinge can result in an alignment favoring the
superposition of one domain over the other. Distance-
based measures suffer from a fundamental limitation in
that they do not obey the triangle inequality (cf. [10]).
That is: similarity between proteins 1 and 2 and proteins
1 and 3 does not imply similarity between proteins 2 and
3. This issue is particularly prominent in proteins com-
posed of distinct, separate domains. Because of the fail-
ings of distance-based metrics, a number of alternative,
topological metrics have been proposed [10-12]. These
approaches define a family of global geometric measures
based on knot theory and use them to develop protein
structure classification schemes. These measures use
Gauss integrals to calculate the equivalent of the Vassiliev
knot invariant for an open polygonal curve. Unlike the
invariants of topology, these quantities are not fully invar-
iant upon deformation and are represented by numerical
values rather than integers.

The use of such measures is similar in spirit to earlier work
on the differential geometry of proteins (see [13] for a
review and [14] for a recent application). Differential geo-
metric approaches define a geometric variable along 4 or
5 α-carbons length scales. Since the φ-ψ angles of the pep-
tide bond is a local measure and protein contact is a glo-
bal measure of structure, the differential geometric
approach was deemed an attractive tool to probe interme-
diate length scales. The writhing number is an even more
versatile quantity obtained from the theory of knots that

can extend the length scale under consideration to include
all length scales greater than 4 α-carbons. The attraction of
this approach is that it provides a metric for virtually all
length scales of the protein under a single Gauss integral
metric.

In the present work, we extend the consideration of non-
distance related metrics to develop algorithms for struc-
ture alignment. The writhing number is used as a local
geometric measure that describes the curvature of the pro-
tein backbone formed from short connected segments of
α-carbon atoms. Originally defined to describe the topol-
ogy of closed circular DNA, the definition of the writhing
number has recently been extended to consider open
polygonal chains. Using a sliding window, the writhing
number is calculated along successive regions of the
chain. This calculation provides a local geometric profile
of each protein. The regions considered in this work
encompass 4, 5, 6 and 10 α-carbons. The values for the
writhing number at each different length scale are sepa-
rately encoded into a 20-letter alphabet by partitioning
the histogram of all segment values obtained from RCSB
Protein Data Bank (PDB) into bins and assigning each bin
a letter in the alphabet. This procedure allows standard
sequence alignment algorithms to be used to compare the
geometric profiles. Using this approach, we have success-
fully "re-sequenced" all 52,087 proteins available in the
PDB at the time of this work and have stored them into
our own database for quick access. Using a block align-
ment approach identical to that used in calculating the
BLOSUM substitution matrix, a scoring matrix for substi-
tutions in the geometric alphabet was determined. Using
this matrix (referred to as TBLOSUM) and our rese-
quenced structure data bank, standard sequence align-
ment methods were used to perform structure alignments.
To validate this approach, the performance of the local
Smith-Waterman alignment (TLOCAL) and the CLUS-
TALW (referred to as TCLUSTALW) were used to perform
high quality pairwise alignment and multiple structure
alignment, respectively. This performance compares favo-
rably with existing methods.

Results
Pairwise alignment of "difficult" structures
Using a database of sequences encoded from writhing
numbers and a block scoring matrix (see Methods), sev-
eral test proteins were selected to optimize the perform-
ance of TLOCAL and compare it to other methods.
Alignments of ten "difficult" pairs of structure [15] were
explored. A "difficult" pair is a structurally-similar pair of
low sequence similarity which had proven difficult to
align with the methods available at the time. We sought to
optimize the gap penalties and sliding window size for the
alignments. The TBLOSUM matrix was constructed with a
sequence gap penalty designated (4,1) where 4 is the gap
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initiation penalty and 1 is the gap extension penalty. Var-
ying the gap parameters with a sliding window of 5
showed that gap penalties of (2,2), (4,1) and (4,2) per-
formed comparably and were very dependent on the spe-
cific example. In all subsequent work penalty parameters
of (4,1) were used.

Table 1 shows the performance of the TLOCAL algorithm
for different size windows for the ten "difficult" pairs [see
Additional file 1]. This table shows the alignment scores
as well as a distance metric, the Aligned Fragment Pairs
Root Mean Squared Deviation (AFPRMSD). It is not
straightforward to compare our geometric alignments
with those obtained from distance-based methods
because the geometric alignments do not provide a spe-
cific three-dimensional representation of the alignment.
Rather the method creates pairs of similar local topology.
To compare our method with sequence based methods we
take aligned sequence pairs (AFP) and use standard meth-
ods to perform a local alignment (see Methods). As can be
seen from the table, the performance of window sizes 4, 5
and 6 are comparable and are generally preferable to win-
dow size 10. There can be considerable difference in the
number of pairs aligned with different window sizes.
While the topological score generally agrees with the
AFPRMSD, counterexamples to this are easily found.

In Table 2, the quality of the alignments as measured by
AFPRMSD is compared for TLOCAL's (window size of 5),
CE and FATCAT [see Additional file 2]. Direct comparison
of the AFPRMSD is not possible because the number of
aligned pairs changes from one method to another. While
it is possible to adjust the aligned pairs in TLOCAL by
changing the gap penalties, this approach would not nec-
essarily assure an optimal scoring alignment. Recently, the
dependence of RMSD on alignment length, N, has been
demonstrated to scale as: RMSD ∝ N1/3 [16]. The radius of
gyration of a protein, Rg also scales as: Rg ∝ L1/3 where L is
the protein length [17]. From these observations a dimen-
sionless quantity, the reduced AFPRMSD is defined as:

and for simplicity we set a0 to 1 Å. This quantity is now
used in Tables 1-3 to compare all alignments of different
lengths. In all cases, the reduced AFPRMSD shows that
TLOCAL outperforms FATCAT in all cases and CE in 6 out
of 10 cases [see Additional file 1, 2, 3]. One should bear
in mind that CE and FATCAT were not designed to opti-
mize the score of an alignment calculated in this fashion.

Pairwise alignment of hinged proteins
As an additional assessment of the performance of the
local topological alignment algorithm, the performance
on the alignment of structures with flexible or hinged
regions was determined. The difficulty in aligning pro-
teins with hinged regions motivated the development of
new structural alignment programs; FATCAT [9] and Flex-
Prot [8] that identified aligned AFPs and separately align
these regions. The geometric alignment program is
expected to perform well in these examples because the
displacement caused by hinges do not affect the topology
on either side of the hinge and should, therefore, allow for
good alignment in these regions. Table 3 shows the per-
formance of TLOCAL alignment for 16 different hinged
structures that were examined previously [8,9] [see Addi-
tional file 3]. As can be seen, TLOCAL with window sizes
of 4 outperforms FATCAT in all cases when considering
reduced AFPRMSD. There are, however, instances when
FATCAT performs better for the other TLOCAL window
sizes.

Multiple sequence alignment on a kinase superfamily
In addition to pairwise alignments performed by TLO-
CAL, the performance of the multiple structure alignment
program (TCLUSTALW) was also examined. To evaluate
the performance of TCLUSTALW, a family of protein
kinases was aligned and the identified conserved regions
were compared with those determined previously by a
hand alignment. These 25 sequences include serine/thre-
onine and tyrosine kinases provided by Scheeff and
Bourne [18] that are representative of typical protein
kinases (TPK). These kinases are found in different source
species including human, pig, cow, rat, rabbit, baker's
yeast, corn, and bacterial species. The hand alignment pre-
sented previously also included six structures known as
atypical kinases. These structures were not considered
here because they are not derived from protein kinases,
but are believed to have evolved early in the evolutionary
timescale to a convergent functional structure [18].

The comparison of hand alignments and those resulting
from TCLUSTALW are shown side-by-side in Table 4 [see
Additional file 4]. The alignment positions shown in red
indicate those positions whose residues are highly con-
served or exhibit extremely similar chemical-physical
properties such as hydrophobicity or charge. Of the 24
alignment positions highly conserved as previously noted
[18], 17 alignment positions were aligned correctly by
TCLUSTALW for all residues at that position. The remain-
ing 7 positions also had a strong consensus with only 1, 2,
3, or 6 deviations among the 25 aligned proteins. In addi-
tion to these 24 highly conserved alignment positions,
Scheeff and Bourne [18] also note 23 alignment positions
shown in gray whose residues are less conserved, but still

reducedAFPRMSD
AFPRMSD

a N
= ( )

0
1 3 1/
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exhibit similar chemical-physical properties. TCLUSTALW
was able to align many of these residue positions as well.

Discussion
In this work, a geometric profile of an individual protein
is created by calculating the writhing number of consecu-
tive segments (sliding window) along the protein chain.
The profile is then encoded into a geometric alphabet by
associating a range of numerical values with different let-
ters of the alphabet. This alphabet is determined by
observing the histogram of the frequency of writhing val-
ues in all segments of all the proteins observed in the PDB.
This histogram is partitioned into bins and a letter from
the geometric alphabet is associated with each bin. The
numerical range of the bins is adjusted so that each bin
contains the same number of segments. Thus, if a segment
is chosen at random, it would have an equal chance at fall-
ing into any one bin. Consequently, each letter in the
"geometric alphabet" has an equal chance of occurring in
a protein structure. The motivation of partitioning the his-
togram in this fashion is to maximize the information
content of the alphabet. Other ways of encoding the
writhing number could conceivably be more effective. For
instance, some geometric features may be more relevant
or distinctive than others and it might be important to
carefully delineate the values of the writhing numbers
associated with these features. Such level of detail has not
been investigated to date and lacking such information,
the maximum information entropy approach is taken as a
good first approach to encoding the local topological
information in the protein profile.

A second important issue is the size of the alphabet used
to encode the writhing number, a continuous variable. In
principle, the smaller the bin range the greater the infor-
mation content. In the limit of the bin size approaching
the inherent error in the writhing number, more informa-
tion will no longer be captured by decreasing the bin size.
This error limit could be obtained by the propagation of
the experimental error of the α-carbon atom positions
used in the calculation of the writhing number. However,
in mapping the structural alignment problem into a
sequence alignment problem, not only is an accurate
encoding required but also an accurate scoring system
must be obtained. As the alphabet is expanded, more data
is needed to accurately determine the values of the substi-
tution matrix. Additionally, the programs calculating
alignments will become increasingly computationally
intense. There will be a trade off between increasing reso-
lution of the bins of the histogram and the concomitant
loss of scoring accuracy and increase of computation
intensity. Again, these issues have not as of yet been
explored in depth. Our strategy has been to adopt the
twenty letter alphabet common to existing protein
sequence alignment and to investigate the performance of

the topological alphabet and scoring system under these
familiar conditions. Keeping with these conditions, the
gap penalties are treated as adjustable parameters and are
generally in the range of values used for sequence align-
ment.

Given these conditions, the structure alignment matches
local geometric propensities between different proteins
and aligns the topological sequence to optimize the score
from these propensities. As such, no Cartesian spatial
associations can be directly assigned to these alignments.
This topological association rather than a direct physical
association is at the heart of the method and allows the
alignment to avoid the difficulties with spatial alignment
of rigid bodies as exemplified by the problem with hinged
proteins. While the geometric alignment method does not
allow for the familiar three-dimensional viewing
employed in most existing structural alignment algo-
rithms, this approach directly addresses the deeper issue
of comparing similar structural regions that are offset by
intervening differences. The problem of properly assign-
ing alignments on either side of a hinge region is then
approachable by this method.

Difficulties such as those presented by hinged proteins
call to question the very nature of the structure alignment
problem. Several authors have suggested that the align-
ment problem as commonly posed is not a well-defined
problem and may not have an optimal solution (cf. [19]).
Alignment methods seek to identify a biologically rele-
vant correspondence between an amino acid residue in
one protein with that in another. A variety of structural
features from local orientation to global positioning may
bear on this correspondence. The difficulty that is inher-
ent in alignment methods is that they must in some sense
be scale free, offering the most relevant correspondence
across all length scales. This feature results in conflicting
optimization criteria. The present method does not pro-
vide a solution to this general problem. Rather it provides
a set of optimal solutions as defined by dynamic program-
ming for a set of length scales as given by the sliding win-
dow size. Thus, the method offers an optimization
solution for a well-defined length scale and should be
interpreted in those terms.

To allow comparison with methods that use distance met-
rics as a measure of alignment quality, we employed the
device of identifying AFPs from the topological alignment
and using these segments as rigid bodies for a local struc-
tural alignment. The RMSD could then be calculated from
the sum of all these local alignments. Using this measure,
we observe that the Smith Waterman topological align-
ment, TLOCAL, compares favorably with CE and with
FATCAT for both "difficult" protein pairs and for hinged
proteins. This demonstrates the versatility of the method
Page 4 of 10
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in handling situations that have traditionally been prob-
lematic for structure alignment methods. Despite the
good performance with the AFPRMSD distance metric,
one must bear in mind that such metrics are not opti-
mized by the topological alignment and that this method
is a distinctly different from distance-based alignment
methods.

In addition to the versatility of handling pairwise align-
ments, the topological alignment method can easily be
extended to areas of structural bioinformatics that have
traditionally been very difficult because of their computa-
tional intensity. Two of these include fast database search-
ing and multiple structure alignment. Our results using
TCLUSTALW are particularly encouraging with the exam-
ple of the alignment of TPK family members. Members of
the TPK family all contain a Universal Core Domain con-
sisting of a small, mostly β-sheeted N-terminal sub-
domain and a larger mostly α-helical C-terminal
subdomain [20]. Within this Core Domain are the regions
responsible for kinase activation, ATP binding, and phos-
photransfer reaction. While members of the superfamily
have undergone numerous evolutionary modifications
and have low sequence similarities, they do share several
key conserved residues. These residues allow the proteins
to maintain a structurally well-conserved catalytic core
critical for functional activity. The Universal Core Domain
of the TPKs is comprised of 9 major β-strands labeled 1–9
and 9 major α-helices labeled A-I. Scheeff and Bourne
identified 24 alignment positions whose residues are
highly conserved or exhibit extremely similar chemical-
physical properties [18]. Thirteen of these positions are
conserved as hydrophobic residues, which serve key roles
in maintaining the structural network of the protein
kinase. Another 8 residues are charged, participating as
ionic members with other residues in other strands, which
help in stabilizing the orientation and configuration of
the subdomains. As seen in Table 4, our unsupervised
method gives results that are strikingly similar to the hand
alignment constructed from biological intuition.

Conclusion
This work shows initial encouraging results for developing
a suite of structure alignment software tools based on a
geometric encoding of protein structures. With a limited
exploration of the parameters of the method, competitive
performance of pairwise alignment has been demon-
strated. Additionally, a computationally efficient and
accurate multiple structure alignment has been achieved.
The advantage of this method over other approaches is
that it performs alignments on a well-defined length scale
as dictated by the sliding window employed in generating
the geometric alphabet. Current work is extending the
method to rapid database searching using SBLAST, the
structural equivalent of BLAST. Additional work will also

focus on developing a range of substitution matrices
based on different block and evolutionary models. Also, a
more systematic exploration of alphabet size and segment
size is currently underway. Thus, there is significant
opportunity to further optimize this unique set of struc-
tural alignment software tools.

Methods
Calculating the writhing number
The writhing number can be calculated for chains of arbi-
trary length n using the experimentally determined three-
dimensional coordinates of the α-carbon atoms in the
protein chain. These n coordinates form a piecewise linear
or polygonal curve on n-1 edges, which precludes the use
of the usual definition of writhing number as an integer
valued quantity. The number n of α-carbons whose coor-
dinates are used in the calculation is the window size since
the writhing number is computed for each consecutive
window containing n contiguous α-carbons along the
protein chain. The technique used for calculating the
number is adapted from previous work [21] that calcu-
lated the writhing number for an entire polymer chain.
The calculation considers the relative orientation of two
vectors, requiring four distinct points along the protein
chains. The vectors formed from these four points are r13,
r14, r23, and r24, as seen in Figure 1. These vectors are trans-
lated so that they originate at the center of a unit sphere.
The area of the quadrangle spanned by these vectors is
then calculated. Depending on whether the crossing of the
original vectors r12 and r34 is right or left handed, the
writhing number is positive or negative.

To handle polygonal curves with more than four points,
the writhing numbers for all the distinct pairs of vectors
are added together. Thus, the writhing number Wr of a
segment of length N is given by

where

Ωi,j = (arcsin(ai,j·bi,j) + arcsin(bi,j·ci,j) + arcsin(ci,j·di,j) +
arcsin(di,j·ai,j))·sign(rj,j+1 × ri,i+1·ri,j+1)  (3)

and
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with ri,i+1 representing the vector between points i and i+1.
The double summation is over all pairs of vectors with no
common points and N is the number of points in the
polygonal segment. In this work, segments (or window
sizes) of 4, 5, 6 or 10 points (α-carbon atoms) were inves-
tigated. The right- or left-handedness of the crossing of the
two segments is determined by sign ((rj,j+1 × ri,i+1)·ri,j+1).
Larger positive or negative values of Wr indicate a greater
degree of the curvature.

Defining an alphabet for the geometric measure
Using Equation 2, the writhing number for each window
was calculated for all PDB proteins available from the
RCSB Data Bank. The frequency of occurrence of writhing
numbers calculated using a sliding window of 4, 5, 6 and

10 residues is shown in Figure 2 for the entire PDB. The
magnitude of the writhing numbers varied according to
window size as larger windows can sustain larger writhes.
Analysis of different classes of proteins reveals that the
large peak with positive writhing numbers in the histo-
gram is due predominantly to α-helical regions while the
peak with negative numbers is predominantly a result of
β-sheet structures. The writhing numbers were encoded in
a 20 letter alphabet by partitioning the histogram into 20
bins and assigning a letter to each bin. For example, with
a window size of 5 the letter A represented writhing num-
bers between -0.05 and -0.03, the letter B represented
writhing numbers between -0.03 and -0.021, etc. The his-
tograms in Figure 2 was partitioned into twenty segments
in such a manner that the area under the curve of each bin

Definition of vectors for a polygonal curveFigure 1
Definition of vectors for a polygonal curve. Definition of vectors used in the computation of the writhe number of two 
segments of a polygonal curve. Points 1 and 2 define the first segment, and 3 and 4 the second. The vectors r13, r14, r23, and r24, 
are translated so that they originate at the center of a unit sphere. The area A of the quadrangle they span is given by A = 
α+β+γ+δ-2π, where α is the size of the angle measured in radians.
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was equal, ensuring that each letter represents the same
fraction of total number of observed writhing numbers.
This manner of partitioning maximizes the information
content I of the alphabet. Using Shannon's definition of
information entropy, I

the entropy function is maximized when pi = pj, where pi is
the probability that an arbitrary writhing number is
assigned to the ith letter of the alphabet. Using the writh-
ing number bins and their corresponding letters, all PDB
proteins were encoded into the "geometric alphabet". The
encoding of writhing numbers into a geometric alphabet
ignores the identity of the amino acids themselves.

Calculating a block substitution matrix
A substitution matrix was calculated to score alphabet
substitutions when comparing proteins structures
encoded by the geometric alphabet. This matrix is referred
to as TBLOSUM and was determined from multiple
sequence alignments of closely related proteins found in

the PDB. Using their SCOP classification, 44,234 proteins
were grouped into 589 families as defined by their SCOP
lineage (a list of these families can be obtained upon
request to the authors). Only those families consisting of
more than 20 members were considered. These proteins
were aligned using CLUSTALW based on their original
amino acid sequences using the default BLOSUM62
matrix, a gap opening penalty of 4 and a gap extension
penalty of 1. Following the alignment, the geometric
alphabet was superimposed upon the sequence. The sta-
tistics of geometric alphabet substitutions were deter-
mined for alignment blocks. The transitional frequencies
for all possible transitions are given as:

These transition frequencies for each amino acid pair are
summed across all blocks for all aligned families. The fre-
quency of members of the alphabet is obtained by simply
summing over respective transition frequencies. These
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Distribution of writhing numbers across protein structuresFigure 2
Distribution of writhing numbers across protein structures. The distribution of writhing numbers from segments of all 
proteins in the PDB using a window size of 4, 5, 6 and 10. The histrogram was broken up into twenty regions of constant pop-
ulation (area under the curve). These 20 regions were used to define a topological alphabet. Notice that the range of writhing 
number increases with segment size.
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single alphabet frequencies are used to calculate the
expected number of transition frequencies, eXY, assuming
that alphabet pairs, X, Y, occur randomly with the mem-
bers of a pair being proportional to their respective alpha-
bet frequency. The score for any transition is the negative
log-ratio of the observed frequency of the transition to the
expected frequency of the transition, derived in the same
manner of a BLOSUM substitution matrix:

If the transition between i and j occur more frequently
than random, it is given a negative score. However, if the
transition occurs less frequently than random, the transi-
tion is assigned a positive value. Figure 3 shows the Scor-
ing Matrix for a bin size of 5 when all PDB proteins are
considered. TBLOSUM matrices were calculated for each
window size (4, 5, 6 and 10) based on the same protein
alignment but the different alphabet assignments derived
from the histograms in Figure 2.

Calculating RMSD scores for alignments
Pairwise geometric alignments using the local dynamic
programming algorithm TLOCAL optimize the alignment
score based on the new scoring system (TBLOSUM). As
previously noted, this approach to protein alignment is
not intended to minimize global RMSD. Rather, it aligns
regions of the proteins that show similarity in local topo-
logical profiles and does not allow a direct Cartesian ren-
dering of the alignment. To allow for a comparison of our
method with other alignment techniques, we sought a
simple way to compute a RMSD for an alignment based
on the topological alignment. We used the topological
alignment to identify aligned fragment pairs (AFPs). The
RMSD of the AFPs are computed for any pair containing
at least four aligned pairs. As an example, we consider the
following:

VNLDW--Q-QWTW

TPLDWOPQRRWSY

For the five pairs making up the first AFP and the four
pairs in the third AFP, we compute a composite RMSD
score, but for the single pair of Qs in the middle, no RMSD

S
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The BLOCK scoring matrix for the encoded writhing numberFigure 3
The BLOCK scoring matrix for the encoded writhing number. Diagram represents a color coded scoring matrix for 
an alphabet of 20 letters and a window size of 5.

 A B C D E F G H I J K L M N O P Q R S T n=5 
A 7 3 0 -1 -3 -4 -4 -3 -2 -2 -2 -1 -3 -3 -4 -6 -6 -6 -6 -6  
B 3 6 4 0 -2 -3 -3 -3 -2 -2 -2 -3 -3 -3 -5 -6 -6 -6 -7 -6  
C 0 4 5 4 0 -2 -3 -3 -2 -2 -2 -3 -3 -3 -5 -6 -6 -6 -6 -6  
D -1 0 4 5 3 0 -1 -1 -2 -2 -2 -3 -3 -4 -5 -6 -6 -6 -7 -6  
E -3 -2 0 3 4 3 1 0 -1 -2 -3 -4 -4 -5 -5 -6 -7 -7 -7 -7  
F -4 -3 -2 0 3 4 4 2 0 -3 -3 -5 -5 -5 -6 -7 -7 -7 -8 -7  
G -4 -3 -3 -1 1 4 4 4 0 -3 -3 -5 -5 -6 -6 -7 -7 -8 -8 -8  
H -3 -3 -3 -1 0 2 4 5 3 -1 -3 -4 -4 -5 -6 -6 -7 -7 -8 -7  
I -2 -2 -2 -2 -1 0 0 3 5 3 0 -2 -3 -4 -5 -6 -6 -7 -7 -7  
J -2 -2 -2 -2 -2 -3 -3 -1 3 6 4 0 -2 -3 -4 -6 -6 -6 -6 -5  
K -2 -2 -2 -2 -3 -3 -3 -3 0 4 6 4 0 -2 -4 -5 -5 -6 -5 -5  
L -1 -3 -3 -3 -4 -5 -5 -4 -2 0 4 7 3 -1 -3 -4 -5 -5 -5 -5  
M -3 -3 -3 -3 -4 -5 -5 -4 -3 -2 0 3 8 3 -2 -3 -4 -4 -4 -4  
N -3 -3 -3 -4 -5 -5 -6 -5 -4 -3 -2 -1 3 8 3 -1 -2 -2 -2 -2  
O -4 -5 -5 -5 -5 -6 -6 -6 -5 -4 -4 -3 -2 3 7 5 3 2 1 1
P -6 -6 -6 -6 -6 -7 -7 -6 -6 -6 -5 -4 -3 -1 5 6 6 4 3 3
Q -6 -6 -6 -6 -7 -7 -7 -7 -6 -6 -5 -5 -4 -2 3 6 5 6 5 4
R -6 -6 -6 -6 -7 -7 -8 -7 -7 -6 -6 -5 -4 -2 2 4 6 5 6 5
S -6 -7 -6 -7 -7 -8 -8 -8 -7 -6 -5 -5 -4 -2 1 3 5 6 6 7
T -6 -6 -6 -6 -7 -7 -8 -7 -7 -5 -5 -5 -4 -2 1 3 4 5 7 7
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can be computed and these are not considered in our AFP
RMSD calculation. The RMSD values for the AFPs are cal-
culated using the UCSF Chimera package from the
Resource for Biocomputing, Visualization, and Informat-
ics at the University of California, San Francisco, which
performs rigid translations and rotations to minimize the
RMSD between the aligned residues of a pairwise align-
ment. We calculate RMSD for each AFP. The score for each
block is squared and multiplied by its length in aligned
pairs. The resulting numbers are summed and divided by
the total number of aligned pairs in all the AFPs used. The
square root of this number is taken as RMSD of the align-
ment. This procedure was applied to the CE alignments, as
well as the TLOCAL alignments. One must bear in mind
that CE was not designed to minimize the RMSD calcu-
lated in this fashion and is not optimized for this scoring
function.

Performing the alignments
All alignments were performed using open source ver-
sions of the Smith-Waterman dynamic programming
algorithm and CLUSTALW. The run time for these appli-
cations do not differ from those found in sequence align-
ment applications. The computationally intense aspect of
the work is the encoding of the PDB coordinates into a
library of geometric sequences. At the time of this work,
the library consisted of 52,087 proteins with a database
length of 15,072,799 amino acids. For a window size of 4,
cpu run time was 4.71 hours. For a window size of 10, the
run time was 98.76 hours. All results were obtained on an
IRIX64 server with 16 CPUs with 14G available memory
and 128 M swap.
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