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Abstract

Background: Cellular metabolism can be characterized by networks of enzymatic reactions and
transport processes capable of supporting cellular life. Our aim is to find evolutionary patterns and
processes embedded in the architecture and function of modern metabolism, using information
derived from structural genomics.

Description: The Molecular Ancestry Network (MANET) project traces evolution of protein
architecture in biomolecular networks. We describe metabolic MANET, a database that links
information in the Structural Classification of Proteins (SCOP), the Kyoto Encyclopedia of Genes
and Genomes (KEGG), and phylogenetic reconstructions depicting the evolution of protein fold
architecture. Metabolic MANET literally 'paints' the ancestries of enzymes derived from rooted
phylogenomic trees directly onto over one hundred metabolic subnetworks, enabling the study of
evolutionary patterns at global and local levels. An initial analysis of painted subnetworks reveals
widespread enzymatic recruitment and an early origin of amino acid metabolism.

Conclusion: MANET maps evolutionary relationships directly and globally onto biological
networks, and can generate and test hypotheses related to evolution of metabolism. We anticipate
its use in the study of other networks, such as signaling and other protein-protein interaction
networks.

Background

Cellular metabolism represents a collection of enzymatic
reactions and transport processes that convert metabolites
into molecules capable of supporting cellular life. It is the
best-studied biological network, with highly branched
pathways describing the enzymatic processing of metabo-
lites. Though underappreciated, it also represents one of
the greatest achievements of science, resulting from
almost two centuries of biochemical research.

There is considerable interest in the processes underlying
the evolution of cellular metabolism. The existence of a
core ensemble of metabolic reactions common to most
organisms suggests that the global metabolic structure has
been the subject of strong evolutionary constraint. Simi-
larly, network connectivity properties suggest modular
components typical of evolved systems [1-3] and emer-
gence of hub metabolites involved in many reactions by
enzyme specialization [4]. How metabolic networks func-
tion and change as organisms increased in complexity
remains an important question, making metabolism an
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interesting model for the evolution of biomolecular net-
works.

Metabolism is largely driven by enzymatic specificities.
Consequently, the origin and evolution of metabolic net-
works can be explored advantageously by focusing on
protein molecules. However, metabolism is very ancient
and parts of the metabolic network probably evolved
prior to the origin of cellular life from reactions that could
have proceeded without catalysis or with inorganic cata-
lysts [5]. This view is supported to some extent by in vitro
experiments that try to simulate pre-biotic chemistry. It is
likely that polypeptides became metabolic catalysts
through takeover of pre-biotic reactions [6]. The earliest
enzymes were probably weakly catalytic and multifunc-
tional with broad specificities. Gradually, more numer-
ous, effective, and specific enzymes evolved from the
multifunctional enzymes through gene duplication,
mutation and divergence. The only condition necessary
for such a scenario appears to be selection for faster
growth [7].

As enzymatic pathways became more complicated, new
enzymatic functions and metabolic pathways could have
been generated by recruitment of individual enzymes
from the same or different pathways, or by enzymatic
recruitments en masse from entire pathways. In this regard,
several possible scenarios for the evolution of enzymes in
metabolic pathways have been proposed [8]. One popular
scenario is the "backwards" (or retrograde) evolution
hypothesis in which pathways evolve driven by successful
production of their end products [9]. Here, biosynthetic
pathways undergo retro-evolution, with recruitment of
enzymes (from within or outside the pathway) to host
sites sequentially more remote from the end product of
the pathway. By a symmetrical argument, catabolic path-
ways could have evolved sequentially from the metabolite
being degraded [10]. An alternative scenario is one in
which new pathways evolve by "enzyme recruitment”
from diverse donor sites throughout metabolism [11].
This hypothesis assumes there is already an active enzy-
matic core with multifunctional and/or specialized
enzymes from which new enzyme recruits are drawn for
metabolic innovation. The result is an evolutionary
"patchwork" of homologous enzymes that are present in
different pathways [6].

There is considerable evidence supporting the patchwork
recruitment scenario [8]. For example, enzymes with o/
barrel fold structure that catalyze similar reactions occur
across metabolic pathways [12]. These patterns of struc-
tural homology appeared to be pervasive when structural
assignments and sequence comparisons were used to ana-
lyze the small-molecule metabolism in Escherichia coli
[13,14]. Recruitment occurred with little regularity in
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these instances. However, proximity of donor and host
sites appear to influence the probability of recruitment,
with diversification to new host sites occurring mainly
from nearby enzymes and varying with metabolite usage
and enzyme class [15]. It is noteworthy that sequence
comparisons revealed homologous enzyme pairs occur-
ring close to each other in the metabolic network more
often than expected by chance [16]. However, these
homologous enzyme pairs had similar functions that
could be best explained by patchwork recruitment. These
observations suggest the retrograde evolution model
played a small part in the process of metabolic enzyme
evolution. None of these studies however used a phyloge-
netic approach to establish evolutionary patterns. Because
common ancestry is the organizing principle underlying
biology, we generate here a database for the evolutionary
study of metabolic networks that integrates fragmentary
knowledge about molecules and their interaction with
phylogenomic information. This database characterizes
patterns of evolution in cellular metabolism that will help
to resolve the contribution of various plausible evolution-
ary scenarios.

Proteins consist of domains, compact sections of the pro-
tein molecule that have distinct structure, function and
evolutionary history [17] and are used as a basis for struc-
tural classification [18,19]. Protein domains represent a
finite number of folding architectures, the so-called pro-
tein folds [20]. These folds are highly diverse and are
believed to originate from a common ancestor [20-22].
Crystallographic information gathered by structural
genomics has enhanced our knowledge of the universe of
fold architecture. This effort has been complemented by
matching structures defined by a library of folds to
genome sequences. For example, "occurrence analysis"
methods compare how often a particular fold or fold
group occurs in various genomes [23]. This provides
insights on the evolution of genomes because proteins
with similar sequences have analogous structures, and
structures are highly conserved in nature [23,24]. Using
this approach, whole-genome trees were reconstructed
based on the occurrence of fold architectures and gene
orthologs in genomes. These trees resemble those recon-
structed from the sequence of the small subunit of ribos-
omal RNA (rRNA) and showed the tripartite nature of our
organismal world [24-29].

We recently used an approach based on a census of folds
to study protein diversification and reconstruct universal
phylogenomic trees describing the evolution of protein
fold architecture [27,30,31]. Our approach is based on
two fundamental premises: (1) that protein structure is far
more conserved than sequence and consequently carries
considerable phylogenetic signal, and (2) that protein
folds that are successful and popular in nature are gener-
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ally more ancestral. Trees reconstructed from global fold-
usage statistics showed there were clear evolutionary pat-
terns in the appearance of protein folds. For example, the
folds in the o/P protein class appeared at the base of the
tree, and were followed by those in the o+, all-o, all-f,
small, and multidomain classes respectively [27]. A simi-
lar tendency was recently observed when reconstructing
parsimonious scenarios describing occurrence patterns of
folds in organismal phylogenies [32]. We also traced the
number of enzymatic functions associated with folds in
the tree of protein architecture and found that older folds
were associated with an increased number of enzymatic
functions. These phylogenomic studies suggest enzymatic
multifunctionality was replaced by specialized function
during evolution. Interestingly, a direct association
between protein classes and function was previously
revealed in which for example o/p folds were dispropor-
tionately associated with enzymes, especially transferases
and hydrolases, while all-o: and small proteins were asso-
ciated with non-enzymes [33]. Within o/f folds, five folds
were the most functionally versatile (TIM-barrel, Ross-
mann, ferredoxin, o/ hydrolase, and P-loop NTP hydro-
lase). These folds were all placed at the base of our
phylogenomic tree.

The Molecular Ancestry Network (MANET) project uses
information embedded in our phylogenomic trees to trace
evolution of protein fold architecture in biomolecular
networks (Fig. 1). In this paper, we describe the construc-
tion of metabolic MANET, a database that explores the
evolution of modern metabolism. Metabolic MANET
uncovers evolutionary patterns in metabolism at global
and local levels and reveals evolutionary relationships
between protein architecture and enzymatic function. We
used Protein Data Bank (PDB) entries to link enzymes to
protein folds and hidden Markov models (HMMs) to
assign structures to enzymes for which there was only
gene information. Phylogenomic trees were then recon-
structed from protein fold occurrence in sequenced
genomes representing species within the three organismal
domains of life. These trees were used to assign a relative
age (ancestry) to each metabolic enzyme for which a pro-
tein structure was known or could be inferred. Finally,
ancestries were "painted" onto metabolic subnetwork rep-
resentations with a color (value) that described the rela-
tive age of each enzyme in metabolism.

Construction and content

Approach

MANET links three flat files describing the metabolic
pathways database of the Kyoto Encyclopedia of Genes
and Genomes (KEGG), the Structural Classification of
Proteins (SCOP) database, and phylogenomic trees recon-
structed from a genome census of protein folds (Fig. 2A).
KEGG provides integrated information about cellular
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The Molecular Ancestry Network (MANET). The
MANET project traces evolutionary patterns derived from
phylogenomic analysis along biomolecular networks. In one
implementation of our method, we "paint" network nodes
with a color scale that reflect their ancestries.

metabolism [34,35]. This database contains graphical dia-
grams describing 132 metabolic subnetworks grouped
into 11 mesonetworks. Mesonetworks pool subnetworks
with functionally-related pathways. For example, the mes-
onetwork "amino acid metabolism" includes 16 subnet-
works that describe the synthesis and degradation of
specific amino acids. The KEGG pathway file included
4,362 metabolic enzymes classified according to their
function, 137 pathways and molecular complexes, 12,778
PDB structural entries, and nucleotide and amino acid
gene sequences. SCOP maps Protein Data Bank (PDB)
entries onto a structural classification of proteins [18]. The
SCOP file included a classification of 24,037 PDB entries
associated with fold families, fold superfamilies, and
folds. The phylogenomic trees describe phylogenetic rela-
tionships of protein fold architectures and were recon-
structed from fold occurrence in genomes that have been
completely sequenced. The phylogenomic file summa-
rizes the evolution of 784 folds in 174 genomes. Figure 2B
illustrates the data model of MANET in terms of entities
and their relationships. The schema shown in Figure 2C
specifies the column heads for the entities and relation-
ships. MANET links all components of the schema relat-
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abolicNetwork-B" (see Additional file 1).
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ing protein folds and enzymatic function within an
evolutionary perspective.

Phylogenetic analysis

A set of phylogenetic features (characters) was used to
describe the frequencies with which individual protein
folds occur in an individual genome. This frequency was
termed genomic abundance (G). At global levels, it
describes how popular is a fold architecture in nature. In
order to calculate G, we assigned structural domains to
proteins. We did this using the HMM-based SUPER-
FAMILY database [36]. SUPERFAMILY assigns protein
structures to amino acid sequences at the fold superfamily
level, i.e. at a hierarchical level capable of pooling proteins
for which there is structural and sequence evidence of a
common evolutionary ancestor [37]. The HMM searching
protocol uses a probability cut-off E of 0.02. Differences
in topologies of trees reconstructed with more stringent
cut-off values were found negligible [29], so we did not
explore the role of this parameter. We also used the hier-
archical scheme of SCOP to assign superfamilies to folds.
Version 1.67 classifies 65,122 domains present in 24,037
PDB entries into 1,447 superfamilies and 887 protein
folds. We analyzed the genome sequence of 36, 19 and
117 genomes from Eucarya, Archaea, and Bacteria, respec-
tively, and reconstructed phylogenetic trees describing the
evolution of 784 protein folds. Phylogenomic characters
were coded as previously described [27]. G was normal-
ized using gap-recoding techniques to compensate for dif-
ferences in genome size and proteome representation,
and was then subjected to logarithmic transformation to
account for unequal variances. The data was range stand-
ardized to a 0-20 scale compatible with most phyloge-
netic analysis programs, treated as linearly ordered
multistate characters using an alphanumeric format with
numbers 0-9 and letters A-K, and encoded in the NEXUS
format. The ANCSTATES command was used to polarize
characters assuming that the number of protein represent-
atives in a genome exhibiting a particular fold increases in
the course of evolution. Character argumentation is sup-
ported by model and assumptions described and dis-
cussed previously [27,30,31]. Phylogenies were
reconstructed using maximum parsimony (MP) as the
optimality criterion in PAUP* [38], and phylogenetic reli-
ability was evaluated by the bootstrap method [39]. Opti-
mal most-parsimonious trees were obtained from
heuristic maximum parsimony searches with tree-bisec-
tion-reconnection (TBR) branch swapping and 100 repli-
cates of random addition sequence after exclusion of
uninformative phylogenomic characters. To decrease
search times during branch swapping of suboptimal trees,
not more than one tree was saved in each replicate. The
structure of phylogenetic signal in the data was tested by
the skewness (g;) of the length distribution of > 104 ran-
dom trees and permutation tail probability (PTP) tests of
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cladistic covariation using >103 replicates. Homoplasy
and synapomorphy were measured with ensemble con-
sistency (CI) and retention (RI) indices.

Because reconstructed trees were intrinsically rooted, we
established the relative age of individual protein folds by
measuring a distance in nodes from the hypothetical
ancestral fold on a relative 0-1 scale. Concretely, we
counted the number of nodes in every lineage from the
root to the terminals of the tree and divided this number
by the maximum number of nodes in a lineage. This node
distance (nd) depicts the number of cladogenic events
along a lineage and was used as an indicator of the ancestry
of each metabolic enzyme for which a protein structure is
known or could be inferred. A Perl script was written to
extract ancestry values from phylogenetic trees.

Note that the central assumption that folds are more prev-
alent and widely shared the more ancient is their origin
follows a parsimony rationale supported by patterns of
distribution and sharing of protein folds across life, statis-
tical analyses, and phylogenetic considerations [27]. Our
model is global and applies to the world of genomes, sam-
pled by phylogenetic characters describing organisms in
the three domains of life. Consequently, the model
should be relatively insensitive to "genome lineage" spe-
cific factors such as selection pressures for genome expan-
sion or reduction, life styles of organisms considered, and
horizontal gene transfer events. However, our model is
minimalist in that it does not account for differences in
evolutionary rates across lineages and changes in the size
of the protein world expected to have occurred during
evolution. In particular, evolution of individual folds may
be influenced by factors affecting rates, induced for exam-
ple by instrinsic fold properties (e.g. flexibility). Conse-
quently, fold ancestries should be regarded as lower
bounds for times of origin.

Parsing

We retrieved flat files directly from KEGG [40] and SCOP
[41]. The retrieval date for data presented in this paper
was December 2004. We used Perl scripts to parse data
from the files, store the parsed data into the entities of
MANET, and manipulate the collected information in the
database system. For example, we parsed data fields such
as enzyme entry, pathway, and structural PDB entry from
the database file "enzyme" obtained from KEGG, and
inserted them into the entity called "MetabolicNetwork-
A". Similarly, we parsed PDB entries (structures) and
SCOP protein classifiers from database files such as
"dir.cla.scop.txt_1.67" obtained from SCOP into "PDB-
classification". Ancestry values were recorded into the
entity "Ancestry".
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Join operations and coloring of enzymes

Join operations necessary to combine information from
entities in MANET and coloring of enzymes are described
in the supplementary data [see Additional file 1]. The join
operation linked 687 enzymes to protein folds. This rep-
resents about 35% of total enzymes associated with path-
way information in the KEGG database. Coloring depicts
graphically the relative age of metabolic enzymes, when
these are associated to folds. A 'code generator' was used
to output PHP and Visual Basic script files that paint the
ancestries of enzymes on metabolic subnetwork diagrams.

Superfamily prediction using HMMs

In order to increase protein fold assignments to enzymes
in metabolic pathways, we used a library of HMMSs for
remote homology detection in SUPERFAMILY. We used
the model library, Perl wrapper scripts for sequence align-
ment, and the Sequence Alignment and Modeling System
(SAM), and ran the SUPERFAMILY software package
locally in a 15-node dual-processor Xserve cluster using
the genes catalog file obtained from KEGG. This file
includes amino acid and nucleotide sequence informa-
tion from complete or partial genome sequences. Details
can be found in the supplementary data file.

Statistical analysis

HMM-based structural prediction increased assignments
of protein fold to enzymes in metabolic pathways. How-
ever, biases in fold superfamily prediction could affect
evolutionary tracings in networks. To test the effect of pre-
diction bias, we selected amino acid sequences associated
with enzymes that had structural PDB entries. Statistical
tests were performed using the SAS software package [42].
The frequency distributions of ancestries derived directly
from structural models (group A) and from HMM predic-
tion (group B) were compared by using the Wilcoxon rank
sum test. This test is one of several statistical tests that ana-
lyze two groups. It requires equal variances and independ-
ence of samples taken at random, but unlike t-based tests,
it does not require for groups to have normal distributions
[43]. The null hypothesis of no difference between groups
was tested using the NPARIWAY procedure in SAS with
grouped data.

We also performed a global statistical analysis of distribu-
tion of ancestries in mesonetworks. All average ancestry
values of enzymes in the 11 mesonetworks described in
KEGG were analyzed by ANOVA and by multiple pair-
wise comparisons with the SAS package. There is a high
probability of declaring at least one pair of means signifi-
cantly different when running multiple comparisons
unless the per-comparison error rate o is small among
sample means [43]. We therefore considered Type I error
rates related to multiple comparisons, choosing the Least
Squares Means with adjustment for multiple comparisons
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as the general linear model (GLM) procedure and the
Tukey-Kramer method as the post-hoc test. The Tukey-
Kramer multiple-comparison procedure controls error
rates by testing every pair of means. The mesonetwork dis-
tribution data was subjected to logarithmic [log (y+1)]
transformation. This reduced variances by about 1% and
approximated data to normality.

Utility

A substantial body of literature has shown that linking
protein structure to proteins in biomolecular networks
can be advantageous. Some of these studies involved com-
prehensive structure-enzyme mapping exercises and
explored mechanistic aspects related to enzymatic func-
tion. For example, global analysis of small-molecule met-
abolic pathways in Escherichia coli has shown extended
distribution of structural homologues across metabolism
[13,14,44,45], sometimes confined to specific subnet-
works [45]. This and other evidence suggests the presence
of widespread enzymatic recruitment and other evolu-
tionary processes. Linking structure to metabolic function
has also shown that in metabolism, catalytic mechanisms
and co-factor binding properties are conserved while sub-
strate specificity is variable [14,40]. It appears it is easier
to evolve binding sites than catalytic mechanisms. A
recent study also shows for example that only a few fold
superfamilies exhibit great substrate diversity, while most
do not [46]. Knowledge of structure can therefore help
generate hypotheses about possible substrates associated
with a protein.

However, proteins with similar structures may or may not
be evolutionary related, and other approaches that intro-
duce phylogenetic views are therefore needed. For exam-
ple, Copley and Bork [12] used sequence, structure, and
function to derive a phylogeny describing the evolution of
members of 12 superfamilies with o/p barrel fold struc-
ture involved in metabolism. Establishing homologies at
these levels provided indications that these fold super-
families shared a common origin.

Our metabolic MANET database adds an evolutionary
component to global assignment of protein structure to
enzymes in metabolic subnetworks. Phylogenomic trees
that describe the evolutionary relationship between pro-
tein fold architectures were used to define ancestries of
individual folds, and these were traced onto metabolic
subnetwork diagrams representing modern metabolism.
Because our phylogenies were reconstructed from fold
occurrence in hundreds of organisms with fully
sequenced genomes spanning all three domains of life,
they represent global phylogenetic statements about the
protein world [27]. These statements are therefore appro-
priately mapped to enzymatic structure in global cross-
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organismal representations of metabolism, such as those
embedded in KEGG.

Tracing evolution of protein architecture in metabolic net-
works is useful. The exercise can uncover evolutionary pat-
terns of architectural diversification within individual
pathways of a subnetwork or between subnetworks and
mesonetworks. Because metabolism is highly conserved,
with about half of enzymes present in at least one species
from the three domains of life [47], it is therefore possible
to identify evolutionary patterns unique to the metabolic
core that is universally conserved. MANET can also help
identify processes driving the evolution of modern metab-
olism at local and global levels, including enzyme recruit-
ment. It also allows query of SCOP, PDB, Enzyme
Commission (EC) numbers, and subnetwork information
that is useful for discovery of links between enzymatic
activities and structures.

The web interface of MANET implements server-side
scripts with a system of database management that pro-
vides visualization, query, and statistical analysis dynam-
ically. All components of MANET are Perl-based and
easily updated. Enzymes associated with protein folds are
painted directly on subnetwork diagrams. Each enzyme is
also hyper-linked to the KEGG database so that the user
can retrieve additional information by clicking in the dia-
gram. MANET also provides numerous functionalities,
which enable searching for specific protein folds with
defined ancestry values, displaying the distribution of
enzymes that are painted, and exploring folds in individ-
ual subnetworks. Finally, the frequency distribution of
ancestry values for each subnetwork can also be visual-
ized.

Results and discussion

The MANET database project traces the evolution of pro-
tein structure in biomolecular networks with bioinfor-
matic, phylogenetic, and statistical methods. Metabolic
MANET links the SCOP and KEGG databases to universal
phylogenies of protein fold architecture. The database was
assembled in multiple steps. We first reconstructed phyl-
ogenomic trees describing the evolution of protein folds
in 174 proteomes belonging to Eucarya, Archaea and Bac-
teria. These trees are large and can be visualized using
hyperbolic tree visualization tools [48]. Figure 3 shows
cladogram, hyperbolic, and circular tree representations
of the tree of protein architecture used in this study. The
tree is consistent with phylogenies generated previously
from a set of 32 proteomes using the same approach [27].
These tree reconstructions were then used to assign a rela-
tive age (ancestry) to each fold based on how many
cladogenic events occurred in each lineage (Fig. 3).
Finally, ancestries were literally painted onto metabolic
subnetworks with information derived from SCOP, KEGG
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and HMM-based fold superfamily prediction tools. Figure
4 describes a representative subnetwork of metabolic
MANET showing enzymatic nodes painted with molecu-
lar ancestries. Please note that ancestries represent a lower
limit on the time at which the fold might have been
adopted for a particular enzymatic activity.

Reconstructed trees were based on a genomic census of
protein architecture. Consequently, they depend on the
accuracy of genomic databases, a balanced genomic sam-
pling of the living world, efficient and accurate assign-
ment of structures to proteins, a structural classification
scheme that depicts evolutionary patterns, and methods
of phylogenetic tree and character state reconstruction.
The influence of these factors has been discussed previ-
ously [27,30,31]. While there is no possible gold standard
that can be used to confirm the validy of phylogenomic
statements, the genome census data we use to generate the
tree of fold architectures was also used to generate trees of
proteomes, and these trees group organisms in the three
domains for the most part according to established organ-
ismal classification [Wang and Caetano-Anollés, ms. in
preparation]. This observation supports the validity of
phylogenetic signal embedded in the data.

Our study also rests on the accuracy of SCOP, a robust
protein classification scheme [18,49], and on the mono-
phyletic nature of protein folds and superfamilies. Conse-
quently our inferences should be regarded as rough first
approximations. While we do not expect major changes in
the operational definition of a protein fold, many folds
could be better described by "continuous" rather than
"discrete” distributions in structure space [50]. Further-
more, we trust SCOP hierarchies reflect true evolutionary
groupings. In SCOP, proteins in families express clear evo-
lutionary relationships. They generally exhibit >30% pair-
wise residue identities or have functions and/or structures
that provide definite evidence of common descent. Simi-
larly, fold superfamilies contain proteins with structural
and functional features that are highly suggestive of a
common evolutionary origin. However, highly popular
folds encompass collections of fold superfamilies that
share the same arrangement and topology of secondary
structures but may not have a common evolutionary ori-
gin. Consequently, the monophyletic nature of protein
folds needs to be examined case by case, as has been done
for the (Ba)g barrels [12,51].

Currently, metabolic MANET contains 23,217 entries
linking 1,255 enzymatic activities to PDB entries, folds,
ancestry values, and pathways. A total of 6,552 PDB
entries are associated with metabolic subnetworks. Based
on information derived mostly from crystallographic
structural models, 33% of metabolic protein nodes were
painted in phylogenetic tracings of the metabolic path-
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Figure 3

Phylogenomic tree reconstruction of protein fold architecture generated from a domain census in 174 com-
pletely sequenced genomes. The structural census was defined by advanced HMMs and assigned domain structure to about
60% of genomic sequences. Three optimal trees of | 15,818 steps were obtained after a heuristic search (Cl = 0.134, Rl =
0.696; RC = 0.093; g, = -0.406; p < 0.01). The consensus phylogenomic tree is shown as a rooted dendrogram with terminals
colored according to ranges of ancestry values (A), an unrooted hyperbolic tree (B), and a rooted circle tree (C). Terminal
taxa are not labeled except for the fold of oldest origin, c.37, the P-loop hydrolase fold.
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Figure 4

Representative subnetwork diagram describing molecular ancestries in metabolic MANET. A colored scale is use
to assign binned ancestry values to enzyme nodes named with EC numbers. The red color represent enzyme nodes with the
oldest ancestry (i.e. with ancestry values falling within the oldest range) and the blue color those of youngest ancestry. Some
enzymes have more than one structural assignment. They are multidomain proteins or have different structures in different
organisms. Colored enzymes with ancestry assignments resulting from HMM-based predictions are distinguished with a "sf"
marking at the top right of rectangles depicting enzymatic nodes. Each subnetwork diagram also shows a frequency distribution

plot of ancestries.

ways that are registered in KEGG. Use of HMMs that
assign probable fold superfamily identities to protein
sequences increased the fraction of painted enzymes to
63%. Individual steps in the analysis and sorting of data
can be found in the supplementary data [see Additional
file 1]. Among the 132 subnetworks from the MANET
database, 122 subnetworks described metabolic pathways
and 10 subnetworks described processing of genetic, envi-
ronmental and cellular information. On average, 72% of
enzymes were painted in metabolic MANET [see Addi-
tional file 1], ranging from 6% for the monoterpenoid
biosynthesis subnetwork to 100% for subnetworks such
as aminoacyl-tRNA biosynthesis, reductive carboxylate
cycle (CO, fixation), and novobiocin biosynthesis. Large
subnetworks such as those belonging to nucleotide, car-
bohydrate and amino acid mesonetworks were painted
similarly to others. Interestingly, some subnetworks con-

tained more evolutionary information. Subnetworks such
as purine metabolism and pyrimidine metabolism that
contain many more enzymes than others had about 83%
and 79% of enzymes painted, respectively. Only 10 sub-
networks (7.6%) in metabolic MANET did not have
entries associated with ancestry values. These were beta-
lactam resistance and clavulanic acid biosynthesis in mes-
onetwork "biosynthesis of secondary metabolites", 1,1,1-
Trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) degra-
dation and bisphenol A degradation in "biodegradation
of xenobiotics",  glycosylphosphatidylinositol(GPI)-
anchor biosynthesis in "glycan biosynthesis and metabo-
lism", and biosynthesis of ansamycins, biosynthesis of
siderophore group nonribosomal peptides, biosynthesis
of vancomycin group antibiotics, and biosynthesis of type
IT polyketide products in mesonetwork "biosynthesis of
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polyketides and nonribosomal peptides". The efficiency
of painting was not biased by subnetwork size (Fig. 5).

Evolutionary tracing in MANET reflects information
derived from structural models present in the PDB or rep-
resents HMM-based inferences of structural classification.
In order to test if biases in fold superfamily predictions
could affect evolutionary tracings in networks, we
designed a statistical test that compared frequency distri-
butions of ancestries derived from the join operation
defined by structural models (population group A) or
derived from HMM-based predictions (population group
B). We selected amino acid sequences associated with
enzymes that had structural PDB entries and participated
in the join operation. A total of 72,354 amino acid
sequences within this category were selected, and result-
ing ancestry values were calculated and analyzed (Fig. 6A).
The mean (+ SE) for ancestry value distributions was
0.277 + 0.008 and 0.296 + 0.006 for populations groups
A and B, respectively. Basic statistical parameters showed
both ancestry frequency distributions were not normally
distributed but had the same shape with almost the same
variance (0.072 and 0.078 for groups A and B). However,
measurements of skewness (1.068 and 0.990) and kurto-
sis (0.233 and -0.029) indicate the distribution of group B
was shifted to the right of the distribution of group A. The

100

Carbohydrate
Amino acids
Other aminoacids

80 —

Nucleotides

Cofactors and vitamins
Energy

Xenobiotics

60 — Glycans

Polyketides and other
Lipids

Number of enzymes/subnetwork

1 Subnetwork 133

Figure 5

Painting efficiency in metabolic subnetworks. The plot
describes the total number of enzymes (black line) and the
total number of painted enzymes (red line) in each of the 132
subnetworks described in KEGG, sorted according to
enzyme number. Subnetworks belonging to individual meson-
etworks are identified with different colors.
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Wilcoxon rank sum test showed that the p-value (0.0553)
for a one-tailed test was greater than the expected value for
o = 0.05 (using both normal or t-approximation), failing
to reject the null hypothesis that ancestry values distribu-
tions for groups A and B were identical. We therefore con-
clude that ancestry value distributions derived from
structural models or HMM predictions were not signifi-
cantly different at the 95% confidence level.

We also tested the accuracy of the HMM prediction. We
selected PDB entries corresponding to enzymes in KEGG
that participated in the join operation and were classified
structurally, assigned PDB sequence records downloaded
from ASTRAL [52] to the PDB entries, and analyzed the
PDB sequences using the HMM package at E value = 0.02.
Superfamily IDs and structural classifications correspond-
ing to the PDB sequences were retrieved. Out of 21,173
PDB entries corresponding to enzymes identified by the
join operation, 20,941 PDB entries mapped to ASTRAL.
Sequences corresponding to these PDB entries were ana-
lyzed further. The HMM-based method rejected 212
sequences, leaving a total of 20,729 PDB entries with an
assigned fold structure. Out of these, only 67 PDB entries
differed in the expected fold assignment. At the fold
superfamily level of classification, 106 PDB entries dif-
fered in the expected superfamily assignment. These
results indicate that the HMM-based superfamily predic-
tion can be performed at 98% accuracy levels. The details
of this analysis can be found in our website.

The assignment of numerical ancestry values to enzymes
in cellular metabolism uncovers evolutionary patterns of
architectural diversification within the metabolic net-
work. A quick examination of ancestry distributions
depicted in each subnetwork and mesonetwork diagram
of the MANET database reveals that enzymes of old origin
generally coexist with those of recent origin (see example
subnetwork; Fig. 4). A more detailed analysis of individ-
ual subnetwork paintings reveals the absence of clear pat-
terns in individual pathways. Enzymes of old origin were
generally followed haphazardly by enzymes of recent ori-
gin, and vice versa, with no apparent pattern along path-
ways. The patchy appearance of ancestries in subnetworks
belonging to all metabolic mesonetworks supports
strongly the enzyme recruitment (patchwork) evolution-
ary scenario as the major evolutionary force responsible of
present day metabolism. Metabolic MANET makes visu-
ally evident enzymatic recruitment patterns that have
been observed previously (e.g. [13,14]), placing them into
a relative evolutionary time frame. This offers the possibil-
ity of reconstructing temporal timelines of recruitment
episodes in subnetworks and mesonetworks. Other evolu-
tionary alternatives (backward evolution, forward evolu-
tion, de novo invention, pathway duplication, etc.) are
not readily visible in our evolutionary tracing exercise. A
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Figure 6

Box-and-whiskers plot describing global frequency distribution profiles. A. Comparison of ancestry values derived
from structural models using the join operation (population group A) and predicted using HMMs (population group B) in met-
abolic MANET. B. Statistical analysis of ancestry distribution in metabolic mesonetworks. Mesonetwork distributions next to
vertical bars headed by the same letter are not significantly different (p < 0.05). The Least Squares (LS) means and number of
enzymes analyzed (n) are given for each mesonetwork. Skeletal boxes describe median, lower and upper quartiles, and whisk-
ers describe maximum and minimum values. Crosses indicate mean values.

detailed analysis of each subnetwork will be required to
reveal the incidence of these possible evolutionary mech-
anisms. Pathway 'take-over' mechanisms in which new
enzymes replace either pre-biotic chemistries or old
enzymes, and 'co-option' mechanisms in which old
enzymes gain novel functions, are also possible. In this
regard, we are currently evaluating possible take-over epi-
sodes in metabolic subnetworks that may result from en
masse enzymatic recruitment processes occurring in sub-
network pathways. We envision that uncovering take-over
patterns in MANET at global levels will require extensive
information about possible pre-biotic chemistries and
novel phylogenetic approaches.

The evolutionary patterns revealed by MANET have other
interesting implications. If we assume that pre-biotic
chemistries remain imprinted in modern metabolism as

relics of the pre-biotic world, patterns of enzymatic ances-
tries may reveal fundamental steps in prebiotic evolution.
These evolutionary patterns may still manifest in the sub-
networks despite obscuring events such as take-overs.
Morowitz [53,54] proposed that metabolism evolved
through the sequential addition of shells to an "energy
amphiphile" core (shell A), which consisted of the Krebs
cycle, glycolysis, and fatty acid biosynthesis. The amina-
tion of 2-ketoglutarate was the gateway to shell B, the syn-
thesis of most amino acids. In shell C sulfur was
incorporated into cysteine and methionine. The gateways
to shell D, ring closure and synthesis of nitrogen and din-
itrogen heterocycles, gave access to purines, pyrimidines,
and many cofactors, including B,,. This scenario suggests
that compounds in shell D evolved after enzymes (derived
from shell B and C) and were not a part of prebiotic chem-
istry. The energy amphiphile core is consistent with
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Waichtershiuser's proposal that life evolve on pyrite (see
[5])- According to this theory of an iron-sulfur world, a
reductive citric acid cycle that used thio-organic homo-
logues evolved early and was later coopted for oxidation.
The reductive citric acid cycle, an autocatalytic network,
expanded by branch reactions into higher homologous
cycles. This archaic network included pathways for the
synthesis and degradation of phosphorylated sugars,
some amino acids (glutamate, aspartate, alanine, lysine),
fatty acids and isoprenoids, coenzymes (including
tetrapyrroles), and purines.

When ancestry patterns embedded in the subnetworks of
MANET were analyzed, sequential evolution of metabolic
"shells" was not obvious. However, pervasive enzyme
recruitment could have masked the original pre-biotic
evolutionary patterns. In fact, we performed a global sta-
tistical analysis of the distribution of ancestries of
enzymes in metabolism, testing if global evolutionary pat-
terns in metabolism matched possible "shell" scenarios
(Fig. 6B). We calculated mean ancestry levels from fre-
quency distribution patterns of ancestry data for mesonet-
works, assuming these values were indicative of an
average age of the enzymes examined. The statistics of dis-
tribution of ancestries in mesonetworks showed that dis-
tributions differed significantly in mean ancestry levels (p
< 0.0001; ANOVA, F-test). Furthermore, the analysis
revealed that amino acid mesonetworks were the oldest
and lipid (including steroid) and glycan mesonetworks
were relatively recent evolutionary additions (p < 0.05;
Tukey-Kramer multiple comparison). The early evolution-
ary appearance of mesonetworks related to amino acid
metabolism suggests that metabolic routes leading to the
synthesis of polypeptides (shells B and C of Morowitz)
'internalized' early into the protein-based enzymatic
machinery.

While mesonetworks may pool subnetworks of different
average ancestry complicating interpretation, our results
are nevertheless consistent with the shell hypothesis of
Morowitz [54]. In this regard, the early evolution of
amino acid metabolic mesonetworks raises an interesting
question. Why were the energy amphiphile core pre-biotic
functions not the first to be replaced by enzymatic coun-
terparts? These pre-biotic functions were the oldest and
probably the most stable. One explanation is that replace-
ment of non-enzymatic amino acid metabolic pathways
follows the need to secure amino acid synthesis for pro-
tein-based enzymatic activities. It is possible that pre-
biotic entities could have competed with each other for
environmental resources during this early stage of meta-
bolic evolution. Within this context, the opening of the
gateway to amino acid synthesis proposed by Morowitz
could have offered the possibility of creating enzymes that
would perform pre-biotic functions more effectively.

http://www.biomedcentral.com/1471-2105/7/351

Conclusion

We constructed a database that links biomolecular net-
works, protein structure, and phylogenomics. Metabolic
MANET traces the evolution of protein structure directly
onto metabolic networks defined by KEGG, enabling the
study of evolutionary patterns in metabolism at global
and local levels. MANET can be a valuable resource and
constitutes a discovery tool. Individual pathways within
subnetworks and mesonetworks can be examined and
evolutionary patterns can be detected by visual inspection
or statistical analysis of ancestry distributions. The data-
base has many possible applications. For example, it can
be used to search for patterns of fold superfamily sharing
between subnetworks, with the aim of displaying the
coordinated evolution of the subnetworks. Evolutionary
information deposited in metabolic MANET will be
enhanced by the exponential increase in the number of
genomes that have been sequenced, the number of fold
architectures uncovered, and the number of metabolic
enzymes with gene assignments. The principles used in
the construction of metabolic MANET are general and can
be extended to other biomolecular networks. In the near
future, we plan to analyze other networks of importance,
such as cell signaling and other protein interaction net-
works.

Availability and requirements

The MANET database can be accessed via the Internet at
http://manet.uiuc.edu. Data materials are formatted as
EXCEL or column-delimited flat files for parsing with pro-
gramming tools such as Perl and are openly available at
our web site. The use of information obtained from the
KEGG and SCOP databases is restricted by licensing con-
ditions specified elsewhere. Contact information: THE
MANET PROJECT, Atelier of Plant Bioinformatics, E-mail:
evolutionary-manet@uiuc.edu.
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