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Abstract

Background: Immunological prevention of cancer has been obtained in HER-2/neu transgenic
mice using a vaccine that combines 3 different immune stimuli (Triplex vaccine) that is repeatedly
administered for the entire lifespan of the host (Chronic protocol). Biological experiments leave
open the question of whether the Chronic protocol is indeed the minimal vaccination schedule
affording 100% protection, or whether shorter protocols could be applied that would result in the
same efficacy. A biological solution would require an enormous number of experiments, each
lasting at least one year. Therefore we approached this problem by developing a simulator
(SimTriplex) which describes the immune response activated by Triplex vaccine. This simulator,
tested against in vivo experiments on HER-2/neu mice, reproduces all the vaccination protocols
used in the in vivo experiments. The simulator should describe any vaccination protocol within the
tested range. A possible solution to the former open question using a minimal search strategy based
on a genetic algorithm is presented. This is the first step toward a more general approach of
biological or clinical constraints for the search of an effective vaccination schedule.

Results: The results suggest that the Chronic protocol included a good number of redundant
vaccine administrations, and that maximal protection could still be obtained with a number of
vaccinations ~40% less than with the Chronic protocol.

Conclusion: This approach may have important connotations with regard to translation of cancer
immunopreventive approaches to human situations, in which it is desirable to minimize the number
of vaccinations. We are currently setting up experiments in mice to test whether the actual
effectiveness of the vaccination protocol agrees with the genetic algorithm.

Background antigen and two adjuvant signals, interleukin 12 (IL-12)
Experiments in transgenic mice showed that mammary  and allogeneic class I major histocompatibility complex
carcinogenesis driven by the HER-2/neu oncogene can be  antigens, referred to as the Triplex vaccine [1,3].
completely prevented by prophylactic vaccines that elicit

protective immune responses [1,2]. One of the most effec- A complete prevention of mammary carcinogenesis with
tive vaccines was made of cells expressing the HER-2/neu  the Triplex vaccine was obtained when vaccination cycles
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(one intraperitoneal vaccination every 3-4 days for a total
of 4 vaccinations over 2 weeks, followed by 2 weeks of
rest) started at 6 weeks of age and continued for the entire
duration of the experiment, at least 1 year (Chronic proto-
col). Various attempts at reducing in vivo the number of
vaccinations invariably resulted in all mice succumbing to
tumors. This was the case with experiments in which we
tested the effects of just 3 vaccination cycles starting at 6,
10 or 16 weeks of age (Early, Late and Very late protocols,
respectively) [1].

Biological experiments leave open the question of
whether the Chronic protocol is indeed the minimal vac-
cination schedule affording 100% protection, or whether
shorter protocols could be applied that would result in the
same efficacy. A biological solution would require an
enormous number of experiments, each lasting at least a
year. We approached this problem in two steps. First we
developed a mathematical model/simulator (SimTriplex)
which describes the immune response activated by the
Triplex vaccine and we validated it using all existing in vivo
experiments, then we used the simulator to search in silico
for optimal vaccination protocols, defined here as proto-
cols that minimize the number of vaccinations without
reducing tumor prevention efficacy in comparison to the
Chronic protocol.

Mathematical and computer models of the immune
response have been proposed over the last two decades,
using a variety of different approaches. The model we use
to describe the cancer-immune system competition
induced by the Triplex vaccine originates from the cellular
automata-like approach proposed by Celada and Seiden

[4].

Using this approach, one can describe all the relevant enti-
ties of the phenomena and their interactions by means of
rules derived from biological experiences. In our model
and simulator we describe the most relevant entities and
processes (immune system, cancer cells, vaccine cells)
needed to reproduce the immune response induced by the
vaccine, a detailed description being found in the refer-
ences [5] and [6], Figure 1 summarizes the main logical
interactions in the SimTriplex simulator.

As reported, the model and the simulator have been vali-
dated against existing in vivo experiments. In silico experi-
ments show excellent agreement with in vivo experiments,
and in the validation range SimTriplex represents a good
cancer-immune system simulator [6].

A validated simulator will reasonably reproduce, in the
validation range, the immune response activated by a vac-
cination protocol, thus one can reproduce in silico differ-
ent vaccination schedules and search for the "best" ones,

http://www.biomedcentral.com/1471-2105/7/352

i.e. the schedules with the minimum number of vaccine
administrations which still prevent tumor formation
(optimal schedule).

In searching for an optimal schedule, we have tried differ-
ent strategies. The first attempt was made by a "trial and
error" method. We set successively repeating cycles of
injections at different stages of the virtual mouse age, and
the simulator was used to determine the survival of vacci-
nated mice. In this way we found an effective schedule of
only 44 vaccinations, that is 27% less than the standard
Chronic protocol [5]. A second search strategy was based
on genetic algorithms [7]. Attempts at using an uncon-
strained genetic algorithm led to the conclusion that a
genetic search should be constrained on biological bases
[8]. Furthermore it must be kept in mind that in vivo
experiments in transgenic mice, as all biological experi-
ments, are affected by natural immunological variability
resulting from subtle individual variations in the genera-
tion of the immunological repertoire, and in interactions
with environmental variables [3]. The SimTriplex simula-
tor, and its ancestor ImmSim [4], faithfully model this
aspect, for example, through the generation of a random
repertoire of antigen receptors in each in silico mouse.
From previous experience [8], we concluded that a genetic
search should take into account simultaneously different
simulated individuals and we present what is probably a
satisfactory result. Section Results provides computational
results. And in Section Conclusions, the conclusions and
final remarks are made.

Results

On the parallel machine the genetic algorithm required
72 h and returned a 35 injections schedule. This schedule
was then applied to the 2 samples of 100 mice and esti-
mated that 88% of the mice remained tumor-free at 400
days of age. Figure 3 shows that the tumor-free survival
curves of groups of two samples of 100 virtual mice and 8
actual mice vaccinated according to different protocols
were almost identical. Figures 4-6 show the evolution of
the mean values of the relevant immune responses when
the GA vaccination schedule was applied to the mice in
the sample (left column graphs, labeled GA-s) versus the
same quantities previously computed [6] for the Chronic
schedule (right column graphs, labeled CH-s). As shown
in [5], it should be remembered that the error level in
steady phase of Chronic schedule plots (CH-s) was 5-8%.

The cancer cell plot (Figure 4) includes lines showing the
upper and lower limits of the error, as well a top straight
line which represents the limit of solid tumor formation
and a stepwise line which represents the limits imposed to
the GA search (equation 6).
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SimTriplex logic interactions chart. Vaccine Cells (VC) produce interleukin 12 (IL-12) and release Tumor Associated
Antigens (TAA) when they die either spontaneously or as a consequence of cytotoxic T cell (TC) lysis upon recognition of all-
ogeneic MHC on VC. TAA interact with antigen presenting cells (APC), i.e. macrophages (MP), dendritic cells (DC) and B cells,
which internalize TAA and become able to stimulate helper T cells (TH). A TH<B interaction induces differentiation of B cells
into plasma cells (PLB) which produce antibodies (Ab) recognizing cancer cells (CC). IL-12 enhances the effectiveness of Natu-
ral Killer (NK) and TC against CC. The final state is that CC are controlled by immune responses activated by VC. All the
interactions embed a probabilistic rule which depends on biological affinity or other factors.

First, note that the cancer cells plot for CH-s is almost flat
for t > 200 days, while the plot for GA-s shows an increas-
ing number of cancer cells. The latter behavior is consist-
ent with the imposed constraints requirement, for t > t*,
to the GA, which was a safer level. This means that CH-s
includes many redundant vaccine injections.

The same effect could be seen in tumor-associated anti-
gens behavior (Figure 4). This is consistent with the cancer
cells plots, since a higher number of depleted cancer cells
would produce a higher number of TAA. Helper T cell
behavior in GA-s (Figure 5) is almost equal (+ 1%), i.e.
inside the errors bar, to the CH-s one. It is interesting to
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Correspondence between vaccinations and the elements of a genetic algorithm. A complete vaccination schedule
was encoded into a bitstring. Each bit represents a 8 h time-step in which a single vaccination can be administered (bit = |) or
not (bit = 0). In genetic algorithm parlance each bit is a gene and the entire bitstring a chromosome.

Figure 2

compare the plots of cytotoxic T-cells. The GA-s plots
show in the initial phase (t < 150 days), a smaller value of
the peak which is outside the error bar limits. This means
that the new schedule would produce a smaller cytotoxic
response. In the second phase (¢t < 150 days), the new
schedule shows two small humps (both outside the error
limits) which are due to the cytoxic response to the cancer
cells peaking in the same period.

The GA-s B-cell plot (Figure 6) shows again slightly larger
oscillation in the second period (¢t > 150 days). Those
oscillations are effective (i.e. outside error bars) and due,
as before, to secondary TAA growth. The antibodies plots
for both schedules (Figure 6) are equal in the limits of the
error bars. This suggests that humoral response will be
able to control the tumor growth in the new schedule as
in the Chronic one.

Discussion

We have presented an evolutionary algorithm which effi-
ciently finds effective vaccination schedules for protecting
virtual mice from mammary carcinoma. Modeling
immune response has been attacked over the last two dec-
ades [4,9]. However, as far we know, this is the first
attempt to use a validated simulator to predict immune
response stimulated by a vaccine. The model prediction, if
confirmed by our in vivo experiments, has practical appli-
cation in vaccine discovering and testing.

Comparing the behaviors of the relevant biological and
immunological responses in the 2 schedules shows that
the new protocol controls the tumor growth in much the
same way as the Chronic schedule. The genetic algorithm
outlined here is the most efficient method tested so far to
find optimal vaccination schedules in this biological
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Tumor-free survival curves. Tumor-free survival curves of groups of virtual and actual mice vaccinated according to differ-
ent protocols. " Untreated" and " Chronic", groups of 8 actual mice receiving either no treatment or vaccinations according to
the Chronic protocol, respectively [3]. "Genetic, sample |" and "Genetic, sample 2": groups of 100 virtual mice vaccinated

according to the protocol yielded by the genetic algorithm.

model system. An alternative schedule has been suggested
in [5], based on a "trial and error" method (Figure 10 and
11 in [5]). Comparison of this result with the one pro-
posed in Figure 3 shows that the GA search is more effec-
tive than the trial-and-error one because it found a
schedule of equal potency with less vaccinations.

The design of vaccination schedules is a key element in
determining the protective effect of a vaccine [10]. How-
ever most actual schedules are decided a priori on a purely
empirical basis, with a few "stepping stones" derived from
basic immunological knowledge. Only after a sufficient
number of individuals has been vaccinated is it possible
to define immunological correlates of protection (e.g.
serum antibody titers) that can be used to guide, once
again empirical, refinements of the vaccination protocol
[11]. The latter approach works better for vaccines against
infectious agents than cancer because immunological
parameters measured in peripheral blood correlate poorly
with the immune response inside neoplastic lesions
[12,13]. Paradoxically it is easier to improve on poorly
effective schedules rather than to optimize effective ones,
because once a successful protocol is established one does
not risk a loss of protection just to spare some vaccina-
tions, especially if side effects of repeated vaccinations are
of minor consequence. The problem of defining optimal
schedules was particularly acute in cancer immunopre-

ventive approaches, like the Triplex vaccine, which must
keep a high level of protective immunity against a contin-
uing generation of cancer cells for very long periods, ide-
ally for the entire lifetime of the host [2]. Experimental
evidence showed that vaccination protocols much shorter
than the Chronic one only resulted in a delay of mam-
mary carcinogenesis, but all mice eventually succumbed
to tumors [1]. However, the very long duration of experi-
ments (at least one year), combined with the high number
of vaccinations actually forbade an exhaustive search of a
minimal vaccination protocol.

Conclusion

The results of the genetic algorithm applied to the SimTri-
plex simulator suggest that the Chronic protocol included
a good number of redundant vaccine administrations,
and that maximal protection could still be obtained by
halving the number of vaccinations. This is an important
result with regard to translation of cancer immunopreven-
tive approaches to human situations, in which it is desir-
able to keep the number of vaccinations to a minimum,
and in vivo experiments in mice to test the actual effective-
ness of the vaccination protocol indicated by the genetic
algorithm are now being set up.

The possible outcomes of the experimental validation

include complete protection from tumor onset, indicating
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Kinetics of cancer cells and tumor associated antigens. The number of CC and TAA due to vaccinations according to
the GA schedule (GA-s, left panels) and Chronic schedule (CH-s, right panels) is shown versus time in days. Small vertical lines

indicate the vaccine's injection times.

that further reduction in the number of vaccinations is
feasible; or a significantly low degree of protection, indi-
cating that more vaccinations are required. On the basis of
the results of validation experiments, we will iteratively
implement a cyclical refinement of the computer model
to define further biological experiments, a strategy that
was shown to significantly improve the efficiency of
research [14,15].

Methods

Standard theory of Genetic Algorithms (GA) was first
introduced by Holland in 1975 [7]. Our approach differs
from a standard GA since it uses a simulator to compute
the fitness function. To the best of our knowledge, very
few examples of this type exist in the literature and none
in bioinformatics. First, the entities of the GA are defined
according to the usual terminology of GA literature [7].
Each GA's chromosome in the chromosomes' population
represents a vaccine schedule (Figure 2). The chromosome

is a binary string of 1200 bits, in which each gene (i.e.
each bit) represents a time-step, t;, during which it is pos-
sible to inject a vaccine dose. The time interval &t = ¢;,, - ¢;
is a constant and it is ~ 8 h of actual time. If the i-th gene
is expressed, i.e. the i-th bit is set to 1, then a vaccination
has to be administered at time-step i; otherwise if the i-th
gene is not expressed, i.e. the i-th bit is set to 0, then no
vaccination has to be administered at time-step i. The set
comprises 80 chromosomes.

The selection operator used is tournament selection [16].
Reproduction uses uniform crossover; mutation and elit-
ism were implemented in a standard way [7].

SimTriplex simulator computes the main biological enti-
ties of the cancer - immune system competition. If the
number of cancer cells is > 105, then the simulator recog-
nizes the solid tumor formation (carcinogenesis) and sim-
ulation ends at the time that has been reached. We will
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vaccine's injection times.

refer to this time as the mouse survival time. An effective
vaccination must reach a mouse survival time of 1200
time-steps equal to a lifespan of 400 days.

In defining the fitness function we must take into
account 2 fundamental and competing requirements: i)
any schedule must be an effective one, i.e. the mouse sur-
vival time must reach 400 days; ii) the best schedules must
have a minimal cardinality, i.e. they must provide mice
survival with the minimum number of vaccine injections.

Any evolutionary approach which only takes into consid-
eration the first requirement would produce chromo-
somes very rich of 1, thus not minimal. If instead we take
into consideration just the second requirement, we would
get chromosomes full of 0, and thus very likely we would
obtain a non-effective schedule.

Therefore the fitness function must be at least a 2 variable
function of type f (n, s, ...), where n is the number of injec-
tions, and s is the mouse survival time measured in time-
steps; it must be a decreasing function with respect to
number of injections and an increasing function with
respect to survival time. The following 2 properties must
hold:

f(ns...)<f(ns,.. . )iffs>s" (1)
f(ns...)>f(n's..)iffn>n" (2)

The simplest example of a 2 variable fitness function is f
(n, s) = n2/s. Tests using this fitness function on a single
mouse [8] yielded very high peaks in cancer cell number.
Those peaks were below, but very close to, the threshold
of solid tumor formation. Even if a solid tumor is not yet
formed, a high number of cancer cells may induce, by
overstimulation, an anergic state of T lymphocytes,
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depleting in this way the immune system response and
enhancing the risk of carcinogenesis. We concluded that it
is better to include a control on tumor growth in the fit-
ness function, to reproduce the behavior of cancer cells in
the simulation of the Chronic protocol, which effectively
prevented tumors in mice [6]. For this we chose a 3 varia-
ble function for a single mouse, namely:

2
f(n,s,ﬁ)=”7-ﬂ (3)

where fis defined as:

N, }c N czc : 1 2
L% ifN.. >y, VN =

ﬁ — yl 'YZ cc yl cc 7/2 ( 4 )
1.0 otherwise

and N, is the maximum number of cancer cells in the

lattice during the time interval [0, t*]; and N CZC is the same
quantity in the time interval [t*, 1200]. ¢t* has been cho-
sen to be equal to 150 time-steps in order to distinguish
the transient phase from the steady one [8]. Finally we
1.7-104 (the
height of the first peak in the simulation of the Chronic
protocol [6]); ii) 7 = 5-103 (slightly higher than in the

chose the 2 constants as follows: i) % =

Chronic protocol but well below the tumor threshold).
Fitness function (3) meets the requested properties (1)
and (2).

The GA found a schedule that maintains a cancer cell
threshold below the requested one in the test individual,
but the same schedule applied to the large statistical sam-
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ple previously used [8] returned 20% tumor-free mice.
This was an unsatisfactory, but expected, result as the mice
in the sample reproduce a large class of different pheno-
types that encompasses biological variability originating
from individual variations in the immunological reper-
toire of clonotypic T and B cell receptors, and in postnatal
interactions between the immune system and the envi-
ronment.

To find an effective protocol for a larger proportion of
mice in the sample, we applied the same strategy to 8 dif-
ferent instances of in silico mice using different random
seeds for the generation of the repertoire of bitstrings that
are used by SimTriplex to simulate the repertoire of T and
B antigen receptors. The fitness function (3) was modified
to take into account all the chosen mice simultaneously,
which was simply obtained by summing up the fitness
function for each mouse:

8

Fo (15158, Brreee Bg) = X (1,51, By) (5)
i=1

where s; is the survival time of mouse i; £, is defined as:

1 2
cc; cc; . 1 2
_ % > >
B = " + 7 lchc[ Zy Vv Ncci 27, (6)
1.0 otherwise

A GA with an attached simulator is a long computational
task, with a single mouse run taking 36 h on a Pentium
class machine. The fitness function described above
requires a prohibitive amount of running time on a single
CPU machine. We rewrote our GA in a parallel program-
ming language (MPI) and launched it on a 32-nodes par-
allel cluster machine.
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