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Abstract

Background: Protein sequence alignment is one of the basic tools in bioinformatics. Correct
alignments are required for a range of tasks including the derivation of phylogenetic trees and
protein structure prediction. Numerous studies have shown that the incorporation of predicted
secondary structure information into alignment algorithms improves their performance. Secondary
structure predictors have to be trained on a set of somewhat arbitrarily defined states (e.g. helix,
strand, coil), and it has been shown that the choice of these states has some effect on alignment
quality. However, it is not unlikely that prediction of other structural features also could provide
an improvement. In this study we use an unsupervised clustering method, the self-organizing map,
to assign sequence profile windows to "structural states" and assess their use in sequence
alignment.

Results: The addition of self-organizing map locations as inputs to a profile-profile scoring function
improves the alignment quality of distantly related proteins slightly. The improvement is slightly
smaller than that gained from the inclusion of predicted secondary structure. However, the
information seems to be complementary as the two prediction schemes can be combined to
improve the alignment quality by a further small but significant amount.

Conclusion: It has been observed in many studies that predicted secondary structure significantly
improves the alignments. Here we have shown that the addition of self-organizing map locations
can further improve the alignments as the self-organizing map locations seem to contain some
information that is not captured by the predicted secondary structure.

Background ments can be used in phylogeny to examine the evolution
The ability to create good alignments is important when  of sequences, and in protein structure prediction. In pro-
inferring knowledge from one sequence to another. Align-  tein structure prediction, alignments are used to detect
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related sequences in a procedure called fold recognition,
and to align the query sequence to related sequences.

In order to obtain good alignments, evolutionary infor-
mation (multiple sequence alignments) should be used. It
has also been shown that methods that use evolutionary
information for both the query and target sequences are
superior to methods that only use evolutionary informa-
tion for either the query or the target sequence [1,2].
Methods that use evolutionary information for both the
query and target sequences are known as profile-profile
methods. Profile-profile methods have been observed to
result in improved alignment quality compared to profile-
sequence methods [3-8]. Even though profile-profile
methods improve the alignments it has been observed
that they do not necessarily provide optimal alignments

[7].

To improve further both alignments and the detection of
distantly related proteins, structural features of proteins
are routinely used in the alignment procedure. Structural
features that have been used include secondary structure
[9-11,4,12] and solvent accessibility [13,14]. The second-
ary structure information has been incorporated into the
score in different ways in different methods. In ORFeus
[9] and prof_ss [11] a score based on the predicted sec-
ondary structure is added to the profile-profile score of
FFAS [15] and prof_sim [16], respectively. Wang & Dun-
brack constructed a secondary structure substitution table
from predicted and observed secondary structures. The
total score was calculated by adding the weighted SS_score
to the weighted profile-profile score, where the sum of the
two weights was set to one. However, this relationship
between the profile-profile and the secondary structure
score might not be optimal since only a modest improve-
ment was seen in alignment quality. In contrast the addi-
tion of predicted secondary structure has been shown to
improve the sensitivity of the detection of distantly related
proteins significantly [9,11,4]. Finally Tang et al.'s hybrid
sequence profile [12], using secondary structure and struc-
tural information, seems to be a good example where in
particular secondary structure information improves both
the homology detection as well as the alignment quality.

Although not completely uniform, a trend in studies to
date suggest that predicted secondary structure improves
alignments. It has also been shown that combining sec-
ondary structure predictions with other structural features
can further improve the alignments [12,17]. This indicates
that, if implemented correctly, different types of structural
features can be included to improve alignment quality.
We have recently developed a profile-profile scoring func-
tion, ProfNet [18]. In ProfNet the scoring function used in
the subsequent alignment algorithm is trained to identify
structurally superimposable residue pairs. ProfNet is
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based on an artificial neural network, which makes it easy
to include additional information. Therefore, we wanted
to investigate how an alternative way of representing
structural information would affect the alignment quality.
The structural information used in this study is captured
by a self-organizing map (SOM). We found that the align-
ment quality can be improved for distantly related pro-
teins by combining a profile-profile score with a SOM
based score. The effect is not as great as when predicted
secondary structure is included, but by combining these
with the SOM score we were able to improve the align-
ments further.

Results and discussion

Incorporating local structural information into alignment
scores

It is well known that secondary structure information has
the power of improving fold recognition and alignments,
but it is still not known how best to include it into an
alignment score. In this study we used predicted second-
ary structure from PSI-PRED [19] for both the query and
target sequences. First we constructed a normal profile-
profile method using predicted secondary structures,
which we refer to as Prob_score_SS. Here we use the same
secondary structure scoring system as in ORFeus. This sec-
ondary structure score, SS_score, is weighted and added to
Prob_score, which is our implementation of PICASSO3
[3], one of the best methods in our benchmark study of
profile-profile methods [7]. Full details are provided in
the Methods section.

Secondly, a new ProfNet version, ProfNet_SS, was con-
structed using the Prob_score score, and predicted second-
ary structure as input. Here, the SS_score was not
calculated (as in Prob_score_SS), instead the six PSI-PRED
propensity values (three from the query and three from
the template) were used directly as input to the artificial
neural network. Note that while the original ProfNet
method takes two 20-dimensional profile vectors as
input, we use the single Prob_score value as input for the
new versions developed here.

An alternative method to utilize local structural features is
to cluster local similarities. Such a clustering can be done
using a self-organizing map which maps high dimen-
sional data into a 2D or 3D grid. In this study, the similar-
ities in profile vectors of a large set of proteins are
clustered in such a way as corresponding to local structure
states (although note that only sequence information is
used) [20]. An advantage of this approach is that it is not
necessary to use predefined secondary structure states,
instead the SOM clustering defines the states. In Figure 1a
such a SOM mapping of a 15-residue sequence profile
windows is shown. Interestingly, multiple distinct regions
of helix, strand and, to some extent, coil can clearly be
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The mapping of (a) secondary structure states (helix, strand and coil) and (b) solvent accessibility to a 2D SOM trained using
I 5-residue windows of sequence profiles. The size of the circles is proportional to the number of times a sequence window
having a particular secondary structure state is mapped to that position. The most populated helix and strand locations are
almost non overlapping, while coil is found in most parts of the SOM and are somewhat avoiding the most popular helix loca-
tions. The total number of points in the three plots is 360 000 (130 000 in helix, 70 000 in strand and 160 000 in coil).
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seen. In Figure 1b it can be seen that the SOMs also are
able to capture some information about the solvent acces-
sibility of the sequence windows, although this is less
clear-cut (note the more overlapping regions of density).
Although they capture aspects of secondary structure, it
should be noted that SOMs are not able to predict three-
state secondary structure as well as ANN based prediction
methods, e.g. PSI-PRED (data not shown). In our subse-
quent studies, windows of profile vectors were mapped
onto 3D SOM grids.

Preliminary studies suggested that the simultaneous use
of SOM mappings based on different sequence window
sizes produced slightly better results (data not shown). In
this study we have used three SOMs trained with sequence
profile windows of 7, 17 and 21 residues. Any given posi-
tion in a sequence therefore maps to a 3D location in each
of the three SOMSs, making a total of 9 coordinates ("SOM
locations").

Using this clustering technique we constructed two Prof-
Net versions, ProfNet_ SOM, which uses Prob_score's
score and SOM locations, and ProfNet_SS_SOM which
uses Prob_score's score, predicted secondary structure and
SOM locations as input, as depicted in Figure 2. For a
summary of the inputs used in the different ProfNet meth-
ods, see Table 1.

For completeness, Prob_score_SOM and
Prob_score_SS_SOM methods have also been imple-
mented (see Methods for full details).

Secondary structure information improves the alignments
The alignment quality performance was compared for
protein pairs related at SCOP superfamily and fold level.
The alignment quality of the Prob_score_SS method, as
measured by the average MaxSub score, increased by 10%
on superfamily level and by 40% on fold level (p-value
1-10%) compared to Prob_score, see Table 2. This is in
line with earlier results on the combination of predicted
secondary structure with profile-profile scoring. It should
also be remembered that Prob_score performs better than
methods not using profile-profile scoring [18], i.e. the
baseline for improvement is quite high.

ProfNet_SS was shown to produce alignments of similar
quality as Prob_score_SS, with an improvement of 10 and
26% on superfamily and fold level (p-value 6-10-4) com-
pared to ProfNet. Hence, a significant improvement in
alignment quality could be seen on fold level by adding
predicted secondary structure to Prob_score as well as to
ProfNet, although the use of neural networks in this case
is not particularly advantageous. These results show that
predicted secondary structure is useful when aligning dis-
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tantly related proteins, as observed in earlier studies [9-
12].

Combined secondary structure information and SOM
locations further improve the alignments

By combining plain SOM locations with Prob_score score
in ProfNet (ProfNet_SOM) the alignments show a slight
improvement by 5 and 8% on superfamily and fold level
respectively compared to ProfNet. This improvement is
not very impressive, however by combining predicted sec-
ondary structure information and SOM locations the
improvement on fold level is 49% compared to ProfNet
and 18% compared to ProfNet_SS (p-value 3-102). (A
similar pattern is seen with Prob_score, Prob_score_SOM
and Prob_score_SS_SOM.) This indicates that the SOM
based classification and the PSI-PRED secondary structure
predictions contain complementary information.
Although the improvement of 18% might seem large it
should be noted that this improvement is only seen at the
fold level and the real increase in MaxSub score is small
(0.02). Although we have optimized the parameters indi-
vidually for each of the methods it was noted that the
results were not extremely sensitive to this optimisation.
Using 40 of the best parameter sets ProfNet_SS obtained
an average MaxSub score of 0.073 + 0.02 and
ProfNet_SS_SOM 0.085 + 0.02 (+ standard deviation).
This indicates that although the optimal parameter tuning
improves the alignment quality by 10-20% the improve-
ment from using the SOMs is consistent over a large set of
parameters. Figure 3 shows an example where the addi-
tion of SOM information improves the protein model by
aligning the helices more correctly.

Why does the SOM information improve the alignments?

From the results in Table 2 we see that the alignments are
improved most when a combination of profile-profile
score, predicted secondary structure and SOM locations is
used (ProfNet_SS_SOM), while ProfNet_SOM actually
performs slightly worse than ProfNet_SS. To gain a deeper
understanding into what the SOM locations capture we
have analysed pairs of structurally aligned residues in
terms of the "SOM distance" (explained below), structural
distance (RMSD), Prob_score and secondary structure
identity. The SOM distance is calculated as the Euclidean
distance between the two points in the SOM cube to
which a residue pair maps. More precisely it is the mean
intra-SOM distance over the three SOMs which use differ-
ent sequence profile window sizes. In Figure 4 it can be
seen that residues pairs having similar SOM values (small
SOM distance) are, on average, closer to each other in the
structural superposition, that a higher fraction of these
share the same secondary structure and that their
sequence profiles are more similar. However, the average
difference in solvent accessibility does not show a strong
correlation to this measure. This indicates that the SOMs
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The architecture of the ANN used in ProfNet_SS_SOM. This example shows an ANN with Prob_score score, predicted sec-
ondary structure values and SOM locations as input. Only one SOM is shown for clarity, but note that three sets of SOM loca-
tions are used in ProfNet_SS_SOM (each one uses a different sequence window size).

SCOore

capture some information that might correspond to  to more fine grained features than the three-state model
sequence/structure information that is not captured by  (helix, strand, coil) used in secondary structure predic-
secondary structure prediction or the profile-profile score.  tions or to the existence of larger fragment with significant
It might be speculated that the SOM clusters correspond  sequence structure correlation as used in a recent study to

Table I: The input data used by the ANNs in the different ProfNet methods.

Method plain profiles Prob_score score pred. sec. str. SOM locations
ProfNet Y N N N
ProfNet_SS N Y Y N
ProfNet_SOM N Y N Y
ProfNet_SS_SOM N Y Y Y

In ProfNet the "plain profile", i.e. the amino acid frequencies are used as the only input. In ProfNet_SS the sequence similarity is instead measured
using the Prob_score measure and in addition six values from PSI-PRED predicted secondary structure probabilities are added. ProfNet_SOM is
identical but the PSI-PRED values are replaced with the output from the SOM classification and in ProfNet_SS_SOM both outputs are combined.
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Table 2: The alignment quality is measured by the average
MaxSub score for protein pairs from the same SCOP superfamily
(and different family) and fold (and different superfamily).

Method Average MaxSub
Superfamily Fold

Prob_score 0.20 0.063
Prob_score_SS 0.22 0.088
Prob_score_SOM 0.20 0.070
Prob_score_SS_SOM 0.22 0.093
ProfNet 0.20 0.072
ProfNet_SS 0.22 0.091
ProfNet_SOM 0.21 0.078
ProfNet_SS_SOM 0.22 0.107

improve alignment qualities [21]. Alternatively subtle
sequence signals that are not seen when adding the pro-
file-profile scores might be captured as well.

Conclusion

Here, we show that two different methods to combine
predicted three-state secondary structure and profile-pro-
file scores improve alignments for distantly related pro-

Figure 3
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teins. The two approaches are; addition of SS_score to
Prob_score and by using the predictions directly from PSI-
PRED in ProfNet_SS. Interestingly these two different
approaches improve the alignments by a similar amount.

It was also found that predicted secondary structure com-
bined with self-organizing maps (SOM) of sequence pro-
file windows can be used to improve alignments of
distantly related proteins (and perhaps unrelated analo-
gous folds) by a further small amount. The SOMs appear
to be capturing information that is not directly related to
solvent accessibility and is partially orthogonal to pre-
dicted secondary structure. The clusters on the SOM may
correspond to fine-grained secondary and supersecondary
structures which appear to be conserved at the fold level.

Methods

Self-organizing maps

A set of SOMs were trained using 1029 randomly chosen
protein domains from a subset of SCOP 1.57, where no
two domains have more than 75% sequence identity.
SOMs with two, three and four dimensions and sizes
(9,6), (15,10), (30,15), (45,30), (5,6,7), (6,6,6), (4,4,4,4)
were used in preliminary trials. The (5,6,7)-sized SOM

A superposition of the model structure (red) onto the experimental structure (SCOP code) dldv0a_.a.5.2.1 (blue). The model
structure to the left is based on the alignment of ProfNet_SS and the model to the right on ProfNet_SS_SOM. The model is

made using (SCOP code) dleija_.a.5.6.1 as a template.
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SOM distance

Average RMSD [A], Prob_score, difference in solvent accessible surface area [A?] and secondary structure identity is plotted
against SOM distance (binned from 0—4 in steps of 0.1). The SOM distance is defined as the average of the distances between
locations in the three SOMs used in ProfNet_SS_SOM, for structurally aligned residue pairs (i.e. those used as positive exam-
ples in the neural network training). It can be seen that among the pairs that are close in the SOM space the average distance
in the structural superposition is closer and that a higher fraction of these pairs have the same secondary structure. The
Prob_score is also (inversely) correlated with SOM distance. In contrast no such clear trend can be found for the difference in

surface accessibility.

performed marginally better than the others in the align-
ment quality test and was therefore used in the rest of the
study. Similarly it was found that 10 training epochs were
sufficient (50 and 100 epochs were also tested). Sequence
profile windows of sizes of one to 21 centered around the
residue in question were used as input to the SOMs.

The self-organizing map (SOM) of Kohonen and Makisara
(1989) was used in this study, using the algorithm out-
lined below (as in MacCallum, 2004) [20], assuming
win-20-dimensional "input" vectors, where win is the
window size of profile vectors used, i.e. 1-21.

e Initialisation: create a 3D grid of size (5,6,7) of
win - 20-dimensional vectors, v, with random starting
values

e Training: for each of 10 epochs:

- for each data point x:

1. find the closest grid vector, v,,;,,,,,» to point x
according to an Euclidean distance measure
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2. update v,,,,, towards x by a small amount ¢,

Viinner € Vwinner + a(x - vwinner)

3. update neighbours of v,,,,,. within a certain
radius 7 in the same way, but by a smaller
amount

- reduce radius r and training rate «

e Application: any data point x can be assigned to a "win-

ning" grid vector, v,

After training a SOM, any win - 20-dimensional vector can
be mapped to a position (g, b, ¢) on the grid. The result of
the clustering is that data points which are close in the
input space are mapped to the same or neighbouring grid
nodes wherever possible. The SOM locations were nor-
malized to (a/5, b/6, ¢/7) so the values are in the range
zero to one before used as input to ProfNet_SOM and
ProfNet_SS_SOM. Multiple SOM locations, using differ-
ent SOM mappings corresponding to different profile
window sizes were used as input to the neural network
(see below).

Artificial neural network training

ProfNet is based on a novel scoring function obtained by
training an artificial neural network to recognise related
residues. For the positive training examples, protein pairs
from the same superfamily, but different families, were
structurally aligned using STRUCTAL [22] and all pairs of
residues within 3 A separation were used. The negative
training examples were created from randomly selected
residue pairs of proteins from different folds. For the pos-
itive and negative data sets no more than 15 aligned posi-
tions from the same protein pair were used. The ANNs
were trained to score the training examples according to

1

1+7rmsd? /5

culated between the C, atoms of the aligned residues. The

the S-score [23] (S-score = ). The rmsd is cal-

artificial neural networks (ANNs) were trained on 80% of
the dataset and the remaining 20% used as test set, where
proteins from the same superfamily are only present in
either the training or the test set, not both. The neural net-
work package Netlab in MatLab was used for the ANN
training [24,25]. A linear activation function was chosen,
and the training was carried out using the scaled gradient
algorithm. The training of the ANNs was done using a grid
search over the number of hidden nodes and number of
training cycles. After the initial grid search, the search pro-
cedure was tuned to the area that produced the highest
MCC value on the test set. At least 49 sets of parameters

http://www.biomedcentral.com/1471-2105/7/357

were tested for each ANN. The ANN-based scoring func-
tion was chosen by selecting the ANN with the highest
MCC-value and the minimum number of training cycles
and hidden nodes. In the next step the ANN was used in
the alignment quality test. The ANN scoring functions
were implemented into the Palign [26] package, and
called ProfNet.

Alignment quality

The dataset used in the alignment quality test was also
constructed from the same subset of SCOP version 1.57,
class a to e, where no two protein domains have more
than 75 % sequence identity. From this dataset we
included no more than 5 proteins from the same super-
family and no more than one NMR model per domain tar-
get. In total 672 superfamily and 602 fold related protein
pairs were included. In the superfamily related dataset, no
proteins from the same family were included, and among
the fold related protein pairs no proteins from the same
superfamily were included. Throughout this study, only
local alignments were used. For each alignment we cre-
ated a model of the query protein and compared the struc-
ture of this model with the correct structure. The same
dataset has been used in two earlier studies [7,18] where
it was shown that ProfNet and Prob_score performed bet-
ter than other profile methods. We used MaxSub [27]
which finds the largest subset of C,atoms of a model that
superimpose well over the experimental model. The
results obtained using another method, LGscore [23], to
measure the alignment quality were similar to using Max-
Sub and are not reported here.

Statistical calculations

The p-values given in the text are calculated between the
alignment quality scores generated from two methods
(resulting in 602 different MaxSub scores when compar-
ing the fold-related pairs), and gives an estimate of the
probability that the two methods' results differ only by
chance. Since we do not know what kind of distribution
the alignment quality scores have we used the non-para-
metric Wilcoxon (sign rank) test using the program R [28].
We used the 0.05 p-value level as a threshold for statistical
significance.

Profiles

We used the log-odds profiles obtained after ten iterations
of PSI-BLAST [29] version 2.2.2, using an E-value cutoff of
103 and all other parameters at default settings. The
search was performed against ntdb90 from EBI [30]. The
frequency profiles, used in Prob_score, were back-calcu-
lated from the log-odds profiles obtained from PSI-BLAST
as in [7]. The profiles used in the SOM clustering were cre-
ated using the .mtx files from the 'makemat' program
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which are also used by the PSI-PRED program (see
below).

Secondary structure predictions

PSI-PRED version 2.0 [19] was used to predict the second-
ary structure using the .mtx files created as described in the
'Profiles' section above.

Prob_score_SS
The predicted secondary structure score SS_score was cal-
culated as in ORFeus;

SS_score;j= 3 _ g cysec_strl;; - sec_str2; where sec_strl;, is
the predicted secondary structure of sequence one, residue
number i to be in state . The SS_score was added to the
profile-profile method Prob_score's score. The weight for
the SS_score was determined by linear combination of the
SS_score and Prob_score's score. The weights were normal-
ized so the profile-profile score had a weight of one. The
score is then defined as,

Prob_score_SS = Prob_score + W+ SS_score

This method will be referred to as Prob_score_SS in the
rest of the study.

Prob_score_SOM and Prob_score_SS_ SOM

In order to implement the Prob_score_SOM and
Prob_score_SS_SOM methods, a single value is needed to
describe the "SOM score" between two sequence posi-

1
1+ SOM distance

distance is described in the main text. The combination of
scores follows the simple weighted sum as described
above.

tions. This is calculated as . The SOM

Gap parameters

To obtain good alignment quality, the gap-opening, gap-
extension and shift parameters have to be optimized indi-
vidually for each method. The gap-parameters indicate
how likely is it that a gap will be introduced (and
extended) in the alignment, modeled using the affine gap-
penalty. For all methods, the gap-parameters and shift val-
ues were calibrated using a grid of gap-opening (GO) and
shift values. The gap-extension was set to be either 5 or
10% of the gap-opening penalty. We searched a grid of
GO = (0.1,0.2...,0.5) and shift = (-0.5,-0.4,...,0.1) for the
ProfNet methods, and GO = (0.2,0.3...,3.5) and shift = (-
0.5,-0.45,...,1.5) for Prob_score_SS. The parameters were
tuned toward the direction that produced the best results.
The parameters with the highest average MaxSub score on
fold level was taken from the results where the average
MaxSub score on superfamily level were in the 95-th per-
centile. A majority of the ProfNet versions had gap-open-

http://www.biomedcentral.com/1471-2105/7/357

ing, gap-extension and shift values close to 0.3, 0.03 and -
0.3.
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