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Abstract
Background: Domain experts manually construct the Structural Classification of Protein (SCOP)
database to categorize and compare protein structures. Even though using the SCOP database is
believed to be more reliable than classification results from other methods, it is labor intensive. To
mimic human classification processes, we develop an automatic SCOP fold classification system to
assign possible known SCOP folds and recognize novel folds for newly-discovered proteins.

Results: With a sufficient amount of ground truth data, our system is able to assign the known
folds for newly-discovered proteins in the latest SCOP v1.69 release with 92.17% accuracy. Our
system also recognizes the novel folds with 89.27% accuracy using 10 fold cross validation. The
average response time for proteins with 500 and 1409 amino acids to complete the classification
process is 4.1 and 17.4 seconds, respectively. By comparison with several structural alignment
algorithms, our approach outperforms previous methods on both the classification accuracy and
efficiency.

Conclusion: In this paper, we build an advanced, non-parametric classifier to accelerate the
manual classification processes of SCOP. With satisfactory ground truth data from the SCOP
database, our approach identifies relevant domain knowledge and yields reasonably accurate
classifications. Our system is publicly accessible at http://ProteinDBS.rnet.missouri.edu/E-
Predict.php.

Background
Protein structure classification is well-known to be an
important research topic in computational and molecular
biology. Through the use of structural classification, life
science researchers and biologists are able to study evolu-
tionary evidence from similar proteins that have been
conserved in multiple species. In addition, similar 3-D
conformations of enzyme active sites and binding sites
may correlate with biochemical functions [1]. In recent

years, structural genomics projects [2-5] have aimed to
link protein sequences to possible functions via high-
throughput techniques such as X-ray crystallography and
nuclear magnetic resonance (NMR) that determine 3-D
protein structures. With a large-scale set of newly-discov-
ered structures, a system that classifies similar protein
structures with high efficiency and accuracy becomes an
indispensable requirement to the study of structure-to-
function relationships.
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Several classification systems categorize proteins based on
structural similarities. The Class, Architecture, Topology,
Homologous Superfamily (CATH) database [6] is con-
structed by applying the Secondary Structure Alignment
Program (SSAP) [7], which consists of a double dynamic
programming technique to find the optimal structural
alignment of two proteins. The Fold Classification based
on Structure-Structure Alignment of Proteins (FSSP) data-
base [8] is built based on the Distance Alignment (DALI)
[9] algorithm that applies Monte Carlo heuristics to com-
pare structural similarities from 2-D distance matrices
mapped from 3-D protein structures. Generally, these sys-
tems rely on the structural alignment algorithms to meas-
ure the similarity of two proteins, which is known to be of
complexity NP-Hard [10]. To reduce the computational
effort of scanning large-scale protein databases, those
structural alignment algorithms need to apply heuristics
with trade-offs which may return divergent results from
the same query protein. At present, the Structural Classifi-
cation of Protein (SCOP) database [11], which is manu-
ally constructed by human experts, is believed to contain
the most accurate structural classifications. In the SCOP
database, proteins with similar domain structures are usu-
ally clustered into the same fold hierarchy. Even though
manual classification provides reliable results, it is labor
intensive. As of May 30th, 2006, 10864 newly-discovered
proteins deposited in the Protein Data Bank (PDB) [12]
have not been classified in the latest SCOP v1.69 release.
The number of newly-discovered proteins is increasing
continuously.

Recent studies [13,14] apply a consensus scheme to clas-
sify the SCOP folds for newly-discovered proteins by
intersecting multiple classification results from classical
structural alignment algorithms such as DALI [9], Combi-
natorial Extension (CE) [15] and VAST [16]. These con-
sensus approaches yield higher classification accuracies
than each individual method. However, a combination of
structural alignment algorithms is computationally
expensive. To accelerate the manual classification process
of SCOP, there is an urgent need to develop a fast, auto-
mated SCOP fold classification system with a reasonably
high accuracy. By extending our recent works with the
real-time tertiary structure retrieval system, ProteinDBS
[17-19], we have already studied an efficient model of
association rule (AR) mining to identify relevant struc-
tural patterns in proteins for SCOP domain and fold clas-
sifications [20]. In this paper, we further develop a non-
parametric classifier to conduct the SCOP fold classifica-
tions with better accuracy and efficiency. Our contribu-
tion is to introduce a real-time classification model, E-
Predict, that applies the E_Measure metric [21] from the
Information Retrieval (IR) field to assign the known
SCOP folds and recognize the novel folds for newly-dis-
covered proteins. In the past, a number of systems have

been developed to assign a protein structure to an existing
fold or recognize it as a novel fold. For example, DALI [22]
uses Z-score of the best structural match to either assign a
structure to a known fold (Z>2) or novel fold (Z≤2).
Other programs, such as CE [15] and VAST [23] can per-
form similar tasks. However, the computational effort
associated with those methods prevents a user from
exploring the protein structure database in real time.

Results
There are two important tasks for the SCOP fold classifica-
tions. 1) Known SCOP Fold Assignments: the algorithm
assigns newly-discovered protein structures into the
known SCOP folds. 2) Novel SCOP Fold Recognitions: the
algorithm detects whether or not newly-discovered pro-
tein structures should be categorized into the novel folds.

Given two SCOP database releases v1 and v2 (v1 ⊂ v2), 

denotes a set of newly-discovered proteins in v2 that have

not been identified in v1. The proteins from  will be

partitioned into either the known SCOP folds of v1

( ), or the novel folds that have not been deter-

mined prior to v2 ( ), where

. In our experiments, we meas-

ure the classification accuracy for proteins from ,

and then we gauge the accuracy for classifying proteins

from . Finally, we report the efficiency of SCOP

fold classifications.

Assigning newly-discovered proteins to the known folds
We conduct three experiments for classifying newly-dis-
covered proteins into the known folds. The first experi-
ment compares our classification model, E-Predict, with
several methods reported in a recent work [13] such as CE,
DALI, VAST and CBOOST. Our test data shown in Table 1
is the same test set used in their work, which has proteins
with average sequence identities equal to 16.88% and
average sequence similarities equal to 20.76% by con-
ducting all against all pairwise alignments using EMBOSS-
Align [24] algorithm. The same ground truth data with
their work includes proteins from the entire SCOP vl.59
release. To evaluate the accuracy, we use a general metric,
Correct Classification Rate (CCR), which is defined as fol-
lows:
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Figure 1 shows that E-Predict outperforms DALI, CE, and
VAST, exhibiting an accuracy of 64.86%. Can et al. [13]
have proposed a method, named CBOOST, which utilizes
a decision tree to integrate DALI, CE, and VAST, achieving
the same accuracy of 64.86%. It is worth mentioning that
the computationally expensive structural alignment algo-
rithms of CBOOST may not be able to efficiently classify
a large number of newly-discovered proteins generated
from on-going, high-throughput structure determination
projects.

The second experiment exhaustively evaluates the accu-
racy of E-Predict on several general test sets from

 to . In Table 2 and Table 3, our

test proteins in  are selected from the known

SCOP folds of v2, which also maintain at least one protein

chain and 10 proteins in v1, respectively. Figure 2(a)

shows that E-Predict achieves 72% to 82% classification
accuracies for the general test sets of seven SCOP releases.
According to Figure 3, there exists a large number of SCOP
folds with small sizes. When a newly-discovered protein

belongs to a small-size fold, there is a limited amount of
ground truth data available. In machine learning, classifi-
ers usually require sufficient ground truth data to guaran-
tee the accuracy. Figure 2(b) demonstrates that E-Predict is
able to achieve much higher accuracies, 90% to 96%, for
the general test sets of seven SCOP releases with more
than 10 ground truth proteins. In the future, when newly-
discovered protein structures are categorized into those
small-size SCOP folds, the accuracy of E-Predict could be
further improved.

The third experiment evaluates the accuracy of E-Predict
on non-redundant test sets, which are obtained from ran-
domly sampling one protein chain among each SCOP
superfamily. In Table 2 and Table 3, a non-redundant test

set  is defined by randomly selecting one

protein from each SCOP superfamily of the general test set

. According to SCOP [11], proteins between two

different SCOP superfamilies have low sequence similari-
ties, which suggest that test proteins in our non-redundant
sets should maintain low sequence similarities. Table 4
measures the degree of sequence redundancy for 10 pairs
of proteins, which are randomly sampled from the non-

redundant set  with the average

sequence identity and sequence similarity equal to
12.55% and 21.17%, respectively. In addition, the exper-
iment using the non-redundant test sets avoids the case
that some folds in the general test sets predominate the
classification accuracy with relatively more test proteins.
For example, there are 900 out of 1000 test proteins in a
general test from the same SCOP fold f1. The quantity of
this fold may affect the accuracy significantly when a
majority of these 900 proteins are correctly classified. In
Figure 2(a), E-Predict presents a reduction of accuracies
on several sets of non-redundant proteins in comparison
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The Correct Classification Rate of assigning the known folds for test proteins in Table 1Figure 1
The Correct Classification Rate of assigning the known folds for 
test proteins in Table 1.

Table 1: A test set that contains 37 protein chains from  [13].

pdb_id fold_id pdb_id fold_id pdb_id fold_id pdb_id fold_id pdb_id fold_id

1gyz_A 63569 1key_A 48370 1key_B 48370 1key_C 48370 1key_D 48370
1lkv_X 48370 1ldk_A 48370 1ifr_A 48725 1ivt_A 48725 1gyv_A 48725
1gyu_A 48725 1iu1_A 48725 1iu1_B 48725 1gyw_A 48725 1gyw_B 48725
1l6p_A 48725 1lpl_A 50036 1k3b_A 50875 1gyh_A 50933 1gyh_B 50933
1gyh_C 50933 1gyh_D 50933 1gyh_E 50933 1gyh_F 50933 1gyd_B 50933
1gye_B 50933 1jof_A 50964 1jof_B 50964 1jof_C 50964 1jof_D 50964
1jof_E 50964 1jof_F 50964 1jof_G 50964 1Jof_H 50964 1l2q_A 51350
1ln4_A 55199 1kuu_A 56234
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with the general test sets in Table 2, which includes small-
size folds. This gap demonstrates that the impact of some
SCOP folds with outnumbered proteins in the general test
sets improves the overall accuracy. Figure 2(b) shows that
E-Predict exhibits similar accuracies on seven sets of the
non-redundant proteins in comparison with the general
test sets in Table 3, which have at least 10 ground truth
proteins. This suggests that with a sufficient amount of

ground truth data non-redundant proteins can still be
classified with a reasonably high accuracy.

Recognizing the novel folds for newly-discovered proteins

We measure the accuracies of classifying six sets of pro-

teins with the novel folds from  to ,

which are listed in Table 2. We accumulate labeled pro-
teins from the prior SCOP releases to obtain more ground
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Table 3: The number of proteins in general and non-redundant test sets in  which are selected from the known SCOP folds 

of v2 with at least 10 protein chains in v1.

test set size (#proteins) test set size (#proteins)

1832 158

1901 168

2136 166

1947 189
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2298 263

Δv
v known
1

2 ,

Δv general
v known
1 55
1 57

. ,

. , Δv non redundant
v known
1 55
1 57

. ,

. ,
−

Δv general
v known
1 57
1 59

. ,

. , Δv non redundant
v known
1 57
1 59

. ,

. ,
−

Δv general
v known
1 59
1 61

. ,

. , Δv non redundant
v known
1 59
1 61

. ,

. ,
−

Δv general
v known
1 61
1 63

. ,

. , Δv non redundant
v known
1 61
1 63

. ,

.
−

Δv general
v known
1 63
1 65

. ,

. , Δv non redundant
v known
1 63
1 65

. ,

. ,
−

Δv general
v known
1 65
1 67

. ,

. , Δv non redundant
v known
1 65
1 67

. ,

. ,
−

Δv general
v known
1 67
1 69

. ,

. , Δv non redundant
v known
1 67
1 69

. ,

. ,
−

Table 2: The number of proteins in a test set of novel folds, general and non-redundant test sets in  which are selected from 

the known SCOP folds of v2 with at least one protein chain in v1.

test set size (#proteins) test set size (#proteins) test set size (#proteins)

4192 442 - -

4047 431 94

4547 468 10

5226 491 190

5445 494 48

10521 736 215

5604 585 86

Δv
v known
1

2 ,

Δv general
v known
1 55
1 57

. ,

. , Δv non redundant
v known
1 55
1 57

. ,

. ,
−

Δv general
v known
1 57
1 59

. ,

. , Δv non redundant
v known
1 57
1 59

. ,

. ,
− Δv

v novel
1 57
1 59

.

. ,

Δv general
v known
1 59
1 61

. ,

. , Δv non redundant
v known
1 59
1 61

. ,

. ,
− Δv

v novel
1 59
1 61

.

. ,

Δv general
v known
1 61
1 63

. ,

. , Δv non redundant
v known
1 61
1 63

. ,

.
− Δv

v novel
1 61
1 63

.

. ,

Δv general
v known
1 63
1 65

. ,

. , Δv non redundant
v known
1 63
1 65

. ,

. ,
− Δv

v novel
1 63
1 65

.

. ,

Δv general
v known
1 65
1 67

. ,

. , Δv non redundant
v known
1 65
1 67

. ,

. ,
− Δv

v novel
1 65
1 67

.

. ,

Δv general
v known
1 67
1 69

. ,

. , Δv non redundant
v known
1 67
1 69

. ,

. ,
− Δv

v novel
1 67
1 69

.

. ,
Page 4 of 17
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:362 http://www.biomedcentral.com/1471-2105/7/362
truth data. For example, when an experiment is conducted

with test proteins from , our ground truth data

is composed of new proteins from . We compare

our E-Predict algorithm with two prevalent classification
methods, Nearest Neighbor search (NN) [25] and C4.5
Decision Tree (DT) [26]. Figure 4 presents a plot of CCR

against six test sets  to , which are

listed in Table 2. From computational results, E-Predict
outperforms NN and C4.5 DT. There is a noticeable reduc-

tion in accuracy when classifying proteins in .

This is probably because the test set, , is harder

to be correctly predicted than the other sets. To address
the issue that accuracies may be biased by particular new
structures, we conduct 10 fold cross validation that

sequentially selects 10% of ground truth data from 

as a test set and the rest of 90% of ground truth data as a
training set for 10 times. In the 10 fold experiment, our
approach achieves 89.27% accuracy of the novel fold rec-
ognitions.

Efficiency
For efficiency, we measure the average response time of
the entire classification process, including feature extrac-
tion, nearest neighbor search on an M-tree [27], and the
computation of the SCOP folds by the E-Predict algo-
rithm. The classification process performs one-against-all
structural comparisons by scanning the entire SCOP data-
base. Our system runs on a Fedora-Core Linux system
with Dual Xeon IV 2.4 GHz processors and 2 GB RAM. A
large-scale test set is chosen from the SCOP vl.69 release
with 51911 protein chains which have more than 20
amino acids. Figure 5 shows the average response time of
fold classifications for various protein chain sizes. When
the protein size increases, the E-Predict algorithm
demands more computational resources to extract fea-
tures from larger distance matrices. When the protein
chain size reaches a certain threshold, the Linux system
may swap huge distance matrices into the virtual memory
resulting in a significant I/O time. This effect is reflected in
Figure 5 with long computation times for the protein
chain size larger than 1099 amino acids, where more
memory is required to prevent page swapping. On aver-
age, classifying a newly-discovered protein to a SCOP fold
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The amount of proteins in the folds against the number of SCOP folds in the SCOP v1.69 releaseFigure 3
The amount of proteins in the folds against the number of 
SCOP folds in the SCOP v1.69 release.

The Correct Classification Rate of assigning the known folds for various SCOP releases using E-Predict on (a) general and non-redundant test set in  which are selected from the known SCOP folds of v2 with at least one protein chain in v1 (Table 2) (b) general and non-redundant test set in  which are selected from the known SCOP folds of v2 with at least 10 protein chains in v1 (Table 3)Figure 2
The Correct Classification Rate of assigning the known folds for various SCOP releases using E-Predict on (a) general and non-

redundant test set in  which are selected from the known SCOP folds of v2 with at least one protein chain in v1 

(Table 2) (b) general and non-redundant test set in  which are selected from the known SCOP folds of v2 with at 

least 10 protein chains in v1 (Table 3).
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takes 3.5 seconds. In our test set, the longest protein
chain, comprised of 1409 amino acids, completes the
classification process in 17.4 seconds.

Discussion
Our approach yields better accuracy and efficiency com-
pared to the structure alignment algorithms. The accuracy
is achieved by analyzing the ranked SCOP folds of a near-
est neighbors search using the E-Predict algorithm. In
addition, efficiency results from using an M-tree [27] for
fast nearest neighbor searches. In the following subsec-
tions, we compare our performance with the structural
alignment algorithms in terms of efficiency and accuracy.

Performance in efficiency
Since structural alignment algorithms usually apply
dynamic programming techniques to align each pair of
amino acids in two proteins, they demand a huge amount
of computational resources. Instead of aligning amino
acids, our E-Predict model transforms relevant protein
structure information into high-level features, and similar
protein structures are then retrieved from a high-dimen-
sional feature space by a nearest neighbors search in the

M-tree. Our approach is able to return the classification
result in seconds. Since performing the structural align-
ment algorithms with multiple pairwise alignments of a
newly-discovered structure against the known protein
structures from the SCOP database is known to be compu-
tationally expensive [10], the response times for the struc-
tural alignment algorithms are not plotted in Figure 5.

The accuracy of assigning newly-discovered proteins to the 
known folds
For the assignment of proteins to the known SCOP folds,
the E-Predict algorithm mainly contributes to the accuracy.
Traditional structural alignment methods usually apply
heuristics to reduce computational efforts of aligning a
large combination of amino acids in two proteins. Differ-
ent heuristics could return diverse results from the same
set of proteins since these algorithms might be trapped in
local optimal solutions. Even though a consensus method
that combines classification results of multiple structural
alignment algorithms outperforms each individual struc-
tural alignment approach [13], it is computationally

The protein chain sizes against the average response time of classifying test proteinsFigure 5
The protein chain sizes against the average response time of 
classifying test proteins.

Table 4: The sequence redundancy in a set that contains 10 pairs of proteins, which are randomly sampled from 

pairs pdb_id1 super family_id1 pdb_id2 super family_id2 sequence identity sequence similarity

01 1osd_A 55008 1uta_A 110997 2.10% 3.50%
02 1ug8_A 82708 1vm0_A 82704 12.80% 26.80%
03 1v5n_A 57889 1rq8_A 75471 13.60% 23.50%
04 1veu_B 103196 1j3m_A 103247 22.40% 34.20%
05 1tu1_B 55724 1smb_A 55797 6.80% 10.80%
06 1thq_A 56925 1xfs_B 55961 18.10% 28.40%
07 1vki_B 55826 1sk3_A 55846 17.70% 30.50%
08 1tf1_D 55781 1pp6_E 55676 10.30% 17.50%
09 1ucd_A 55895 1vkw_A 55469 9.00% 14.70%
10 1tt4_A 55931 1vkp_A 55909 12.70% 21.80%

Avg. 12.55% Avg. 21.17%
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The Correct Classification Rates of recognizing the novel SCOP folds for proteins in various SCOP releasesFigure 4
The Correct Classification Rates of recognizing the novel SCOP 
folds for proteins in various SCOP releases.
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expensive. Instead of performing structural alignments,
our model maps both known proteins from the SCOP
database and newly-discovered protein structures into 33-
D feature vectors. With a nearest neighbor search for a
newly-discovered structure t in the high-dimensional fea-
ture space, there may exist multiple candidate folds,
which are associated with nearest neighbor proteins in the
vicinity of t. One way to assign a SCOP fold to t is to
choose the fold of the nearest neighbor protein in the
high-dimensional feature space. Since it is possible that
hundreds of folds are partially overlapped in the high-
dimensional feature space, the nearest neighbor of t may
be an outlier that deviates from the majority of proteins in
its fold. To avoid selecting an outlier, we apply the
E_Measure metric that considers the ranks of at least two
nearest neighbor proteins for each fold. The algorithm
rewards a SCOP fold in which proteins are highly ranked
and penalizes a fold with proteins in the lower ranks.
Hence, when the SCOP fold includes only a single highly
ranked protein with the other proteins from this fold
ranked much lower, the algorithm is able to avoid assign-
ing this fold to t based on the penalty of low ranking.
From computational results, E_Measure has a vital impact
on the classification accuracy.

Misclassifications of assigning newly-discovered proteins 
to the known folds
Within the framework of ProteinDBS [17-19], our model,
E-Predict, transforms a 3-D protein structure into a 33-D
feature vector that represents the geometric properties of
folded proteins. Applying these features to measure the
structural similarity of proteins, E-Predict outperforms sev-
eral classification methods that apply the structural align-
ment algorithm using the test set in Table 1. E-Predict also
yields reasonably high accuracy for several test sets in
Table 3 with sufficient ground truth data. However, mis-
classifications still exist. The limited amount of 33-D
ground truth data available for training contributes to the
classification errors. As more ground truth data becomes
available in small-size SCOP folds, a higher classification
accuracy is expected. The second reason for misclassifica-
tions is due to the overlapping of folds in the high-dimen-
sional feature space. To further separate overlapping folds,
our system needs more relevant features to detect the pro-
tein 3-D folding with sufficient discriminating power.
Another possible reason for misclassifications is that
SCOP may categorize a partial segment of a PDB protein
chain (substructure) into a domain. Since our approach
measures the global similarity of distance matrices for
classification, users need to submit the portion of the pro-
tein chain identified in the SCOP domain to ensure a cor-
rect classification. In Figure 6, we measure the correlation
between the classification accuracy and a structure varia-
tion value, S, for a query protein t and the best matched
protein of t in our classified SCOP fold. For a pair of pro-

teins (p1, p2), the structural variation S is defined as fol-
lows:

where RMSD means the root mean square deviation of
aligned segments, and NA denotes the number of amino

acids in the aligned segments of two proteins. Np1 and Np2

represent the number of amino acid residues in p1 and p2,

respectively. These measurements are computed using
SARF [28]. The smaller S value can be interpreted as a bet-
ter structural match for two proteins p1 and p2. Two pro-

teins that have a high structural similarity can usually be
superimposed with longer aligned residue segments and a
small RMSD value, resulting in a small S value. For exam-
ple, the SARF algorithm aligns a query protein t with 100
amino acids and its best matched protein p1 with 100

amino acids and returns structurally similar segments
with 90 amino acid residues and 0.3 Å of RMSD. Their
structure variation value S is computed as 0.3/

( ) = 0.67. When S is smaller than 6, we expect

the E-Predict algorithm to maintain above 90% classifica-
tion accuracy. This statistic is obtained from the classifica-
tion of 41262 testing proteins.

The accuracy of recognizing the novel folds for newly-
discovered proteins
Since no protein has been labeled with the novel folds in
our 33-D ground truth data, the novel fold recognition
becomes a challenging problem. To address this issue, we
introduce three features: E_Measure evaluation score,
structural variation value, and Euclidean distance meas-
urement. These features measure structural similarity

S p p RMSD
N

N N
A

p p
( , ) /( ),1 2

1 2

2=
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Correct Classification Rates of classifying test proteins against structural variation valuesFigure 6
Correct Classification Rates of classifying test proteins against 
structural variation values.
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between a newly-discovered protein and the nearest
neighbor protein in a candidate known fold suggested by
the E-Predict algorithm. Then, our method applies the E-
Predict algorithm as a classifier to identify meaningful pat-
terns from ground truth data, which has been obtained by
the aggregation of proteins in several prior SCOP releases.
Computational results show that using these three fea-
tures benefits the classification accuracy.

Misclassifications of recognizing the novel folds for newly-
discovered proteins
To recognize the novel folds for newly-discovered protein
structures, our classification model exploits three relevant
features. With the assumption that protein structures in
the novel folds usually present low structural similarities
to proteins in the known folds, a high E_Measure evalua-
tion score, a high Euclidean distance, and a high structural
variation value are expected for newly-discovered protein
structures from the novel folds. Due to noise in ground
truth data and imperfect features, a few proteins in the
novel folds may have a low structural variation value, a
low E_Measure score, or a low Euclidean distance meas-
urement. Even though our approach presents an
improved accuracy over NN and C4.5 DT, there is still a
need to discover more relevant features for better recogni-
tion performance.

Conclusion
We have developed an automatic SCOP fold classification
system that is able to assign the known SCOP folds and
recognize the novel folds for newly-discovered proteins.
For the known fold assignments, the algorithm trans-
forms protein structures into 33-D feature vectors and
constructs an M-tree to index these feature vectors for fast
retrievals. The E-Predict algorithm is then applied to clas-
sify newly-discovered proteins in the known SCOP folds.
For the novel fold recognitions, the algorithm utilizes
three relevant features that are related to structural simi-
larity of proteins. From the computational results, our
method outperforms several structural alignment algo-
rithms such as DALI, CE and VAST, achieving reasonably
high classification accuracy and efficiency. This research
can help accelerate the classification process of the SCOP
database and benefit the biomedical research community
to further study biochemical functions of proteins with
similar 3-D structures.

Methods
Our classification model, E-Predict, contains three primary
functions. First, E-Predict assigns newly-discovered protein
structures to the known SCOP folds. Second, E-Predict rec-
ognizes the novel folds for newly-discovered protein
structures. Third, E-Predict indexes the high-dimensional
protein data for a fast nearest neighbors search.

Assigning newly-discovered proteins to the known folds
According to the SCOP hierarchical setting, proteins that
share similar secondary structure arrangements are usu-
ally classified in the fold level [11]. The entire process of
assigning newly-discovered proteins to the known folds is
shown in Figure 7. The labeling procedure transforms pro-
tein structures from the SCOP database into 33-D feature
vectors, which are labeled with their corresponding SCOP
folds. These labeled proteins are then used as our ground
truth data. The testing procedure converts newly-discov-
ered proteins into feature vectors and submits these unla-
beled vectors into a classifier to obtain possible SCOP fold
assignments. In the following, we discuss several compo-
nents of the entire process such as distance matrix genera-
tion, feature extraction, and classifier design.

Mapping 3-D backbone structures into 2-D distance matrices

Proteins are polypeptide chains, which are chained by 20
types of amino acids. Instead of considering the side
chains of amino acids, many computational biology
papers [6,9,15] use the Cα atom to describe each amino

acid. In our model, the Cα backbone of the kth protein

chain with n amino acids can be represented by a set of

vectors, Ωk = { }, where  denotes the

3-D coordinate of the ith Cα atom. Protein backbones can

be transformed into 2-D distance matrices. For Ωk, the cor-
responding distance matrix, Dk, is defined as D[i, j] =

dist( , ), 1 ≤ i, j ≤ n, in a Euclidean space. A dis-

tance geometry method [29] shows that the 2-D distance
matrix is generally sufficient to recover the original 3-D
structure in polynomial time. Several examples in the lit-
erature convert protein backbone structures into distance
matrices and then detect the structural similarity from
them [9,30,31]. Since 2-D distance matrices maintain suf-
ficient 3-D structural information, similar protein back-
bones are expected to have similar distance matrices.
Figure 8 shows 3-D protein backbone structures and their
corresponding 2-D distance matrices sampled from the
SCOP Heme-dependent peroxidases and Acid proteases folds.
Within each SCOP fold, the proteins maintain high simi-
larities in both 3-D backbone structures and 2-D distance
matrices. Variations in distance matrices are detectable by
comparing structures that belong to different folds.

Feature extraction
In the area of content-based image retrieval (CBIR), sev-
eral computational techniques have been developed to
retrieve visually similar images from databases for a query
image [32-34]. When each element of the distance matrix
is interpreted as a grayscale pixel, the distance matrix can
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be converted into a 2-D image. After preprocessing pro-
tein structures into grayscale images, we apply the CBIR
technique to retrieve similar distance matrices in ranked
order. In our previous work [17,19], we extract 24 local
and 9 global features that are relevant to the visual content
of distance matrices using a suite of computer vision algo-
rithms such as histograms and textures [35-37]. To obtain
local features, each distance matrix is partitioned into six
band regions, which are parallel to the diagonal of the
matrix. In each band, histograms are computed by four
bins of distance ranges: [0–5], [6–10], [11–15], and [16-

∞]. Since the distance matrix is symmetric, global features
such as Entropy, Homogenity and Contrast are computed for
the entire upper triangle of each distance image. Interested
readers are referred to our previous publications [17,19]
for details of the feature extraction algorithms applied in
this work. The transformation of a distance matrix into a
33-D feature vector ensures each feature vector uniquely
identifies a protein chain. Table 5 and Table 6 list the 24
local features and 9 global features extracted for proteins
from the SCOP Heme-dependent peroxidases and Acid pro-
teases folds, respectively. For a large-scale protein database

The 3-D backbone structures and distance matrices of four protein chains, which are selected from the SCOP folds: (1)Heme-dependent peroxidases: 1kta_A(a-b), 1ekv_A(c-d), (2)Acid proteases : 1lee_A(e-f), 1lf2_A(g-h)Figure 8
The 3-D backbone structures and distance matrices of four protein chains, which are selected from the SCOP folds: (1)Heme-
dependent peroxidases: 1kta_A(a-b), 1ekv_A(c-d), (2)Acid proteases : 1lee_A(e-f), 1lf2_A(g-h).

E-Predict model for assigning newly-discovered proteins to the known foldsFigure 7
E-Predict model for assigning newly-discovered proteins to the known folds.
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such as the SCOP database, it is important to develop a
classifier that groups proteins within the same fold and
separates proteins from different folds.

Fold assignment
To ensure high accuracy when classifying a newly-discov-
ered protein, we have designed a novel method that
extends algorithms from Information Retrieval (IR) [38].
For the assignment of newly-discovered proteins to the
known folds, we first discuss two well-recognized meth-
ods, C4.5 Decision Tree (DT) [26] and Nearest Neighbor
(NN) [25], and then our new approach, E-Predict, which

achieves a better classification accuracy than C4.5 DT or
NN.

Decision tree approaches have been developed for classi-
fication in supervised machine learning [26]. Using a set
of ground truth data that contains feature vectors of pro-
teins and their associated fold labels, a classifier usually
divides the high-dimensional feature space, discussed pre-
viously, into multiple subspaces, which are normally in
the form of hyper-cubes or hyper-spheres. In the labeling
process using C4.5 DT, the majority of proteins from the
same fold are expected to be clustered into a small

Table 6: Global features of proteins from the SCOP folds: (1)Heme-dependent peroxidases: 1stq_A, 1sog_A, (2)Acid proteases: 1lee_A, 
1lf2_A.

Image Features 1stq_A 1sog_A 1lee_A 1lf2_A

Dimension 291.00 294.00 331.00 329.00
Binary_Threshold 23.0000 23.0000 26.0000 26.0000
Texture_Energy 0.0155 0.0153 0.0107 0.0107
Texture_Entropy 51.7143 51.8067 54.4426 54.4139
Texture_Homogenity1 2.5344 2.5261 2.2184 2.2192
Texture_Homogenity2 1.7608 1.7529 1.4467 1.4485
Texture_Contrast 0.0027 0.0027 0.0041 0.0041
Texture_Correlation 6.8883 6.8914 6.7682 6.7659
Texture_Cluster_Tendency 0.0387 0.0392 0.0517 0.0515

Table 5: Local features of proteins from the SCOP folds: (1)Heme-dependent peroxidases : 1stq_A, 1sog_A, (2) Acid proteases: 1lee_A, 
1lf2_A. Histogram [a,b] denotes the distance histogram for the ath band region and the bth grayscale bin.

Image Features 1stq_A 1sog_A 1lee_A 1lf2_A

Histogram [1,1] 0.0000 0.0000 0.0000 0.0000
Histogram [l,2] 0.0002 0.0002 0.0000 0.0000
Histogram [l,3] 0.0018 0.0020 0.0001 0.0002
Histogram [1,4] 0.0050 0.0053 0.0009 0.0011
Histogram [2,1] 0.0000 0.0000 0.0000 0.0000
Histogram [2,2] 0.0000 0.0000 0.0000 0.0000
Histogram [2,3] 0.0023 0.0022 0.0000 0.0001
Histogram [2,4] 0.0044 0.0043 0.0012 0.0010
Histogram [3,1] 0.0000 0.0000 0.0000 0.0000
Histogram [3,2] 0.0004 0.0004 0.0003 0.0004
Histogram [3,3] 0.0020 0.0019 0.0017 0.0019
Histogram [3,4] 0.0092 0.0080 0.0048 0.0055
Histogram [4,1] 0.0000 0.0000 0.0000 0.0000
Histogram [4,2] 0.0006 0.0006 0.0015 0.0012
Histogram [4,3] 0.0040 0.0042 0.0056 0.0053
Histogram [4,4] 0.0132 0.0130 0.0172 0.0166
Histogram [5,1] 0.0000 0.0000 0.0000 0.0000
Histogram [5,2] 0.0014 0.0015 0.0036 0.0035
Histogram [5,3] 0.0124 0.0128 0.0133 0.0134
Histogram [5,4] 0.0423 0.0425 0.0298 0.0304
Histogram [6,1] 0.0203 0.0201 0.0179 0.0180
Histogram [6,2] 0.0392 0.0386 0.0291 0.0289
Histogram [6,3] 0.0503 0.0496 0.0474 0.0485
Histogram [6,4] 0.0845 0.0833 0.0796 0.0795
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number of subspaces. Proteins from different folds are
separated into different subspaces based on minimization
of entropy. A newly-discovered protein can then be classi-
fied into one of the known subspaces for fold assignment
by following decision features of internal tree nodes and
their corresponding thresholds. However, a small number
of proteins from the same SCOP fold with similar feature
values may be partitioned into different leaf nodes by
C4.5 DT due to their feature values, which are distributed
around thresholds of internal nodes. With hundreds of
folds in the SCOP database, the more proteins from differ-
ent folds that have been grouped into a leaf node, the
higher the probability of misclassification.

Instead of partitioning the high-dimensional space, Near-
est Neighbor (NN) [25] assigns a SCOP fold for a newly-
discovered protein by searching for its nearest neighbor
with the Euclidean distance measurement. Figure 9(a)
shows that NN outperforms C4.5 DT by 13%, on average,

for fold assignments using the test sets in ,

which are selected from the SCOP folds in the SCOP v2

release that have at least one protein from the SCOP v1

release. Figure 9(b) shows that NN also outperforms C4.5
DT by 8.45%, on average, for fold assignments using the

test sets in , which are selected from the SCOP

folds in the SCOP v2 release that have at least 10 proteins

from the SCOP v1 release. Even though NN yields a better

classification performance than C4.5 DT, there still exists
an important issue to consider: misclassifications from an

outlier in NN search. An outlier is defined as a protein
chain whose feature vector deviates greatly from the
majority of proteins in the same SCOP fold. In the high-
dimensional feature space with multiple overlapping
SCOP folds, NN search may assign an incorrect SCOP fold
to a newly-discovered protein by selecting an outlier as the
nearest neighbor. For instance, we assume that the true
fold of a newly-discovered protein t is F2. From Result F1,

shown in the second row of Figure 10, the nearest neigh-
bor of t is p1, which is an outlier to the majority of proteins

in fold F1. When NN search is used for classification, the

algorithm falsely classifies that t is in fold F1. One possible

way to address this issue is to assign the newly-discovered
protein to the SCOP fold that has the majority in the top
k Nearest Neighbor (k-NN). In Figure 9(b), 3-NN yields a
better accuracy than 5-NN in six test sets. Also, we find
that 3-NN achieves a better accuracy than NN in

. Unfortunately, 3-NN does not perform as

well as NN on the other test sets due to the existence of
two or more outliers in the 3-NN selection. In general, the
k-NN classification method simply takes the majority of
the top k nearest neighbors without considering the rank-
ing information of nearest neighbor proteins.

In this work, we have developed the E-Predict algorithm
which applies the E_Measure metric [21] to calculate the
ranking information of nearest neighbor proteins.
E_Measure was originally developed to evaluate the effec-
tiveness of retrieval systems in IR. The more relevant docu-
ments retrieved with high ranks, the higher the retrieval
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accuracy. In the context of IR, Precision and Recall are two
commonly used metrics for evaluating the retrieval per-
formance. Let nt be the total number of relevant docu-
ments in the database for a certain query t and s(R,i) be
the rank of the top ith relevant document in the retrieved
document set R with 1 ≤ i ≤ nt. Precision can be obtained
by computing the ratio of the number of relevant docu-
ments retrieved to the total number of documents
retrieved.

For example, if the second relevant document is ranked

seventh in R, (i.e. s(R, 2) = 7), then Precision(2) = . Recall

is the ratio of the number of relevant documents i retrieved
to the total number of relevant documents nt in the data-

base.

For example, if there exist 11 relevant documents for query
t, the second relevant document in the results will have

Recall(2) = . E_Measure takes into consideration both

Precision and Recall to evaluate the retrieval accuracy with
a weighting factor b as shown in the following equation:

When a relevant document is highly ranked, a low
E_Measure is expected. The effectiveness of a retrieval sys-
tem ς can be evaluated by the summation of E_Measures
for all nt relevant documents.

In practice, the best IR system is the one with the smallest
E_sum(ς).

Instead of directly applying the above-mentioned evalua-
tion method for our SCOP fold classification task, our E-
Predict algorithm extends the method by visiting candi-
date folds in the top k nearest neighbor results R, and then
ranking the folds using E_Measure. The E-Predict algo-
rithm is shown in Appendix 1. From lines 2 to 16, the
algorithm collects the SCOP folds of retrieved proteins in
R into a set of candidate SCOP folds, II, with each candi-
date fold having at least nt proteins appearing in R. The

algorithm then computes an evaluation score (F) for

each candidate SCOP fold, F ∈ ∏, by accumulating
E_Measures of the top nt proteins labeled with F, as shown

from lines 17 to 26. Our approach assumes that the most
relevant SCOP fold assigned to a newly-discovered pro-
tein t should have proteins that are highly ranked in R. For

example, if F1 ∈ ∏ is the candidate SCOP fold to be eval-

uated, we revisit R by assigning the label 'relevant' to pro-
teins that are from F1 and the label 'irrelevant' to those

from folds other than F1. Among these relevant proteins,

we select the top nt proteins and form RF1 for our classifi-

cation process. The Result F1 in Figure 10 shows that the
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An example of E_Measure calculations for two SCOP folds in a list of nearest neighbor proteins.
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top two proteins (nt = 2) labeled with F1 are ranked at 1

and 10.

For fold F1, the pairs of (precision, recall) for these two

proteins are (Precision(1) = , Recall(1) = ) and (Preci-

sion(2) = , Recall(2) = ). Applying Eq.(5) with b =

1.0, we obtain E_Measure(1, 1.0) =  and E_Measure(2,

1.0) = . Substituting these two values into Eq.(6), we

compute  = 1.00. Similarly, for candidate fold

F2, using Result F2 of Figure 10, the effectiveness of F2 is

 = 0.70.

According to Figure 3, there exists a significant number of
small-size folds in the SCOP v1.69 release with 143 folds
containing only one protein chain and 140 folds with two
protein chains. When a newly-discovered protein belongs
to a small-size fold, the algorithm might give a false posi-
tive due to insufficient ground truth data. To classify pro-
teins in these small-size folds, we expect the NN search to
retrieve a correct fold in the high-dimensional space by

turning on a parameter λ in the E-Predict algorithm. Let P0

be the nearest neighbor protein of a query t in R and 

be the nearest neighbor protein in the candidate fold with

the minimum  score (see line 28 of Appendix 1). The

algorithm computes the structural variation values, S, for

one pair (t,P0) and the other pair (t, ) using the func-

tion in Eq.(2). The algorithm finally assigns the candidate
fold with the minimum S value to the newly-discovered
protein.

In the E-Predict algorithm, there exist two parameters, b
and nt, that affect classification results. From our empirical

observations, the best setting for the latest SCOP v1.69

release has b = 1.5 and nt = 6 with λ = on and k set to 500

nearest neighbors. Figure 9 shows comparisons of classifi-
cation accuracies among E-Predict, NN, 3-NN, 5-NN, and

C4.5 DT across seven test sets from  to

. For all test sets, E-Predict always outperforms

k-NN and C4.5 DT with an improved classification accu-
racy.

Recognizing the novel folds for newly-discovered proteins

Classifying newly-discovered proteins into either the novel
folds or the known folds has been identified as a two-class
recognition problem [13]. Let v1, v2 and v3 denote three

different SCOP releases in chronological order. To classify

proteins from , our algorithm relies on ground

truth data from  with three features, which are derived

from the result of E-Predict algorithm and will be dis-
cussed in great detail in the following section. In the labe-
ling procedure of Figure 11, the algorithm first extracts the

three features from proteins in . These proteins are

then categorized into either the known folds of v1 or the

novel folds as our ground truth data. In the testing proce-

dure, proteins in the novel folds of  are selected as

our test data and are disjoint with our ground truth data.
Once the three features are extracted from the testing pro-
teins, we apply the E-Predict algorithm to classify test pro-
teins into either the novel folds or the known folds.

Feature extraction

For a newly-discovered protein PN that does not belong to

the known folds, we assume this protein has a low struc-
tural similarity to those proteins in the known folds. Under
this assumption, we identify the three features that are
used to achieve the novel fold recognition task. Figure 12
illustrates an example showing the three features for PN.

The first feature, , is the minimum evaluation

score of PN using the E-Predict algorithm with a suggested

known fold F*. The second feature, Dist, represents the

Euclidean distance between PN and , which denotes

the nearest neighbor protein of PN labeled with fold F*.

The third feature, S, is the structural variation value

between PN and  using the function defined in

Eq.(2). After feature extraction, these feature values are
normalized between 0 and 1; each protein is then repre-
sented by a 3-D feature vector. The rationale for using
these three features is in the following. Let PK be a newly-

discovered protein that has been classified in the known
folds. If PN is structurally dissimilar to all known protein

structures from the SCOP database, then the Euclidean
distance between PN and its nearest neighbor protein in a

known fold suggested by E-Predict is expected to be greater
than the distance between PK and its nearest neighbor pro-
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tein . Similarly, the structural variation value of PN

and its nearest neighbor protein is expected to be higher
than the structural variation value of PK and its nearest

neighbor protein. Also, the minimum evaluation score of

PN, , is expected to be higher than the score of

PK. Table 7 lists a brief summary of expected properties of

the three features for proteins in the novel folds and the
known folds.

Novel fold recognition
With the three features, labeling and testing procedures
can be conducted to recognize the novel folds for newly-
discovered proteins. According to the statistics in Table 2
for a certain release of the SCOP database, the majority of
proteins are from the known folds. From our empirical
observations, the classifier is biased to favor the known
folds in a 3-D feature space with two overlapping classes.
To reduce noise from the known folds, our model ran-
domly selects an equal number of proteins from the
known folds and the novel folds in the labeling procedure.
We then apply the E-Predict algorithm to classify test pro-
teins into either the novel folds or the known folds.

PNN
F*

Esum
P

F
N ς *( )

An example of identifying  for a newly-discovered protein PN in the novel folds by selecting the nearest neighbor protein in a fold F* derived from the E-Predict algorithmFigure 12

An example of identifying  for a newly-discovered pro-

tein PN in the novel folds by selecting the nearest neighbor 
protein in a fold F* derived from the E-Predict algorithm.

PNN
F*

E-Predict model for recognizing the novel folds for newly-discovered proteinsFigure 11
E-Predict model for recognizing the novel folds for newly-discovered proteins.
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Online index using the M-tree
Exhaustively searching for the nearest neighbors within a
large-scale database such as the SCOP database is known
to be computationally expensive. To improve the effi-
ciency of k-NN search, we use an M-tree to index the high-
dimensional feature vectors of proteins. The M-tree [27]
scales well to support dynamic operations such as insert,
delete and update. Each root node in a subtree maintains
two values, a radius Rs and a prototype protein, that create
a hyper-sphere in the high-dimensional feature space, As, to
include all proteins within the subtree. During the Depth-
First-Search(DFS) traversal, the M-tree algorithm main-
tains a priority queue with k slots to record the current k
nearest neighbors. In addition, a radius centered at the
query protein, Rq, defines a search space Aq. Initially, both
Rq and Aq are set to ∞. Once a protein has been inserted
into the queue, Rq is then updated by the maximum Eucli-
dean distance between the current proteins in the queue

and the query protein, resulting in a much smaller search
space Aq. A fast nearest neighbor search is achieved by: 1)
Applying the triangle inequality, the M-tree algorithm
avoids traversing subtrees which do not overlap with the
search space Aq. 2) Concurrently, Aq shrinks at a rapid rate
due to the insertion of proteins in the queue. In our imple-
mentation, the M-tree indices have been properly organ-
ized into memory on several servers for a robust, fast
nearest neighbor search.

Web interface
We have implemented a web interface to suggest a set of
known SCOP folds and to recognize the novel folds for
newly-discovered proteins. Users are allowed to submit 3-
D protein structures in the PDB format. Our system first
converts protein structures into 33-D feature vectors.
Then, an evaluation score for each fold is computed from
the ranked results of a nearest neighbors search. In sec-

The superimposition of a newly-discovered protein and a known protein chain from the top ranked SCOP foldFigure 13
The superimposition of a newly-discovered protein and a known protein chain from the top ranked SCOP fold.

Table 7: A comparison of the three features for proteins in the novel folds and the known folds.

(f1)  (ςF*)
(f2)Dist (f3)S

novel folds High High High
known folds Low Low Low

Esum
t
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onds, a ranked list of SCOP folds is displayed to the user.
To aid in visually inspecting the classification results, a
tool is provided to superimpose a known protein from a
suggested fold on the query structure using the KiNG (Kin-
emage, Next Generation) graphic package http://kine
mage.biochem.duke.edu/software/king.php. In Figure 13,
a 3-D superimposition view shows that the query protein
is structurally similar to a known protein 9xim_A in the
suggested fold. Our system, ProteinDBS-predict, is publicly
accessible at http://ProteinDBS.rnet.missouri.edu/E-Pre
dict.php.
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