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Abstract

Background: In the area of protein structure prediction, recently a lot of effort has gone into the
development of Model Quality Assessment Programs (MQAPs). MQAPs distinguish high quality
protein structure models from inferior models. Here, we propose a new method to use an MQAP
to improve the quality of models. With a given target sequence and template structure, we
construct a number of different alignments and corresponding models for the sequence. The quality
of these models is scored with an MQAP and used to choose the most promising model. An SVM-
based selection scheme is suggested for combining MQAP partial potentials, in order to optimize
for improved model selection.

Results: The approach has been tested on a representative set of proteins. The ability of the
method to improve models was validated by comparing the MQAP-selected structures to the
native structures with the model quality evaluation program TM-score. Using the SYM-based model
selection, a significant increase in model quality is obtained (as shown with a Wilcoxon signed rank
test yielding p-values below 10-!5). The average increase in TMscore is 0.016, the maximum
observed increase in TM-score is 0.29.

Conclusion: In template-based protein structure prediction alignment is known to be a bottleneck
limiting the overall model quality. Here we show that a combination of systematic alignment
variation and modern model scoring functions can significantly improve the quality of alignment-
based models.

| Background ture on the basis of a significant alignment score between
Protein structure prediction by comparative modeling the two protein sequences. (2) This or a different align-
and/or fold recognition consists of three largely inde-  ment serves as a basis for model construction. In this proc-
pendent steps: (1) Postulating the structural similarity of  ess residues in the target sequence that are aligned to
the target protein sequence with a known template struc-  residues in the template structure are mapped on the cor-
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responding coordinates in the structure. (3) Finally,
unmapped regions are filled in, breaks in the backbone
are mended, and the overall model is refined.

Thus the quality of the alignment in the second step has
an essential impact on the quality of the resulting model.
The continual benchmarks in the biannual CASP assess-
ment of protein structure prediction methods witness that
there is significant progress in identifying suitable tem-
plates [1], due in part to the introduction of profile-profile
alignment methods [2-5] and the sophisticated construc-
tion of profiles [6]. While CASP assessors found little
improvement in the predicted models [7], they found
steady progress in alignment quality over the years [8].

The optimal alignment resulting from an algorithm with
a specific optimized parameter setting is not always the
best choice for model creation. Jaroszewski et al. have set
up a computational experiment in which they sample a
huge conformational space (size up to 1019) of alternative
alignments by combining an approach of varying param-
eters (such as gap penalties and substitution matrices)
with an iterative approach of penalizing previously visited
regions of the sample space [9]. The study states that there
exist alignments surpassing the original alignments in
quality for about 50% of the protein pairs. Contreras-
Moreira and coworkers [10] as well as John and Sali [11]
propose genetic algorithms for constructing a large
number of alternative alignments by recombining an ini-
tial set of alignments. A common problem of these
approaches is the selection of the alignment allowing for
the construction of the final model.

Recently, a lot of effort has gone into the development of
Model Quality Assessment Programs (MQAPs) [12-14].
MQAPs are computer programs that receive as input a 3D
model of a protein structure and produce as output a real
number representing the quality of the model [15]. We
will refer to this number as the model score. In contrast to
model evaluation programs, like GDT [16], MaxSub [17],
or TM-score [18], which assess the quality of the model by
comparing it to the native structure, MQAPs do not com-
pare to the native structure. Instead, they estimate the
quality of a proposed model without knowledge of the
native structure. Unlike scoring functions in sequence-to-
structure alignment and to physical energy functions,
MQAPs operate on an intermediate level - they are more
flexible than a sequence-to-structure alignment function
as the dynamic programming paradigm used in alignment
computation imposes the requirement of prefix optimal-
ity which is not required in MQAPs. MQAPs aim at scor-
ing the quality of predicted models. Typically, MQAPs use
one or more different statistical potentials, representing
information coded in protein structures [19,20,12,13].
Different MQAPs were recently tested in CAFASP-4 as
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meta-selectors for pinpointing high quality models from
the ensemble of models proposed by different automated
servers [15,13,21] proving that MQAPs are highly effective
selectors.

2 Results

2.1 Overview of protocol and evaluation

In this manuscript we propose and validate a protocol for
improving alignments in step (2) of comparative mode-
ling or fold recognition. Optimization is achieved by gen-
erating alternative alignment-based models for a target
sequence and selecting the most promising model using
an MQADP.

Ensembles of alternative alignments are generated with
the state-of-the-art profile-profile alignment method Arby
[22,23] by varying parameters. Apart from the Arby
default, we suggest two different procedures for generating
alternative alignments: PVS varies the parameters in the
profile-profile alignment method slightly, whereas PVH
varies the parameters heavily. Each procedure reports an
ensemble of distinct alignments. For each alignment a
model is constructed (see Methods for details, as well as
Table 1for an overview of the parameters used in PVS and
PVH).

The ensembles of alternative models typically contain
models with higher quality as well as models with lower
quality than the standard Arby model. The FRST [13]
MQAP program is applied to scoring the quality of the
models. By choosing the model with the best model score
according to the FRST potential, we can select a promising
model for each target. These selected models are poten-
tially improved with respect to the Arby default model.
Additionally, we developed an SVM-based selection
mechanism. A support vector machine (SVM) is trained
on the model scores and on the FRST partial potentials for
recognizing the models with increased quality.

The performance of the protocol is evaluated by compar-
ing the chosen models to the previously withheld native
structures. The comparison is performed with the model
evaluation program TM-score [18], its score reflecting the
"real" quality of the models. The TM-score always lies in
the interval (0,1], where the upper limit stands for a
model perfectly superposable with the structure. This
allows for comparing the quality of the generated and
selected models with the quality of the default Arby mod-
els and for assessing the significance of the selection proc-
ess.

The protocol was evaluated on a set of 1612 target
sequences with known structures (see Methods). For each
target t we computed the Arby default model d(t) and
exercised the two model generation procedures PVS and
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Table I: The parameters used in the different model generating procedures.

Model Generating Procedure Description

Arby default Generates the default Arby models [23], exactly one for each target. Default parameters are: gap insertion 14.7, gap
extension 0.37, substitution matrix Blosum62, Henikoff position-specific sequence weighting, relative weight of
secondary structure is 0.24.

PVS Generates models resulting from alignments with parameters multiplied by a factor varying from 0.5 to 1.5 with a
step width of 0.25. This results in an ensemble of alternative models for each target.

PVH Generates models resulting from alignments with parameters multiplied by a factor from 0.2 to 2.4 with a step

width of 0.2. This results in an ensemble of alternative models for each target.

PVH resulting in two ensembles of models Ep¢(t) and
Epy(t) per target. Summary statistics of the number of
models per target are given in Table 2.

2.2 Evaluation of model generation: quality of generated
models

First, we analyze the quality of the model generation pro-
cedures. The key ideas are to count per target the number
of models with increased quality, and to measure the aver-
age difference of model quality with respect to the default
model in terms of TM-score.

2.2.1 Anadlysis per target

For a target t, we denote the quality of a model ml by
TM(ml), where greater TM-score is better. The relative fre-
quency of models per target with a quality measure above
the Arby default is defined as

LS M) > TMA(0))],

| EO) | gk

where d(t) is the default Arby model, E(t) is an ensemble
of models for the target, and [x] is the Iverson bracket
defined for arbitrary propositions x as

fotps(6) =

[x] =

1 ifxistrue
0 else ’

Similarly, we consider the relative frequency fpt; (t) of
models with a quality below that of the Arby default mod-
els.

The average within an ensemble E(t) of quality improve-
ment of a model over the default Arby model is

girg() = —— 3 (TM(ml) ~ TM(d(£))).

| E(?) | mile E(t)

We define an indicator function whether a better model
for a target ¢ exists in the ensemble E(¢).

foe(t) = [3ml e E(t) : TM(ml) > TM(d(1))]

and compute the quality improvement that is theoreti-
cally possible

qibg () = max. TM(ml) — TM(d(1)).

2.2.2 Performance over all targets
The frequency fpt was defined per target and its average

over all targets is E = lz fpt. While fpt describes the
n

— 1
frequency of better models per target, fb=— 2 fb reflects
n

the fraction of targets that have a model with a quality
above the Arby default within the ensemble of con-
structed models.

When selecting models randomly, an average quality
— 1

improvement of gir = —zqir is obtained. When select-
n

ing models optimally, an average quality improvement of

qib = —Zqzb is obtained, imposing a theoretical upper
n

bound to what is feasible with MQAP selection on the

alignments generated as proposed. For the two procedures

PVS and PVH generating alignment-based models these

numbers are listed in Table 3.

In order to visualize the distributions of model quality, in
Figure 1 for each target t the TM-score of the default Arby
model s plotted versus the TM-score improvements of the
models constructed for that target. The scatter plots in Fig-
ure 1 along with Table 3 clearly indicate that better mod-
els are generated for a large fraction of the targets.
Summing up, the above-mentioned procedures generate
models with a better quality than the Arby default models,
but identification of the improved models among the gen-
erated models is a hard task as analyzed in the next sec-
tion.

2.3 Evaluation of model selection
In the following, we analyze how well the model selection
procedure works on the models generated with proce-
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Table 2: Summary statistics for the model generation procedures.
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Model Generation Procedure

min median
Arby default | 1.0
PVS | 3.0
PVH | 7.0

Number of Models per Target t
mean

Overall Number of Models (2,|E(t)])

max
1.0 | 1612
43 28 6980
12.6 136 20234

dures PVS and PVH. The key ideas are to count for how
many targets an improved model is selected, and to meas-
ure the quality improvement with respect to the default
model in terms of TM-score. We perform the analysis for
the selection based on the FRST potential and then repeat
it analogously for the SVM based selection.

2.3.1 Anadlysis per target

Identification of the best model per target can be per-
formed based on the FRST MQAP scores. For each target ¢,
we select the model s with the lowest estimated frst energy

SE, frst (1) = argmin  frst(ml),
mle E(t)

since lower frst is better. In the supplementary material
(see additional file supplement) we analyze the FRST par-
tial potentials in more detail.

In order to count the number of occurrences in which this

is an improvement of model quality measured in TM-
score, we define the indicator functions fim as follows:

fimg s, (1) = [TM(5g, (1)) > TM(d(1))]
fimg (1) = [TM (s (1)) = TM(d(1))]
fimg sy (1) = [TM (s, 3, (1)) <TM(d(2))]
These functions indicate whether the model selected by

the MQAP is of higher, equal, or lower quality than the
Arby default.

While fim serves to count the number of targets which
improve, we use the measure gim to quantify the improve-
ment of model quality with respect to the default Arby
model:

qimp (1) = TM(sg 5, (1)) - TM(d(1))-
2.3.2 Performance over all targets
- 1 . . .
Across all targets, fim_ = —2 fim,, is the fraction of tar-
n

gets whose models improve when choosing models using
the FRST MQAP. We measure the average improvement in

— 1
model quality as gim = —Zqim .
n

A summary of the results when selecting models accord-
ing to the frst potential is given in Table 4.

2.3.3 Spotting candidate targets with estimated improvement
Both model generation procedures PVS and PVH include
the Arby default model in the ensemble of generated
models. Therefore, for any target, model selection will
only pick an alternative model, if a model with a score bet-
ter than the Arby default exists. An indicator for this is

nig (1) = [frst(sg (1)) <frse(d(1))]-

The set of targets for which model selection proposes can-

didates with estimated improvement consists of n- ni =

Table 3: How good are the generated models? Description of the distributions of the TM-score quality. fpt <and fpt > are the relative

frequencies of models per target with a TM-score below and above Arby default, respectively, (i is the improvement in TM-score

when choosing models randomly. ﬂ] is the relative frequency of targets for which a better model exists, qib is the best theoretically

possible improvement for the given ensemble of models.

Model Generation

Procedure fPt < fpt > qir fb qlb

PVS 0.36 0.22 -0.013 0.47 0.019

PVH 0.51 0.26 -0.031 0.59 0.026
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Figure |

Overview of model quality improvement with respect to the model difficulty. Left for PVS, right for PVH analogously. Each dot
corresponds to a model where the x-coordinate is the TM-score of the corresponding default Arby model and the y-coordi-
nate is the TM-score improvement with respect to this default model. Smoothed quantile lines are shown for the 10% (lower
dashed), 50% (middle), 90% (upper dashed) quantiles of the models within a sliding window of size 0.15. Black lines represent
all models, red lines represent the models selected using FRST, green lines represent the models selected using the SVM
approach. For the smoothing evaluations are made at 1000 equidistant points and the resulting quantiles are smoothed with a
lowess function (local linear scatter plot smoother). Interpretation: The TM-score of the Arby default gives an indication of
how difficult it is to find the right template for a target. For the selection methods random, FRST, and SVM, this plot shows the
potential improvement with respect to difficulty of the target. For PVH, more models are generated below default. For both
PVS and PVH, the SVM selection performs better than FRST selection, and FRST performs better than random.
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Table 4: How well does model selection work? Description of distributions when selecting models according to the FRST potentials

and the SVM. 71 is the relative frequency of targets for which a selection procedure suggests improved models. ﬁm © ﬁm -, and

fim >, are the relative frequencies of selected models with decreased, equal, or increased TM-score quality, respectively. min gim and

max gim are the minimal and maximal quality improvements achieved per target. qim is the average quality improvement over all

targets. gimis the average quality improvement for the targets that the selection procedure suggests improved models for.

Model Generation Procedure PVS, all measures for TM

e ni f?ﬂ - ﬁ_m _ ﬁ_m . min gim max qgim qim gim

frst 0.51 0.23 0.50 0.27 -0.51 0.35 0.0016 0.0031

SVM 0.40 0.14 0.61 0.25 -0.21 0.29 0.0064 0.0160
Model Generation Procedure PYH, all measures for TM

e ni ]?l’l . ﬁl’l . ﬁ_m . min gim max gim gim gim

frst 0.70 0.35 0.31 0.34 -0.43 0.29 0.00047 0.00068

SVM 0.58 0.22 0.43 0.35 -0.27 0.35 0.00774 0.01339

2 ni targets. On this candidate set, we denote the average

1
improvement in model quality as gim = —_'thim(t) .
— n-ni

2.3.4 Significance and coverage
The fim_ and gim numbers exhibit a noticeable increase in

model quality with respect to random selection of models

(cf. Et <«and (E values in Table 3).

More importantly, comparing models resulting from the
selection process to the Arby default by applying a paired
Wilcoxon signed rank test, we find for model generation
procedure PVS that the models selected according to frst
are significantly better than the Arby default (with a p-
value of 0.002). For the model generation procedure PVH,
the models selected with frst alone are neither signifi-
cantly better nor worse than the default, demonstrating
that it is hard to select better models when generating
more low-quality models.

Selection of models constructed with model generation
procedure PVS results in an average quality improvement

of gim = 0.0031 and works better than selection of

—Epys, fist
models constructed with model generation procedure

PVH with an average quality improvement of gim
—Lpvr, frst

=0.00068.

For generating procedure PVS, the selection according to
FRST suggests an alternative model for 51% of the targets;
53% of these suggested targets are improved according to
TM-score. For generating procedure PVH, alternative

models are suggested for 70% of the targets; 48% of these
suggested targets are improved according to TM-score.

2.3.5 Selection of high quality models using an SVM-based selection
Based on the FRST scores, an SVM was trained to choose
high quality models as described in the Methods section.
The values fim,,,, qim,,, and ni,,, are calculated analo-
gously to the previously defined fimg, qimy, and nis, by
replacing frst in these formulas with the negative SVM
decision values.

2.3.6 Significance and coverage of the SVM selection

The results produced with selecting models according to
the SVM decision values are summarized in Table 4. For
PVS, an overview is given in Figure 2.

Compared to the FRST potentials, the ni, are smaller

sum
(i.e. fewer targets were suggested for alteration, see Table
4). The SVM more effectively avoids changing models for
the worse. This is visible in Figure 1 and also reflected by
noticeably smaller average numbers of models with

decreased quality (ﬁngalues, see Table 4). The overall

average improvement in TM-score model quality (%1,

gim) increases.

Applying a paired Wilcoxon signed rank test, we find for
both generation procedures that the models selected by
the SVM are significantly improved with respect to the
Arby default (p-values below 10-15). The SVM selected
models are also significantly improved with respect to the
FRST selection process (with p-values below 10-5).
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(Left) Average increase in TM-score, for ranges of difficulty. Targets are binned according to the TM-score of the default Arby
model. Within each bin the average increase in quality gimis plotted. Bins are enumerated horizontally, the two outer bins
were concatenated with their neighbors as each contained less than 100 target samples. Models are selected from PVS using
the SVM. For comparison the average increase in quality obtained on this benchmark set by performing loop modeling is 0.003.
(Right) Maximum increase in TM-score, for the same ranges of difficulty. The maximum increase in quality max gim within each
bin is visualized as a line above the box representing the average increase (which is the same as on the left side, just the scale is

different).

For generating procedure PVS, the SVM-based selection
suggests an alternative model for 40% of the targets; 64%
of these suggested targets are improved according to TM-
score. For generating procedure PVH, alternative models
are suggested for 58% of the targets; 61% of these sug-
gested targets are improved according to TM-score.

3 Discussion

Jaroszewski et al. [9] show their method to produce signif-
icantly better alignments in about half of test cases, for a
benchmark set of 742 protein pairs and make no state-
ment regarding the likelihood of selecting such a solution
from the ensemble of alternative alignments generated.

To this end, they generate an average of 733 alignments
per target-template pair with improved solutions in 34%
of the test cases (average of 49 alignments). Our method
is able to generate improved alignments for 59% of the
test cases (PVH, Table 3) with only 13 alignments on aver-
age. The 55-fold decrease in the number of evaluated
alignments compared to the method of Jaroszewski et al.,
while maintaining at least comparable increments in
alignment quality, implies that we are exploring regions
in the space of alignments that are densely populated with
high-quality solutions, making the method practical for
improving fully automated fold recognition servers such
as Arby [23]. This is important when comparing our
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method to other approaches like ROBETTA [24], or the
work of John and Sali [11] or Contreras-Moreira and cow-
orkers [10], where improved model generation requires
several orders of magnitude more alignments to be evalu-
ated.

Improved alignments have to be selected from the ensem-
ble of alternatives with an MQAP program in order to be
useful. Neither Jaroszewski [9] nor Chivian [24] make
quantitative statements about the selection of improved
solutions. The results of John and Sali or in silico recombi-
nation are not directly comparable, as they generate and
select the solutions iteratively. Our data show that the
selection of improved alignments is a difficult task. A ran-
dom selector would actually deteriorate the overall per-
formance of the method. Generating more models does
not necessarily help the selection process. Especially if
more models below default quality are generated (as with
generating procedure PVH), avoiding to select worse mod-
els is more difficult. Thus the error rate can increase and
the overall performance can decrease if more low-quality
models are generated.

Here we show that the proposed protocol, including
model generation and SVM-based selection, significantly
improves model quality (p-values below 10-1> using a Wil-
coxon signed rank test). With the model generation pro-
cedure PVS, using the SVM-based selection the proposed
method achieves a close to optimal average TM-score
improvement of 0.016 and a maximal observed increase
in TM-quality of max gim = 0.29 This has to be related to
typical fold recognition targets, where the TM-scores for
large portions of the predictions lie in the range of 0.1 to
0.4 for hard targets and from 0.4 to 0.8 for easier targets.

To emphasize the relevance of the proposed method in
practical use, we compare the quality improvement of the
proposed protocol with the quality gain obtained by loop
modeling alone. The average quality increase in TM-score
incurred by using our protocol amounts to 0.016, which
is a factor of five above the quality gain obtained by loop
modeling alone 0.003. The quality increase for our proto-
col is computed as the difference between the TM-scores
of the MQAP selection from varied models with modeled
loops minus the Arby default with loops modeled. The
model quality obtained by loop modeling alone is com-
puted as the difference of the TM-score of the Arby default
with loops modeled minus that of the Arby default with-
out loops modeled (see additional file supplement).

4 Conclusion

We have presented an approach for improving structure
prediction models that goes in a different direction from
the one recently proposed by Pettitt et al. [12]. Whereas
they have evaluated the possibility to choose better tem-

http://www.biomedcentral.com/1471-2105/7/364

plates with an MQAP program, we show that it is possible
to generate and select better alignments for a fixed tem-
plate with an MQAP program. The two approaches can be
combined and will improve automated servers such as
Arby.

As this seems a promising approach in a competitive field,
we will continue to work on the topic in two directions:
First, generation of models with a high likelihood of
improving the quality and second improving the selection
process. For the latter, the numbers on the SVM perform-
ance clearly indicate that the current linear combination
of the partial potentials in FRST can be improved.

5 Methods

5.1 Protocol

5.1.1 Alternative alignments and models

The 3D protein structure model that we construct for a tar-
get protein is based on an alignment with a template
structure. The method described here is independent of
the strategy for template identification. With a given target
and template as input, we compute a default alignment
using profile-profile alignment with log-average scoring
and parameters as tuned for the Arby server [22,23].
Namely these parameters are: substitution matrix
Blosum62, gap insertion 14.7, gap extension 0.37, and a
relative weight of secondary structure to sequence infor-
mation of 0.24.

In addition to the Arby default alignment, we propose two
procedures (PVS, PVH )for generating alternative align-
ments for a target in analogy to the parametric approach
of Jaroszewski et al. [9]. The alternatives are computed by
a global profile-profile alignment method, using parame-
ters multiplied with a factor varied inside the range from
alower to an upper bound. The parameters varied are gap-
insertion, gap-extension, and the relative weights of
amino-acid and secondary structure profiles. The two pro-
cedures differ with respect to the ranges of the factors.
Each procedure reports alignments that occur multiply for
different parameter settings only one time, resulting in an
ensemble of distinct alignments.

For each alignment a model is built as follows. Loop mod-
eling of insertions and deletions is performed, using the
LOBO program [25]. Conserved (i.e. identical) residues
and their side chains are copied from the template struc-
ture. The non-conserved residues and their side chains are
positioned and optimized by SCWRL3.0 [26].

5.1.2 Model scores

The quality of the model is then estimated using the FRST
MQAP program [13], which computes four potentials,
namely a residue-specific all-atom distance potential [27]
(rapdf), a solvation potential (solv), a hydrogen bonding
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potential (hydb), and a torsion angle potential (tors).
These four potentials are linearly combined into the frst
energy score (with factors 2.5, 500.0, -50.0, and 350.0,
respectively [13]). This leaves us with the frst score as an
estimate of the quality of each constructed model.

We can select the best alignment-based model for each
target, by choosing the model with the lowest energy score
according to the frst potential. These selected models are
potentially improvements over the default model (con-
structed according to the default alignment). In the sup-
plement we additionally analyze selection according to
the partial contributions rapdf, solv, hydb, and tors of the
frst potential (see additional file supplement). The FRST
MQAP program places a strong emphasis on the torsion
angle component [13]. Since each residue can either
increase or decrease the overall score, there is no correla-
tion between the number of gaps in a model and the over-
all score.

For 95% of the targets in the benchmark set of this paper,
the FRST MQAP can distinguish the native structures from
the Arby default models. Similarly, the performance of
FRST on selecting the native structure from the models
generated with procedures PVS and PVH is 95% and 94%,
respectively.

5.1.3 Model quality evaluation

If, additionally, the native structure of the target is known,
using the model evaluation programs GDT [28], MaxSub
[17], and TM-score [18], we can compute scores (GDT,
MS, TM), reflecting the "real" quality of the model in
terms of structural similarity between model structure and
target structure.

In general the quality measures GDT, MS, and TM corre-
late well: The correlation coefficients between quality
measures for all models produced are corgpy g = 0.99,
coreprmy = 0.93, and corygpy = 0.93 (see supplement,
Table 1). Overall the analysis yields similar results for all
three quality measures. As the TM-score has the advantage
of being independent of the size of the protein, we restrict
our presentation to the analysis of the TM-score.

Overall, a moderate negative correlation corpy, 4, = -0.43
of the quality measure TM-score with the frst score can be
observed. It has to be pointed out that the correlation of
the frst score across all targets is not as relevant as its selec-
tion capabilities per target.

5.1.4 Combining MQAP partial potentials using a support vector
machine

We train a Support Vector Machine (SVM) for selecting
models with higher TM-score than the TM-score of the
default model. The binary labels used for each model are

http://www.biomedcentral.com/1471-2105/7/364

TM-score-increase and TM-score-decrease with respect to
the default Arby model. As features we use the frst, rapdf,
solv, hydb, tors values of each model and the corresponding
default model as well as the differences of these scores
between model and default. For each target, the best
model is selected based on the SVM decision value [29].
Models with a negative SVM decision value remain
unchanged with respect to the Arby default. As SVM
implementation, the R package 1071 [30] based on lib-
svm [31] is employed. As parameter tuning showed only
negligible changes in classification accuracy, standard
parameters and a radial basis function kernel are used.

5.2 Benchmarking

5.2.1 Dataset of targets and templates

For the validation of our approach, the improvement of
the proposed models over the default Arby models was
evaluated. Target sequences were taken from a representa-
tive set of SCOP 1.65 domains [32] with at most 40%
sequence identity as provided by the Astral compendium
[33,34]. As a basis for the alternative models, in this study,
one template was chosen for each target: With log-average
scoring and default parameters as listed in Table 1
[22,23], the target was compared against the rest of the
domains in the Astral 40% set and the top ranking hit was
chosen as template. Our analysis was restricted to targets
which have a template with at least 25% sequence iden-
tity, evaluating the proposed method for targets from the
homologous fold recognition category. These criteria
specify 1765 targets, each with one template. For 153
(8.7%) of these 1765 targets, some of the necessary com-
putations failed. We excluded those targets, which leaves
us with n = 1612 targets, for which we have all relevant
scores available.

5.2.2 Cross- validation of SVM-based selection

The training and validation of the support vector machine
is performed using five-fold cross-validation. In order to
ensure that there are no models for the same target in the
training as well as in the testing set, during the cross-vali-
dation successively models for one fifth of the targets (not:
one fifth of the models) are removed from the training set
and used for testing.

As the pairwise sequence identity between targets is below
40% according to selection criteria it is guaranteed that
models in the test and training sets are sufficiently dis-
tinct.

In order to assess the effect of the choice of k in k-fold
cross-validation, a ten-fold cross-validation was also per-
formed, yielding results identical to one digit precision in
Table 4 (data not shown, the figures in the article refer to
k=5).
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Abbreviations
ay(t) Arby default model for targets ¢

E(t) Set of models constructed for targets t according to
model generation procedure i € {0,1,2}

TM Model quality evaluation measure as computed with
the TM-score program

GDT Model quality evaluation measure as computed with
the LGA program

MS Model quality evaluation measure as computed with
the MaxSub program

[x] Iverson bracket

X Average of x over all targets

xAverage of x over targets suggested by the selection pro-
cedure

fpt; . (t) Relative fequency of models per target with TM-
score above Arby default

qirg(t) Quality improvement when choosing randomly

fbe(t) Indicator whether better model exists per target

fbg(t) Relative frequency of targets for which a better

model exists

qibg(t) Quality improvement which is theoretically the
best possible

Sg,frst(t) Selected model per target

fimg . »(£) Indicator whether selected model is improved
in real quality

]?n Efist-(f) Relative frequency of selected models with

increased TM-score model quality

qimg, ;,,(t) Measure of quality improvement with respect to
default Arby model

ni Relative frequency of targets for which a selection pro-
cedure suggests improved models

The indicator functions are constructed to count the rela-
tive frequencies. They draw their names from the respec-
tive relative frequencies.
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