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Abstract
Background:The highly dimensional data produced by functional genomic (FG) studies makes it difficult
to visualize relationships between gene products and experimental conditions (i.e., assays). Although
dimensionality reduction methods such as principal component analysis (PCA) have been very useful, their
application to identify assay-specific signatures has been limited by the lack of appropriate methodologies.
This article proposes a new and powerful PCA-based method for the identification of assay-specific gene
signatures in FG studies.

Results:The proposed method (PM) is unique for several reasons. First, it is the only one, to our
knowledge, that uses gene contribution, a product of the loading and expression level, to obtain assay
signatures. The PM develops and exploits two types of assay-specific contribution plots, which are new to
the application of PCA in the FG area. The first type plots the assay-specific gene contribution against the
given order of the genes and reveals variations in distribution between assay-specific gene signatures as
well as outliers within assay groups indicating the degree of importance of the most dominant genes. The
second type plots the contribution of each gene in ascending or descending order against a constantly
increasing index. This type of plots reveals assay-specific gene signatures defined by the inflection points
in the curve. In addition, sharp regions within the signature define the genes that contribute the most to
the signature. We proposed and used the curvature as an appropriate metric to characterize these sharp
regions, thus identifying the subset of genes contributing the most to the signature. Finally, the PM uses
the full dataset to determine the final gene signature, thus eliminating the chance of gene exclusion by poor
screening in earlier steps. The strengths of the PM are demonstrated using a simulation study, and two
studies of real DNA microarray data – a study of classification of human tissue samples and a study of E.
coli cultures with different medium formulations.

Conclusion: We have developed a PCA-based method that effectively identifies assay-specific signatures
in ranked groups of genes from the full data set in a more efficient and simplistic procedure than current
approaches. Although this work demonstrates the ability of the PM to identify assay-specific signatures in
DNA microarray experiments, this approach could be useful in areas such as proteomics and
metabolomics.
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Background
The availability of gene structure data for many organisms
[1] has paved the way for the challenging task of assigning
biological functions to each individual gene, and more
challenging still, explaining the highly complex metabolic
and regulatory networks inside the living cell, where
genes, proteins, and metabolites all interrelate. The wealth
of information and technologies created by the availabil-
ity of these genome sequences ushered in what frequently
is called the post-genomic era, along with the appearance
of a new field called functional genomics (FG). FG refers
to "the development and application of system-wide
experimental approaches to assess gene function by mak-
ing use of the information and reagents provided by struc-
tural genomics" [2]. There are at least three areas of FG for
which experimental techniques are currently well devel-
oped: transcriptomics, proteomics, and metabolomics.
Using a combination of these techniques with mathemat-
ical and computational tools for data analysis, the cell
transcriptome, proteome, and metabolome can be identi-
fied (which refers to the inventory of all transcripts, pro-
teins, and metabolites, respectively). Typical studies in
these areas consist of surveying the levels of these species
under a variety of environmental conditions and/or
genetic backgrounds (referred to as assays in this article).
The ultimate goal of these studies is therefore the identifi-
cation of assay-specific signatures in the surveyed domain;
e.g. which transcripts, proteins, or metabolites are associ-
ated with a given physiological condition such as health
or disease or the response of an organism to an environ-
mental challenge.

By far the most valuable experimental technique in FG is
DNA microarrays, which have been used to study the tran-
scriptional response of many organisms to genetic and
environmental perturbations [3]. As with any other exper-
imental tool in FG, the use of DNA microarrays to study
gene expression results in large data sets, which can con-
sist of measurements for thousands of genes. In contrast,
the number of assays is typically less than hundred. There-
fore, since the number of genes is much greater than the
number of assays, efficient information extraction and
dimensionality reduction methods are needed to obtain
assay-specific gene signatures of ranked order, which is
the objective of the method proposed in this work. Several
statistical methodologies have been proposed to achieve
this goal including principal component analysis (PCA) –
a specific case of singular value decomposition (SVD),
multidimensional scaling, cluster analysis, self-organizing
maps, and Fisher discriminant analysis ([3] and references
therein). Among them, PCA has been widely used not
only in the areas of transcriptomics [4-6], but proteomics
[7-9] and metabolomics [10-12] as well, and it has shown
much promise in the fulfillment of our classification
objective [13].

This article introduces a new and powerful PCA-based
approach that differs from current PCA approaches in sev-
eral critical ways. First, our proposed method (PM) deter-
mines and exploits assay-specific gene contribution from the
complete set of PCs, that is, both eigenassays (EG) and
eigengenes (EA) PCs [14]. To our knowledge this is the
first application of an assay-specific gene contribution
approach in this context. The score for gene i obtained
from an EG is equivalent to contribution over all the
assays for this gene. However, we are not aware of work in
this context that uses a predefined subset of the score to
obtain the signature as we do in this work. In contrast, for
EA, gene contribution is not related to an EA score, and
thus, a totally new application. Secondly, in contrast to
current PCA methods, the PM does not rely on the exist-
ence of structure (i.e., gene clustering) in two dimensional
score plots of dominant principal components (PCs)
because they can be weak or even absent. Thirdly, this is
the only PCA method, to our knowledge, that determines
gene-ranked assay-specific signatures in a final step from
the set of all genes, in contrast to methods that use
reduced sets that have the possibility of removing critical
genes at some intermediate step. This new PCA-based
approach is presented using the following outline. The
next section discusses concepts of PCA important to the
understanding of the PM. The PM is then described in a
separate section. Finally, three case studies are presented
aiming at: (1) demonstrating the application and
strengths of the PM along with limitations of current
methods; (2) comparing the PM to an approach with sim-
ilar features on an actual data set; and (3) applying the PM

Visual representation of the data, loading, and score matrices for X and XTFigure 1
Visual representation of the data, loading, and score matrices 
for X and XT. A typical DNA microarray experiment is rep-
resented in which the expression level of m genes (g) is sur-
veyed for n environmental conditions and/or genetic 
backgrounds (called assays, a).
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to study a dataset not explored before with this type of
tool. Concluding remarks are given in the final section.

A DNA microarray context for PCA
The purpose of this section is to discuss fundamental con-
cepts of PCA in the context of microarray gene expression
data that are important to the understanding of the PM. In
a typical DNA microarray experiment the expression level
of m genes is surveyed for n environmental conditions
and/or genetic backgrounds (called assays in this article
following the work of Wall et al [14]). We define X as an
m by n matrix of expression data with the n assays

expressed along the columns and the m genes expressed
along the rows with m > > n Thus, xij is the expression level
of the ith gene in the jth assay. For convenience of discus-
sion we let the rank of X = n. In this article, the variables of
any matrix are expressed along the columns and the meas-
urements are expressed along the rows. Thus, for X, the var-
iables are the assays and the genes are the measurements. In
contrast, for XT, the variables are genes and the measure-
ments are the assays.

The EG loading and EA score plots versus assay (time) based on the first two PCs for the simulation dataFigure 4
The EG loading and EA score plots versus assay (time) based 
on the first two PCs for the simulation data. The sinusoidal 
behavior is clearly shown and the exponential behavior 
appears to be also contained in the plots based on PC1 since 
the period is larger than the one shown in Figure 2.

Five gene transcriptional responses from the noisy sign data (A) and the noisy exponential data (B) to verify agreement with the simulated data produced by Wall et al. [14]Figure 2
Five gene transcriptional responses from the noisy sign data (A) and the noisy exponential data (B) to verify agreement with 
the simulated data produced by Wall et al. [14].

A score scatter plot of EG2 vs. EG1 for the simulated dataFigure 3
A score scatter plot of EG2 vs. EG1 for the simulated data. 
The genes separate into three cluster groups but this plot 
does not provide knowledge of gene or assay characteristics.
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PCA on X has the effect of obtaining an n dimensional
orthogonal space such that the composite variability (i.e.,
change) of the genes is maximized in the first principal
direction, and maximized in the second principal direc-
tion, with the variability captured in the first principal
direction removed, and so on, until the last principal
direction has the smallest variability. The n principal com-
ponents (PCs) can be determined from either the covari-
ance matrix or the correlation matrix of the variables of X.
(This work uses only the correlation matrix.) The PCs are
the eigenvectors of the covariance (scaled sums of squares
and cross products) or the correlation (sums of squares
and cross products from standardized data) matrix, and
are ranked by their corresponding eigenvalues with the

largest one corresponding to the first principal compo-
nent (PC1). The ratio of eigenvalue i to the sum of all the
eigenvalues is the proportion of the total variability cap-
tured by the ith PC. Note that the n PCs based on X have
dimensions n by 1 (i.e., n elements) and following Alter et
al. [15] they will be called eigengenes (EGs) in this article
to distinguish them from the PCs based on XT, which will
be called eigenassays (EAs) following Wall et al. [14] who
departed from the "eigenarray" terminology introduced
by Alter et al. [15]. Note that the EAs have dimensions m
by 1. The elements (i.e., coefficients) of a PC are called
loadings. A PC is a linear combination of the variables and
the projection of the ith row of measurements onto a PC
(i.e., the scalar product) gives its ith score. Let V (n by n)

The contribution plots for EG1 (A), EG2 (B), EA1 (C), and EA2 (D)Figure 5
The contribution plots for EG1 (A), EG2 (B), EA1 (C), and EA2 (D). "GP" = group.
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and U (m by n) be the loading matrices for X and XT,
respectively. Also, let Sv (m by n) and Su (n by n) be the
score matrices for X and XT, respectively. Figure 1 illus-
trates these concepts and matrices visually. As shown, the
EG and EA are given by vj and uj, respectively. Also note
that, following Wall et al. [14], gi is the transcriptional
response of the ith gene and the aj's are the assay expres-
sion profiles, j = 1, . . ., n. Next we present the PM using
the notation and description shown in Figure 1.

Results and discussion
Proposed method (PM)
In microarray data studies, the assay profiles are part of
the experimental design. More specifically, most DNA
microarray studies seek to identify assay-specific signa-
tures (i.e., which genes determine a given phenotype as
expressed by the assay). The experimenter chooses the
assays because of natural relationships, a hypothesis, or

both. Consequently, a considerable amount of á priori
knowledge is known about the assay profiles before any
analysis on the data. However, often times hidden rela-
tionships that advance knowledge are brought to light by
PCA. The PM exploits the expected assay profile behavior
and new knowledge to obtain assay-specific gene expres-
sion profiles or signatures with a ranking of all the genes
in a profile. Our PM seeks to accomplish this objective
using the following basic steps after obtaining the PCs
(i.e., EGs and EAs):

1. Determine the EGs for X (V) and EAs for XT (U) based
on their correlation matrices.

2. Determine the pseudo score matrix for EA (Su) using U
in Step 1 and X, i.e., XTU. X is not standarized.

3. Plot the EG loadings (the row coefficients of V) and
pseudo EA scores (the row coefficients of XTU) against the
assay index starting from the most dominant to the lesser
dominant PCs until the assay signature of interest is
revealed as a group of large outliers.

4. Determine the contribution for each gene using the
selected PC in Step 1 for the assay signature group.

5. Rank the genes by contribution and plot the contribu-
tions in ranked order against an index that increases by
one unit for each gene. Gene identification with rank
should be maintained.

6. Obtain the assay-specific gene signatures from the
ranked assay profiles using the plot in Step 3 to determine
cut-offs or limits on the size of profile groups.

Most PC software packages give an option for selecting
between the covariance or correlation matrix of the varia-
bles. For standardization of scale, we recommend using
the correlation option in Step 1. However, for obtaining
the score matrices in Step 2, our procedure is to standard-
ize X for obtaining EG scores but not for EA scores since
we do not standardized X when determining EA gene con-
tribution. Even though the EA are determined from the
correlation matrix, we do not standardize X because under
EA standardization X is row centered and since the contri-
bution of each gene i is proportional to the sum across
row i, these contribution values tend to disappear under
standardization. The EG standardization of X is given
below:

Rank gene contribution plots for EG1 (A) and EA1 (2)Figure 6
Rank gene contribution plots for EG1 (A) and EA1 (2). "GP" 
= group. A sharp change occurs at index 1,600 with a gradual 
change approaching 2,000 in agreement with reality. EA is the 
better plot as seen by its low gene ranking behavior in agree-
ment with reality.
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Note that the scores matrix for EG (Sv) is determined by Sv
= ZV.

The objective of Step 3 is to determine and select the PC
with the strongest character of the assay group of interest
using loading plots for the EGs and score plots for the EAs.
These plots are compared against the á priori knowledge
of the assays. In addition, these plots can also bring to
light relationships among assays not known or hypothe-
sized á priori. The strength of a specific profile is deter-

mined by its PC association, the amount of variation
explained by the associated PC, and its separation from
the other assay profiles. The PC associated with the plot
with the strongest profile is selected to determine the sig-
nature. This can be either an EG or an EA. Our experience
have found that a number of EA and EG PCs provide sim-
ilar information but that either one can provide unique
information. This is why we give the recommendation to
examine both types of eigenvectors.

Steps 4–6 involve the development, analysis, and use of
gene contribution plots. To our knowledge this is the first
use of contribution plots for determining signatures. This
approach has the advantage over a loading approach
because the loadings only give the relative weight for a
specific PC but the contribution gives the product of the
relative weight and the expression level for a particular
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Loading plots for EG1 (A), EG2 (B), and EG3 (C) for the human tissue studyFigure 7
Loading plots for EG1 (A), EG2 (B), and EG3 (C) for the human tissue study. The squares are the muscles group, the diamonds 
are the brain group, and the triangles are the liver group. Although these groups were clearly defined, EA2 and EA3, as shown 
in Figure 8, had better separation and were used to develop these group signatures.
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gene. In addition, our approach has the advantage of
determining this contribution for only the members in
the assay group of interest whereas the loading gives an

effect across all the assays. The contribution  for a

specified assay group, GP, for gene i, using EG vk is

Similarly, using EA uk,  is

Note that from Eq. (2), if GP consists of all the assays,

 is the ith score for the jth EG. In contrast, note from

Eq. (3),  is not related to the scores of EA.

If the absolute value of  is high, then we are assum-

ing that it is critical to the assay-specific signature and the

greater , the more critical the gene. Thus, by rank-

ing the genes from the highest  to the lowest

, we are able to obtain a ranked list of genes for

each assay-specific signature. The cut-off point is guided
by the level of change across the gene index revealed in the
ranked contribution plots. Nonetheless, since the genes
are ranked, no matter where one makes the cut-off, the list
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Score plots for EA1 (A), EA2 (B), and EA3 (C) for the human tissue dataFigure 8
Score plots for EA1 (A), EA2 (B), and EA3 (C) for the human tissue data. The large gray dot is Placenta 2, the squares are the 
muscles group, the diamonds are the brain group, the large black dot is Breast 9, and the triangles are the liver group. EA2 and 
EA3 were chosen to develop the muscle, brain, and liver signatures.
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will be the strongest one for the selected number of genes.
We now apply the PM to three cases; a simulation study of
artificial data and two cases of real data and demonstrate
its ability to obtain assay-specific gene signatures of
ranked order.

The case studies
In this section we present three case studies to evaluate
our PM. The first study uses simulated data based on the
study of Wall et al. [14]. This study will validate the PM by
demonstrating its ability to obtain the correct assay-spe-
cific gene signatures. The second study involves applying
the PM to a real DNA microarray data set (the case studied
by Misra et al. [13]). This study consisted of 6,972 genes
and 40 normal human tissue samples, which they used to
develop and apply a novel method for obtaining tissue-
specific gene expression signatures. In this case study we
discuss the limitations of their method as compared to the
strengths of the PM and compare results. The last study
uses real expression data of 4,290 identified genes and
twelve assays, representing a combination of two recom-
binant E. coli strains and different cultivation conditions
including the alternative use of two sugars and the expo-
sure of the cells to different ethanol concentrations (the

case studied by Gonzalez et al. [16]). We analyze this data
set using our PM and present gene expression profiles for
the most relevant assay-specific signatures: i.e., the
response of the cells to a 2% ethanol challenge.

The simulation data study
This study generates artificial gene expression data mim-
icking the simulation study in Wall et al. [14] to introduce
and illustrate the PM. This data have three kinds of tran-
scriptional responses: 1. noisy (genes 1 to 1,600); 2. noisy
sinusoidal behavior (genes 1601 to 1,800); and 3. noisy
exponential pattern (1,801 to 2,000). The added noise
was distributed normally with mean 0 and standard devi-
ation 0.5. The sine pattern was

where a is distributed uniformly on the interval (1.5, 3).
The exponential pattern was

where b is distributed uniformly on the interval (4, 8) and
t is the time (in minutes). The number of assays is four-
teen with assay i corresponding to sampling at time 10i
min, i = 0, 1, . . ., 13. To verify that our data were in agree-
ment with the Wall et al. [14] data, we plotted the graphs
in Figure 2. These plots are in agreement with their Figure
5.3. As we discussed in previous section, a two-dimen-
sional score scatter plot based on EG1 and EG2 is com-
mon in PCA analysis. Although Figure 3 separates three
clusters of genes in agreement with the nature of this data
set, it does not provide knowledge of the gene or assay
characteristics for the clusters and is therefore not used by
the PM. In this study we are assuming that the experi-
menter has designed the sinusoidal and exponential pat-
terns into the assays. Thus, the experimenter has a
complete knowledge of this behavior. For space consider-
ations we will not show these plots but they would look
like the ones in Figure 2, except that there would be one
point plotted for each assay number. The PM will be able
to effectively accomplish its objective if it can capture and
reveal these patterns in a few dominant PCs, preferably
PC1 and PC2.

In applying the PM, we first determine the PC matrices U
and V as required by Step 1. We then determine the
pseudo scores for the EAs per Step 2 and produce Figure 4
under Step 3. This figure plots the loading for EG and the
pseudo scores for EA against the assay time index. Sinusoi-
dal patterns are clearly revealed by all the curves although
the one for EG2 appears to be distorted. The EA2 plot
appears to match the sinusoidal behavior in Figure 2 the
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The ranked gene contribution plots for the brain (A), mus-cles (B), and liver (C) gene groupsFigure 9
The ranked gene contribution plots for the brain (A), mus-
cles (B), and liver (C) gene groups. The insets show the 
inflection point of each curve, which defines the whole set of 
genes composing the signature. The changes are very sharp 
as the highest-ranking genes are approached, which allows 
the definition of a subset of genes contributing the most to 
the signature. The cut-off values were determined by identi-
fying the point of maximum curvature in these regions. Panel 
(D) shows the change in curvature for the steepest region of 
each curve represented in panels (A)-(C).
Page 8 of 20
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:377 http://www.biomedcentral.com/1471-2105/7/377
best. The EG1 loading plot and the EA1 score plot appear
to have the right sinusoidal shape but with a larger period.
Closer examination of these plots, especially the EA1
score plot, indicates evidence of a composite behavior of
both patterns. EG1 and EG2 explained about 51% and
13% of the total variation, respectively, and EA1 and EA2
explained about 21% and 9%, respectively. In our
research, we have found much lower amounts for EAs to
be common. However, one should not use this as a crite-
rion for choosing an EG analysis over an EA analysis. As
discussed previously, the PC selection criteria that we rec-
ommend are the separation and grouping of assay groups
as well as the order of the PC.

In applying Step 4, at least two types of assay profiles or
groups need to be defined to identify the sinusoidal and
exponential genes. For this particular case, we chose to do
this by defining these groups based on positive and nega-
tive loadings and scores in Figure 4. The results of this
grouping are given by the score contribution plots in Fig-
ure 5. In these plots, the contribution of gene i, for a given
PC, is the sum of the scores for all the genes for the partic-
ular grouping (either positive or negative). EA1 plot is
very effective separating both induced gene types (1,601–
2,000) from the noisy genes (Figure 5C), while the EA2
plot confirms that this PC represents only the sinusoidal
genes (Figure 5D), although the identification is not so
distinct for a significant number of genes. Although EG1
appears to represent both gene types and does an excellent

job of identifying as one group all 400 genes (Figure 5A),
the EG2 score contribution plot appears to represent the
sinusoidal genes for the positive (+) assay group and the
exponential genes for the negative (-) assay group (Figure
5B). In summary, the EA analysis is a better choice for this
data set than an EG analysis since it better identifies both
types of genes using EA1 and sinusoidal genes using EA2.

After separating the genes by their PC assays groups, Step
5 is applied. The objective of this step is to develop a
ranked-order list for all the groups identified in Step 4. To
do this, we again use the contributions obtained in Step 4
and appearing in Figure 5 but now we plot them in
ascending or descending order against an index that
increases by one unit for each gene. The ranked gene plots
for both EG and EA results are given in Figure 6. Both plots
look very similar except for low index numbers. For the
EG plot, the lines for the two groups cross and separate,
thus creating a false gene signature for the lower ranking
genes (i.e., this is not true since they are all noisy genes).
The EA plot however does not create such a false signature
since both lines are close to zero as the rank decreases and
is thus the better choice here also. As the rank increases,
the shape of the curves permit the identification of two
groups of genes clearly separated by two inflection points
around gene numbers 1,600 and 1,800. These inflection
points can be obtained by identifying the optimum (min-
imum or maximum) of the first derivative. We show this
calculation for the EAs plot in Figure 6 and, as expected,

Table 1: Brain-specific signature as identified by the proposed method.

Rank Gene ID Rank Gene ID Rank Gene ID Rank Gene ID

1 M63379* 18 D21267 (8) 35 U49869* 52 K03515*
2 S72043 (1) 19 D87463* 36 M25667 (18) 53 D49958 (27)
3 M13577 (3) 20 D78577 (19) 37 L20814 (20) 54 L18983*
4 D86974 21 L07807 (9) 38 D50310 55 D87460*
5 M27891* 22 X95404* 39 J05243 56 J04988
6 S40719 (3) 23 L10373 (11) 40 HG3437-

HT3628 (10)
57 U51336*

7 J04615 (7) 24 X15341* 41 L11373* 58 HG4322-
HT4592

8 X05196* 25 M16364 (12) 42 J04173 59 X51956*
9 M19311 26 M17733 43 M11749 (24) 60 U47634
10 U44839 (14) 27 D63851 (15) 44 X86809 (30) 61 M86400*
11 U48437 (6) 28 U04241 45 X04741 (22) 62 D49400
12 X99076 (5) 29 Y09836 (16) 46 M65066 (28) 63 X15183
13 M21142* 30 L37033 (23) 47 D87465 (29) 64 HG1862-

HT1897
14 Z70759 31 M74491* 48 S82024 (26) 65 U60644*
15 HG1877-

HT1917 (4)
32 S77356 49 D55654 66 S78296*

16 J03077* 33 J04046 (21) 50 L47738* 67 D13146*
17 M98539 (13) 34 M37457 (17) 51 D82343 (25)

Genes previously identified as part of this signature by Misra et al. [13] are presented in bold and their ranks are shown in parenthesis. Genes 
marked with an asterisk are deemed to be good markers of the specific tissue because previous studies haven shown them to be either functionally 
associated with the health/disease state of the specific tissue or expressed at high levels on it [17].
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two inflection points are observed at gene numbers 1,600
and 1,800. This feature of the gene contribution plots can
be used to precisely define complete sets of genes that rep-
resent an assay signature. It is noteworthy to mention that
the only sharp changes in this curve take place in the tran-
sition from the noisy to induced genes thus clearly indi-
cating the start of the signature (i.e., induced genes). No
sharp breaks occurred within the region of induced genes,
indicating the truth that no gene in this expression signa-
ture is dominant.

Human tissue expression data case study
Our second study compares the results and methodology
of the PM with another one (Misra et al. [13], referred to
as the "Misra et al." method in what follows) of similar
ability (i.e., a PCA-based method) in a study of real micro-
array data. Their approach represents the most refined use
of PCA for the analysis of FG data that we found in the lit-
erature. This data set consists of assays from several
human tissues from the brain, kidney, lung, esophagus,
skeletal muscle, breast, stomach, colon, blood, spleen,
prostate, testes, vulva, proliferative endometrium, myo-

metrium, placenta, cervix and ovary [see Additional file
1]. We will first briefly describe their approach and com-
pare and contrast it to the PM. Then we apply the PM and
determine tissue-specific gene expression signatures for
brain, liver, and muscle assays. We close this section by
comparing the signature results of both methods.

Although it is not clear from their loading and score plots,
we determined that the PCA method of Misra et al. is
based on eigengenes (EGs). Their method is basically a
gene screening method where genes are removed at vari-
ous reduction steps while seeking to maintain the struc-
ture of the loading plot. Their first reduction step is a
course screening and reduces the total set of genes to a
workable subset (from about 7,000 genes to 425) using a
filtering method that eliminates genes with loadings
below a threshold. One limitation is that this threshold is
not based on statistical significance but is somewhat sub-
jective, although quantitative. This set of genes is then
reduced to unrefined signatures without identities at this
point using a histogram and visually determining the
classes (i.e., the gene groups). These unrefined gene

Table 2: Liver-specific signature as identified by the proposed method.

Rank Gene ID Rank Gene ID Rank Gene ID Rank Gene ID

1 X01038* 28 J02843 (2) 55 X51441 (11) 82 HG2841-
HT2968

2 K01396* 29 M65292 56 M21642 (15) 83 M62486*
3 M69197 30 M13149 (6) 57 X76717 84 S82297
4 K02765* 31 X03168 (8) 58 J05428 85 X56411*
5 X02544* 32 M10050 (7) 59 M10612* 86 U46499*
6 M15517 33 V00594 60 U08021* 87 U77594
7 J00129 34 HG1827-

HT1856 (12)
61 X16260* 88 X02176

8 M20902* 35 D14446 (9) 62 J03910 89 M75106
9 X04898 36 M16961 (10) 63 M19828 (16) 90 M33317*
10 K03431 37 M63379 64 X57351 91 L05144*
11 V00594 38 D13900* 65 X14690 (18) 92 X56692*
12 X01388* 39 X65727* 66 M61855* 93 M29874
13 U22961 40 M12963* 67 M14058 94 L09708
14 M12529* 41 M34276* 68 M22976* 95 J02943*
15 X00129* 42 M11437 69 M10942 96 K02402
16 L15702* 43 M13690* 70 M25079 97 Y09616
17 M15656* 44 X64177 71 U22029 98 L09229
18 S95936* 45 U21931* 72 M20786 (20) 99 L48516
19 M59815 46 X83618* 73 D16294 100 D78011*
20 X53595 (3) 47 D00408* 74 L29008 101 U51010
21 M10014 48 D87292 75 M21642 (19) 102 S48983 (24)
22 HG2841-

HT2969 (4)
49 X53414* 76 M17262 103 X63359

23 M11147 50 M58600 (14) 77 U08006 (22) 104 L47726
24 HG2841-

HT2970 (5)
51 X68733* 78 M11321 (21) 105 L07765*

25 M36803 (1) 52 X02761 79 M11567 (17) 106 K03192
26 D38535 53 L00190 (13) 80 X13930 107 K02766
27 J04080 54 D31628* 81 X05409*

Genes presented in bold or marked with an asterisk and numbers in parenthesis are as described for Table 1.
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groups are refined (i.e., further reduced) using cluster
analysis and visually eliminating genes outside subjec-
tively chosen cluster groups. The final step uses score plots
to "reveal" the "nature of each gene group" and to rank the
genes within each group.

The Misra et al. method is similar to our PM in that the
objective is to identify signature groups and prioritize the
genes in these groups. However, there are some very criti-
cal differences. First, they only make use of EGs in contrast
to the PM that compare EGs to EAs and selects the one
that best represents the assay group of interest. Another
critical difference is that their method relies on structure
in two dimensional loading plots but the PM does not
since, as we determined by simulation (previous section)
and will show in the ethanol study (next section), this
type of plot will not always separate genes into identifia-
ble groups (i.e., have useful structure). Furthermore, for
the Misra et al. method, gene contribution is based on the

loading of a gene whereas in the PM gene contribution is
the sum of the product of the loading and the expression
level for only the assays in the signature group (see Eqs. 2–
3). Another critical difference is that when the Misra et al.
method ranks the genes within a gene group only the
"refined" genes are candidates; and thus, not giving a
chance to those not in this group that could have been
incorrectly eliminated. In contrast, when the genes are
ranked by the PM all the genes are considered. Finally, the
PM seems to be much simpler to apply as we now demon-
strate on this study.

Figure 7 gives the loading plots for EA1–EA3 and Figure 8
gives the score plots for EA1 to EA3. EG1–EG3 explained
about 60%, 7%, and 6% of the total variation, respec-
tively, and EA1–EA3 explained about 12%, 8% and 7%,
respectively. EG1 separates the muscle and liver assays
well, the only drawback is that they are on the same side
of the cluster of points. This drawback is also true of EG2

Table 3: Muscle-specific signature as identified by the proposed method.

Rank Gene ID Rank Gene ID Rank Gene ID Rank Gene ID

1 M21812* 26 HG2442-
HT2538

51 M83088 76 X01677

2 X00371 (1) 27 M83186* 52 HG4749-
HT5197

77 M63603*

3 M33772 (2) 28 U14973 53 X63527 78 M26880
4 X16064 29 X04201* 54 U06155 79 X15940
5 M37984* 30 M20642 (16) 55 HG3549-

HT3751
80 D14530

6 Z20656 (3) 31 U60115 56 S45630 81 M60092*
7 M21494 (4) 32 X16504 (15) 57 J05073* 82 U24183*
8 U96094 (5) 33 Z23090 58 L19527 83 U49837*
9 M21984* 34 U35637 (17) 59 X06617 84 X69433
10 M17886 35 HG2873-

HT3017
60 M31520 85 D23660

11 M19309 (11) 36 M32598* 61 M64716 86 X60036*
12 X66141* 37 X17206 62 U65581* 87 Z49878
13 M20543 (14) 38 M29458 (18) 63 J03827* 88 U14970
14 M17885 39 HG1800-

HT1823
64 Z12962 89 X69654

15 M83308 (7) 40 X03342 65 D14710 90 M63391*
16 S73840 (13) 41 X80822 66 X62691 91 X16560
17 J04760 (6) 42 Z49148 67 X95325* 92 M18000
18 X90568 (12) 43 M86407 (19) 68 X56932 93 X51466
19 M24122* 44 X02152* 69 U57341 94 L32977
20 U96781* 45 S73591 70 HG4011-

HT4804
95 D21235

21 L21715 (9) 46 M60854 71 X69150 96 L16842
22 X06825 (8) 47 D79205 72 HG3364-

HT3541
97 U14968

23 M21665 (10) 48 X12447* 73 U29175 98 M22632
24 X73113* 49 M55409 74 L26247 99 U12465
25 X66276* 50 HG821-HT821 75 M24069*

Genes presented in bold or marked with an asterisk and numbers in parenthesis are as described for Table 1.
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in the separation of the muscle and brain assays. How-
ever, this is not true for EG3 in the separation of the mus-
cle and liver assays but the drawback of this plot is that the
separations are not very prevalent. We did not choose any
of these PCs for signature definition because we found
some EAs with better properties.

Figure 8 contains the score plots for the first three EAs. For
the EA1 plot, from the positive values, the first PC appears
to reflect a combination of Placenta 2 (gray dot), the three
muscles (squares), the six brain (diamonds), Breast 9 (the
large black dot), and the two liver (the triangles) tissues.
All these groups are on the same side of the cluster and,
thus we did not use this PC for assay development. In con-
trast, EA2 separates nicely into muscle and brain assays on
opposite sides of the cluster. Similarly, EA3 separates
nicely into only a liver assay group. Hence, we selected
EA2 to develop the muscle and brain signatures and EA3
to develop the liver signatures.

The contribution plots ranking the genes within the signa-
tures using EA2 and EA3 are shown in Figure 9A–C. As
one can see, the EAs produced well defined signatures
with sharp, steep rises that significantly distinguish contri-
butions for the most dominant genes. As in the simula-
tion case study, an inflection point can be identified
which marks the start of a tissue-specific signature (see
insets in Figure 9A–C). Using this approach, 3,014, 3,492,
and 2,647 genes are identified as the complete brain, mus-
cles, and liver signatures, respectively. This list is clearly
too comprehensive and of limited practical use due to its
length. However, because of the sharp changes over a
small number of genes as the highest ranking genes are
approached, a subset of genes contributing the most to
each tissue-specific signature can be clearly observed.

We identified the cut-off point that marks the limit of this
subset of genes by using the curvature (κ) as a metric to
assess the steepness of the curve. For a function y = f (x),
the curvature is defined as

A scores plot of EG2 vs. EG1 for the ethanol dataFigure 10
A scores plot of EG2 vs. EG1 for the ethanol data. The genes 
do not appear to separate into clusters or have structure to 
facilitate further analysis.

Table 4: Experimental conditions used to obtain the data set analyzed in "the ethanol response in E. coli" case study (see reference 
[16] for more details).

Assay characteristics

Assay Strain Sugar 1% EtOH in the initial 
medium

2% EtOH challenge

1 KO11 Glucose NO NO
2 LY01 Glucose NO NO
3 KO11 Xylose NO NO
4 LY01 Xylose NO NO
5 KO11 Glucose YES NO
6 LY01 Glucose YES NO
7 KO11 Xylose YES NO
8 LY01 Xylose YES NO
9 KO11 Glucose NO YES
10 LY01 Glucose NO YES
11 KO11 Xylose NO YES
12 LY01 Xylose NO YES

Gene expression was surveyed for 4,290 genes in a total of 12 different experimental conditions (i.e., assays).
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When the curve is changing sharply κ is large and when
the curve changes slowly κ is small. Thus, by calculating
the gene index that produces a maximum value of κ, a
clear cut-off in the signature can be identified. We calcu-
lated κ for the sharp regions in the ranked gene contribu-
tion plots, and in all cases there is a clear maximum
defining the cut-off points (see Figure 9D). Using this
approach the size of the subset of genes defining the
brain, liver, and muscles signatures was 67, 107, and 99,
respectively. Individual genes in the brain-specific signa-
ture are shown in Table 1, and Tables 2 and 3 show the
results for the liver and muscle signatures [for complete
tables, including gene function, see Additional file 2].

The PM clearly identifies the genes reported by Misra et al.
[13] as part of each tissue-specific signature (genes
reported in their study are shown in bold in these tables
with their original ranking in parenthesis). We also inves-
tigated whether the genes newly identified using the PM
are indeed representative of each tissue by reviewing cur-
rent information available at "Entrez Gene" (http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene), a
database from the National Center for Biotechnology
Information [17] and its multiple links to the latest
reports available in the literature. Genes marked with an

asterisk in Tables 1, 2, 3 are deemed to be good markers of
the specific tissue because previous studies have shown
them to be either functionally associated with the health/
disease state and/or expressed at high levels in the tissue.
Clearly, a very large proportion of the newly identified
genes are in fact good markers of the individual tissues. In
addition, the identification of new genes constitute the
basis to formulate hypothesis regarding their involvement
in the functioning of the specific tissue, thus evidencing
the potential use of the PM to identify new functions. For
example, a very large proportion of newly identified genes
in the muscle signature (see Table 3) encode ribosomal
proteins, which would indicate their differential expres-
sion in this tissue. This is in fact in agreement with existing
evidence that supports the tissue-specific expression of
ribosomal proteins [18]. Using additional PCs (actually
only EGs), we were able to develop signatures for a
number of assay tissue groups. For space considerations,
we do not present them in this article but for the inter-
ested reader they can be found at the website: http://
www.public.iastate.edu/%7edrollins/data.html .

The ethanol response in E. coli case study
After demonstrating the superior performance of the PM
in both a simulation study and a typical analysis of DNA
microarray data using existing PCA methodologies (two
previous sections), we now present the application of the
PM to investigate a data set that had not been analyzed
using any PCA-based method; i.e., the study of ethanol
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The loading and score plots for EG (A) and EA (B) versus assay number based on the first three PCs for the ethanol data setFigure 11
The loading and score plots for EG (A) and EA (B) versus assay number based on the first three PCs for the ethanol data set. 
The EAs efficiently identify signatures corresponding to ethanol- and non-ethanol-challenged cultures, presence and absence of 
ethanol in the initial culture medium, and a strain-specific signature and appear to provide better assays grouping than the EGs 
for the first three PCs.
Page 13 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
http://www.public.iastate.edu/%7edrollins/data.html
http://www.public.iastate.edu/%7edrollins/data.html


BMC Bioinformatics 2006, 7:377 http://www.biomedcentral.com/1471-2105/7/377
tolerance in ethanologenic E. coli strains KO11 and LY01
by Gonzalez et al. [16] [see Additional file 3]. The aim of
their study was to identify the basis for ethanol tolerance
in ethanol-resistant strain LY01 by comparison to its par-
ent strain KO11 using genome-wide transcriptional pro-
filing. This data set consists of 12 assays, which are a

combination of two genetic backgrounds (strains KO11
and LY01) and different variations of cultivation condi-
tions such as presence/absence of ethanol (as 1% in the
initial medium and as a 2% ethanol challenge), and two
different types of sugars (glucose or xylose). Table 4 sum-
marizes the most important features of each assay in this
data set. The expression levels for 4,290 genes were sur-
veyed for each assay in this study. It is noteworthy to men-
tion that their analysis focused on comparing the two
genetic backgrounds, thus trying to establish strain-spe-
cific signatures.

The two-dimensional score plot with EG2 vs. EG1 is
shown in Figure 10. From a visual examination of this
plot, there does not appear to be any grouping of genes.
Therefore, this appears to be another case where this plot
is not useful due to a lack of gene clusters. We apply the
PM beginning with Step 1. The EG loading and EA score
plots are given in Figure 11 for the first three PCs. EG1,
EG2, and EG3 explained about 80%, 13%, and 2% of the
total variation, respectively, and EA1, EA2, and EA3
explained about 55%, 13%, and 10%, respectively. Com-
parison of the two plots suggests that the EA does the best
job of grouping the assays. Both EG1 and EG2 separate
assays 1–8 from assays 9–12: i.e., distinguish the 2% eth-
anol-challenged cells (9–12) from the non-ethanol chal-
lenged cells (1–8) (see also Table 4). Although EG1
explains about 80% of the total variation it just marginally
separated these two groups of cultures. EG3, in a very

Ranked gene contribution plots for the non-ethanol (A) and ethanol (B) signaturesFigure 13
Ranked gene contribution plots for the non-ethanol (A) and ethanol (B) signatures. Complete gene signatures and subset of 
genes contributing the most to each signature are identified by the existence of points of inflection and maximum curvature, 
respectively.

The EA1 contribution plot for the non-ethanol assay group (index numbers 0–4,291) and the ethanol assay group (index numbers 4,292–8,582)Figure 12
The EA1 contribution plot for the non-ethanol assay group 
(index numbers 0–4,291) and the ethanol assay group (index 
numbers 4,292–8,582). The non-ethanol group is more 
spread out and skewed negatively. The values for the ethanol 
group are skewed positively. For each group, the top ranking 
genes are highlighted.
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undistinguishable manner, appears to account for a com-
bination of the effects of strains and type of sugar.

The EA plot (Figure 11B) however distinguishes three dif-
ferent characteristics of the assays in a very clear way. EA1,
which explains the largest fraction of the total variation,
made a clear distinction between ethanol and non-etha-
nol-challenged cultures. EA2 on the other hand, further
separates non-ethanol challenged cultures into those with
no ethanol present in the initial medium (1–4) from
those containing 1% ethanol in the initial medium (5–8)
(see also Table 4). The latter group is further separated
into two cultures containing the sugar glucose (5–6) and
two others containing xylose (7–8). Finally, EA3 repre-
sents a strain-specific signature as it clearly separates strain
KO11 (assays 1, 3, 5, 7, 9, 11) from strain LY01 (2, 4, 6, 8,
10, 12). In summary, the EA-based analysis is clearly supe-
rior here, and we therefore chose to do only an EA analy-
sis. In addition, we decided to focus on the results for the
first PC (i.e., EA1), which represents the assay signature
corresponding to the response of the cultures to a 2% eth-
anol challenge. Therefore, the assay-specific signature we
are exploring is clearly different from the one explored by
the study of Gonzalez et al. [16]; i.e., while we are studying
the ethanol signature their study focused on the strain sig-
nature. From the EA score plot in Figure 11B, the non-eth-
anol scores are all negative and closer together. Similarly,
the ethanol scores are all positive and closer together.
Therefore, only one PC (EA1) and two assay profiles from
this PC are sufficient for determining the gene signatures
for ethanol and non-ethanol challenged cultures. The neg-
ative scores for EA1 make up the non-ethanol profile and
the positive scores make up the ethanol profile.

In Figure 12 we plot the gene contributions of the non-
ethanol assay followed by the ethanol assay against the

order of the genes. This plot shows that the non-ethanol
profile has about twice as much spread as the ethanol pro-
file. In addition, the non-ethanol spread is skewed
towards the negative numbers and the ethanol spread is
skewed towards the positive numbers, which explains the
negative scores for non-ethanol assays and the positive
scores for ethanol assays. The negative values that separate
from the non-ethanol cluster make up the gene signature
for the non-ethanol. Similarly, the positive values that
separate from the ethanol cluster correspond to the gene
signature for ethanol. The ranked contribution plots in
Figure 13 allow us to find the gene signatures for these two
groups of assays under EA1.

As for the two previous case studies, inflection points and
sharp regions in the ranked contributions plots in Figure
13 clearly define signature groups. Therefore, the identifi-
cation of the group of genes composing the ethanol and
non-ethanol signatures is straightforward as described in
previous sections: i.e., cut-offs are identified by calculating
points of inflection and maximum curvature. Using this
approach, 702 and 522 genes were identified as part of the
complete ethanol and non-ethanol signatures, respec-
tively. In addition, two subsets of genes were identified
that contributed the most to each signature (see identifi-
cation of the point of maximum curvature in insets of Fig-
ure 13), which include 126 and 51 genes in the ethanol
and non-ethanol signatures, respectively. The top ranked
genes are labeled in Figure 13, and Table 5 shows the top
ten genes in each signature along with their rank and
expression ratios. Note that genes defining the ethanol
signature are in fact up-regulated (expression ratios > 1) in
response to the ethanol challenge while those composing
the non-ethanol signature are down-regulated (expression
ratios < -1). Although highly ranked genes frequently
exhibit a larger expression ratio, this is not always true

Table 5: Top ten genes in the ethanol (first three columns) and non-ethanol (last three columns) signatures along with their rank and 
expression ratios.

Gene Name Rank Expression Ratio Gene Name Rank Expression Ratio

yaiD 1 298.3 ygjK 1 -20.9
argH 2 170.0 tktA 2 -5.2
mngA 3 85.6 dsbC 3 -8.5
plsC 4 76.9 cvrA 4 -2.3
caiA 5 300.3 nrfE 5 -11.9
yebU 6 51.6 yehI 6 -19.2
ylbF 7 29.9 ybbA 7 -4.1
nrfG 8 46.8 evgS 8 -16.2
yaiY 9 27.6 ynfE 9 -14.4
pnp 10 4.9 pqiB 10 -3.7

Expression ratios are defined as follows. For the ethanol signature, as the average expression level of a gene in the 4 ethanol-challenged cultures 
divided by the average expression level in the 8 cultures not exposed to ethanol. For the non-ethanol signature, the ratio was inverted and a 
negative sign was included to indicate that these genes are down-regulated as the result of the ethanol challenge.
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because in the PM a gene's contribution is based on prod-
uct of its loading and expression level and not just its
loading. Tables 6 and 7 give the signatures in terms of the
genes contributing the most as identified by the points of
maximum curvature in Figure 13 [for complete tables,
including gene function, see Additional file 2]. We exam-
ined the functions encoded by this group of genes (Table
8) and found them very revealing of the metabolic rear-
rangements associated with the response of the cells to an
ethanol challenge.

As expected for the immediate response to an environ-
mental challenge, the cells significantly modified func-
tions involved in regulatory, transport, and general
processes (i.e., the largest changes in the "known func-
tions" category in Table 8 are observed for these three
functional groups), and important changes appear to take
place at the translation and post-translational modifica-
tion levels. The same trend was observed for the "putative
functions" categories, where most populated functions
were those involved in regulation and transport. The
group of genes composing these signatures also provides

Table 6: The 126 genes contributing the most to the ethanol signature as defined by the maximum curvature in Figure 13 A.

Gene Name Rank Expression 
Ratio

Gene Name Rank Expression 
Ratio

Gene Name Rank Expression 
Ratio

yaiD 1 298.3 uidR 43 31.2 yagR 85 5.7
argH 2 170.0 hcaR 44 60.6 mtlA 86 2.3
mngA 3 85.6 yciQ 45 1.4 ydhS 87 2.7
plsC 4 76.9 nagC 46 4.1 ybgH 88 3.7
caiA 5 300.3 yqcD 47 4.3 ygfZ 89 3.5
yebU 6 51.6 ynfA 48 1.8 aat 90 8.7
ylbF 7 29.9 glvC 49 3.2 speD 91 1.7
nrfG 8 46.8 yiaL 50 14.0 yagZ 92 6.2
yaiY 9 27.6 dbpA 51 2.3 yaeQ 93 1.6
pnp 10 4.9 ydhB 52 14.3 uhpT 94 9.4

mepA 11 10.5 grxB 53 2.1 yidF 95 12.1
amtB 12 3.7 hnr 54 4.9 ydiF 96 2.0
xthA 13 22.6 cbl 55 46.8 ydiU 97 2.0
ybfL 14 5.0 hemX 56 2.2 yhaM 98 22.2

moaE 15 2.7 fliG 57 30.3 ycgE 99 8.4
fdrA 16 10.0 yhaJ 58 14.3 ycdJ 100 3.4
topB 17 2.9 ydaP 59 9.3 ydfE 101 3.6
nlpC 18 9.6 tolB 60 2.1 yfcD 102 7.3
yagX 19 2.1 yagB 61 4.8 ytfM 103 2.0
ydcK 20 21.8 livJ 62 1.9 ylbC 104 3.9
yhfR 21 18.3 ybgI 63 2.4 rstA 105 7.3
fliF 22 58.3 tus 64 10.5 ycdI 106 6.5

zipA 23 4.4 uvrY 65 4.9 sfcA 107 7.5
ybhD 24 29.9 yhhX 66 8.2 ynjH 108 1.9
fhuA 25 3.8 sgbU 67 5.7 ybjN 109 11.8
ycfX 26 52.4 ydfP 68 3.2 ynfC 110 2.9
xerC 27 5.7 lysR 69 7.6 yidP 111 29.8
yheH 28 4.4 yneB 70 6.5 ybfO 112 2.1
wzzB 29 4.1 tktB 71 3.2 ydcI 113 34.6
yeeY 30 25.2 yhiP 72 3.1 ybdL 114 3.0
yiaJ 31 18.3 yidL 73 6.8 yggF 115 13.5
uvrC 32 2.2 yfeA 74 8.2 gcvA 116 3.0
ychA 33 16.9 yjcZ 75 3.3 yibN 117 3.6
hyfD 34 2.7 ycbX 76 5.3 cpsB 118 2.4
kdgR 35 3.6 yhcP 77 2.2 nagA 119 3.4
ydfU 36 2.57 recX 78 36.5 mhpB 120 19.8
yfeR 37 46.5 nanR 79 5.5 livK 121 6.9
parC 38 2.5 yccU 80 2.1 mnmE 122 1.7
yhiI 39 12.2 hyuA 81 6.2 fes 123 3.9
ygbI 40 38.1 nadB 82 1.7 pspF 124 3.4
ypdC 41 29.9 yaeJ 83 2.4 ygcP 125 83.3
yeiQ 42 13.5 ybhS 84 3.9 intA 126 2.5

Expression ratios are defined as the average expression level of a gene in the 4 ethanol-challenged cultures divided by the average expression level 
in the 8 cultures not exposed to ethanol.
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very important information to formulate hypothesis
about which specific gene(s)/function(s) are involved in
the cellular response to an ethanol challenge. For exam-
ple, many of the top-ranked genes (Table 5) encode func-
tions that one would expect to be involved in the cellular
response to an ethanol challenge such as the metabolism
and transport of osmolytes (mngA, cvrA, and caiA), the
biosynthesis of phospholipids (plsC) which are major
constituents of the cell membrane, and the repairing of
misfolded proteins (dsbC). In fact, increased tolerance to
ethanol in certain E.coli strains is related to the increased
availability of osmolytes like betaine and trehalose
[16,19]. In summary, the application of the PM to this
data set allowed the identification of a group of genes rep-
resenting the ethanol signature, which can be hypothe-
sized to be involved in the cellular response to an ethanol
challenge. Such hypothesis form the basis of current stud-
ies in our groups aimed at elucidating the mechanisms/
processes involved in the response to ethanol in E. coli.

Conclusion
This article proposes a new and powerful PCA-based
method for the identification of assay-specific gene signa-
tures of ranked order in the analysis of FG data. This
method is unique for several reasons. First, it is the only
one, to our knowledge, that uses gene contribution, a
product of the loading and expression level, to obtain
assay signatures. Our proposed method (PM) develops
and exploits two types of assay-specific contribution plots.
To our knowledge the development and use of these plots
is new to the application of PCA in the FG area. The first
type plots the assay-specific gene contribution against the

given order of the genes and reveals variations in distribu-
tion between assay-specific gene signatures as well as out-
liers within assay groups indicating the degree of
importance of the most dominant genes. The second type
plots the contribution of each gene in ascending or
descending order against a constantly increasing index.
This type of plots reveals assay-specific signatures defined
by the inflection points in the curve. In addition, sharp
regions within the gene signature in the ranked contribu-
tion plots define the genes that contribute the most to the
signature. We proposed and used the curvature as an
appropriate metric to characterize sharp regions of these
plots, thus identifying the subset of genes contributing the
most to the signature. Secondly, we know of no other
method that selects an assay group by comparing EG load-
ings against the assays and EA scores against the assays. It
is worth noting that no set of PCs (EGs or EAs) will neces-
sarily contain all the information for grouping assays. For
example, for the human tissue data in our second study,
although EA2 and EA3 were best for obtaining the muscle,
brain and liver signatures, the EGs provided better assay
groupings for Colon 5; Lungs 1 and 2; Lungs 4 and 5;
Stomach 1; Breast 7 and 9; Kidneys 7–10; Placenta 2 and
3; Vulva "*", 1 and 2; Blood; and Cervix 2. As mentioned
earlier, these signatures are available at the website: http:/
/www.public.iastate.edu/%7edrollins/data.html . Finally,
the PM uses the full dataset to determine the final gene
signature, thus eliminating the chance of gene exclusion
by poor screening in earlier steps.

This article presented the PM in six basic steps and applied
it to three different case studies: one artificial and two real

Table 7: The 51 genes contributing the most to the non-ethanol signature as defined by the maximum curvature in Figure 13 B.

Gene Name Rank Expression 
Ratio

Gene Name Rank Expression 
Ratio

Gene Name Rank Expression 
Ratio

ygjK 1 -20.9 nagE 18 -4.8 ygfK 35 -6.6
tktA 2 -5.2 kdpB 19 -4.0 trpD 36 -8.7
dsbC 3 -8.5 tufA 20 -2.0 gshA 37 -1.8
cvrA 4 -2.3 alsE 21 -14.8 yejA 38 -4.7
nrfE 5 -11.9 aidB 22 -4.3 rplX 39 -2.8
yehI 6 -19.2 fusA 23 -2.9 ygbE 40 -7.9
ybbA 7 -4.1 ybhH 24 -5.7 yqjI 41 -4.2
evgS 8 -16.2 ybeQ 25 -6.3 glnS 42 -2.1
ynfE 9 -14.4 rplO 26 -5.0 yoaD 43 -240.1
pqiB 10 -3.7 betT 27 -2.4 cyaA 44 -4.4
bglA 11 -2.0 leuA 28 -4.1 amiA 45 -3.4
dnaN 12 -1.7 norV 29 -2.9 lon 46 -6.4
feoB 13 -25.9 deaD 30 -2.2 yhgF 47 -3.4
yphG 14 -7.0 tufB 31 -1.8 hscC 48 -22.1
arcB 15 -10.4 gppA 32 -4.8 infC 49 -1.8
rne 16 -6.9 alaS 33 -5.0 yfiE 50 -5.8

yehU 17 -3.8 rplD 34 -7.7 rplP 51 -4.7

Expression ratios are calculated by dividing as the average expression level of a gene in the 8 cultures not exposed to ethanol by the average 
expression level in the 4 ethanol-challenged cultures. A negative sign has been included to indicate that these genes are down-regulated as the result 
of the ethanol challenge.
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data sets. In the artificial data study, which consisted of
1,600 noisy genes, 200 noisy sinusoidal genes, and 200
noisy exponential genes, the PM identified all 400 genes
with patterns in a sinusoidal/exponential-specific gene
signature and most of the genes with sinusoidal patterns
in a sinusoidal-specific gene signature. In the first study
involving real data, we compared the results and method-
ology of the PM with another one (the method of Misra et
al. [13]) of similar ability (i.e., a PCA-based method) in a
study of real DNA microarray data. Their approach repre-
sents the most refined used of PCA for the analysis of FG
data that we have found in the literature. The tissue-spe-
cific signatures identified by the PM not only included the
genes previously identified by Misra et al. [13] but also
added genes that are known to be linked to the specific tis-
sue and other of unknown connection, thus establishing
hypothesis regarding their potential involvement in the
functions of those tissues. In the second study involving
real data, the ethanol case, we were able to explore a data
set that had not been previously analyzed using any PCA-

based approach. The PM was able to identify different
assay-specific signatures including the ethanol- and strain-
signature. A detailed study of the ethanol signature using
the PM resulted in the clear identification of a group of
genes that are relevant to the response of E. coli to an eth-
anol challenge. These findings confirm the capability of
the PM to generate testable hypothesis that will contribute
to elucidating different biological processes (in this exam-
ple the basis of the response of the cells to an ethanol chal-
lenge).

Abbreviations
PCA, principal component analysis; FG, functional
genomic(s); EG, eigengene; PM, proposed method; EA,
eigenassay; PC, principal component.
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Table 8: The genes composing the complete ethanol and non-ethanol signatures (see Tables 6 and 7) are organized here by functional 
groups as described by Riley and Serres [20].

Functional Group Gene Name

Known Functions (92, 100%)

Carbon compound catabolism (4/4%) nagA mhpB; bglA alsE
Central intermediary metabolism (6/7%) tktB speD ylbC sfcA cpsB; tktA
Energy metabolism (3/3%) nrfG hyfD; nrfE
Amino acid biosynthesis (3/3%) argH; leuA trpD
Cofactors and prosthetic groups (6/7%) moaE grxB hemX nadB; gshA
Lipid metabolism (1/1%) plsC
Transport (13/14%) mngA amtB glvC livJ mtlA uhpT livK fes; cvrA feoB nagE kdpB betT
Cell processes (10/11%) fliF zipA xerC fliG tolB; pqiB aidB norV amiA hscC
Cell structure (5/5%) mepA nlpC fhuA ynfA; dsbC
Regulatory function (15/16%) wzzB uidR hcaR nagC hnr cbl lysR rstA gcvA pspF; evgS arcB gppA cyaA lon
DNA replication, repair, modification (7/8%) yaiD xthA topB uvrC parC tus; dnaN
Transcription/RNA processing/degradation (4/4%) pnp dbpA; rne deaD
Translation/post-translational modification (12/13%) aat mnmE; tufA fusA rplO tufB alaS rplD rplX glnS infC rplP
Phage, transposon, or plasmid (3/3%) ydaP intA ylbF
Putative Functions (59, 100%)

General (21/36%) yfeA ycbX ydhS yibN yagX yeiQ yiaL yhhX yneB yccU ycdJ yhiI yciQ yggF ycdI 
ybdL ybfL; ygjK ynfE yphG ygbE

Cell processes an energy metabolism (1/2%) caiA
Cell structure (1/2%) yebU
Central intermediary metabolism (1/2%) sgbU
Carbon catabolism (1/2%) ydiF
Nucleotide biosynthesis (1/2%) hyuA
Transport (7/12%) fdrA yheH yhiP ybhS ybgH; ybbA yejA
Regulation (26/44%) ygfZ yhfR ybhD ycfX yeeY yiaJ kdgR yfeR ygbI ypdC ydhB yhaJ uvrY yidL recX 

nanR yidF ycgE yfcD ydcI ygcP ybjN yidP; yehI yehU yfiE
Hypothetical Functions (26, 100%) yaiY ydcK ychA ydfU yqcD yagB ybgI ydfP yjcZ yhcP yaeJ yagR yagZ yaeQ ydiU 

yhaM ydfE ytfM ynjH ynfC ybfO; ybhH ybeQ yqjI yoaD yhgF

A semicolon separates the two groups of genes and those corresponding to the non-ethanol signature are underlined. The composition of the 
groups was updated using the latest information available in the literature [21-43]. Functional groups were organized in three categories: (1) known 
functions, (2) putative functions, and (3) hypothetical functions. The putative category was subdivided according to the specific putative function of 
each gene. Numbers in parenthesis are the total number of genes identified for the functional group and the percentage they represent respect to 
the total number of genes identified for the category, respectively.
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