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Abstract
Background: The biological interpretation of large-scale gene expression data is one of the
paramount challenges in current bioinformatics. In particular, placing the results in the context of
other available functional genomics data, such as existing bio-ontologies, has already provided
substantial improvement for detecting and categorizing genes of interest. One common approach
is to look for functional annotations that are significantly enriched within a group or cluster of
genes, as compared to a reference group.

Results: In this work, we suggest the information-theoretic concept of mutual information to
investigate the relationship between groups of genes, as given by data-driven clustering, and their
respective functional categories. Drawing upon related approaches (Gibbons and Roth, Genome
Research 12:1574-1581, 2002), we seek to quantify to what extent individual attributes are
sufficient to characterize a given group or cluster of genes.

Conclusion: We show that the mutual information provides a systematic framework to assess the
relationship between groups or clusters of genes and their functional annotations in a quantitative
way. Within this framework, the mutual information allows us to address and incorporate several
important issues, such as the interdependence of functional annotations and combinatorial
combinations of attributes. It thus supplements and extends the conventional search for
overrepresented attributes within a group or cluster of genes. In particular taking combinations of
attributes into account, the mutual information opens the way to uncover specific functional
descriptions of a group of genes or clustering result. All datasets and functional annotations used
in this study are publicly available. All scripts used in the analysis are provided as additional files.

Background
One of the common assertions in expression analysis is
that genes sharing a similar pattern of expression are more
likely to be involved in the same regulatory processes [1].
This proposition, commonly referred to as 'guilt-by-asso-

ciation', has been exploited by a large number of cluster-
ing algorithms, grouping genes into a (small) number of
classes, based on the similarity of their expression profiles.
While there are still many open problems associated with
choosing a particular algorithm, clustering has already
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proven successful in a multitude of applications, such as
the inference of putative functional annotations [2,3], as
well as the extraction of regulatory motifs in the upstream
regions of genes [4,5].

More recently, the data-centric view, i.e. based on meas-
ured expression levels alone, has been advanced to inte-
grate additional information, such as existing functional
annotations [6-9] or protein-protein interaction [10-12].
In doing so, the paramount task is to enhance the biolog-
ical interpretation of the data, e.g. by identifying physio-
logically relevant categories, based on existing bio-
ontologies, associated with a particular grouping of genes.

However, prior to such a step, it is necessary to obtain a
better understanding about the specific relationship
between the data generated clustering and the informa-
tion contained in the functional annotation of genes. That
is, to what extent does a grouping of genes reflect their
functional annotation, as e.g. given in terms of the struc-
tured vocabulary provided by the gene ontology (GO)
consortium? In this work, we thus investigate the relation-
ship between groupings of genes and their respective func-
tional categories. It will be shown that the information-
theoretic concept of mutual information provides a suita-
ble theoretical basis to address this question in a system-
atic way. Importantly, the mutual information holds
several favorable properties and i) allows to give a quanti-
tative figure of merit between a clustering result and func-
tional annotations. ii) allows to identify functional trends
that characterize a given clustering or grouping of genes,
iii) allows to address and incorporate the interdependence
of functional annotation terms, and iv) can be straightfor-
wardly applied to the whole set of clusters, or likewise,
only to a single individual cluster of group or genes.

Within this framework, we aim to extend the earlier work
of Gibbons and Roth [13] and seek to investigate to what
extend individual attributes are sufficient to characterize
or summarize a given cluster of genes. This question is
also ultimately related to the problem of detecting signif-
icantly enriched attributes within a group of genes, well
covered in the literature [14-17]. We will demonstrate that
in certain situations a simple search for overrepresented
attributes fails to uncover the specific functional descrip-
tion of clustering results.

The paper is organized as follows: In the first section, a
brief synopsis of the mutual information as a measure of
dependency between cluster membership and annotated
gene attributes is given. In the second section, we address
the capabilities of individual attributes to characterize or
summarize a given cluster of genes. In the following sec-
tion, two major shortcomings of this approach will be
pointed out: The interrelatedness of gene attributes

(redundancy) and the failure of individual attributes to
adequately describe a given clustering or grouping of
genes. To overcome these problems, a heuristic strategy is
devised that allows to detect combinatorial combinations
of attributes, providing a more specific functional descrip-
tion of clustering results. The results are summarized and
discussed in the last section.

Results
The mutual information
Following Gibbons and Roth [13], the mutual information
I(C, A) provides a figure of merit between cluster member-
ship C and known gene attributes A,

I(C, A) = H(C) + H(A) - H(C, A)    (1)

where H(C), H(A) and H(C, A) denote the entropies of the
distributions of C and A and the joint entropy of C and A
respectively.

The mutual information is a general measure of depend-
ency between two (or more) variables [18-20] and can be
interpreted as a 'distance' between the hypothesis of statis-
tical independence and the actual joint probability distri-
bution [18]. A more detailed review concerning its
mathematical properties and the estimation from finite
data was given elsewhere [19,20]. Importantly, the
mutual information I(C, A) is zero if and only if the two
variables, here the gene attributes A and the cluster mem-
bership C, are statistically independent. As will be demon-
strated below, this property incloses and extends
conventional approaches, such as finding significantly
enriched annotations associated with a group of genes.

In the most simplest setting, each gene is uniquely
assigned to one particular functional category Ai and is
grouped into a cluster Cj by a given clustering algorithm.
In this case the estimation of the mutual information is
straightforward: One constructs a contingency table and
estimates the respective probabilities from the relative fre-
quencies of occurrence, as schematically visualized in Fig.
1.

The mutual information thus provides a systematic quan-
titative measure of the relationship between cluster mem-
bership and given gene attributes [13]. In particular, it
opens the possibility to judge the quality of a clustering
result, not based on internal measures of consistency,
such as within cluster distances to inter cluster distances,
but based on existing additional information.

H C p C p Ci i
i

( ) ( )log ( )= − ( )∑ 2
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Validating clustering results by the mutual information: A schematic exampleFigure 1
Validating clustering results by the mutual information: A schematic example. Each gene is uniquely assigned to one functional 
category Ai and grouped into cluster Cj by a given clustering algorithm. The joint probabilities can be straightforwardly esti-
mated from the associated contingency table and the mutual information is calculated according to Eq. (1). To assess how 
related the clustering is to the annotation, the value of the mutual information is compared to random assignments of genes to 
cluster number, i.e. each gene is randomly assigned to a cluster, preserving the total number of genes within each cluster, but 
destroying all possible relationship between the clustering and the functional annotation. The lower right plot shows the 
mutual information, compared to an ensemble of 500 randomized assignments, In this example, the z-score, estimated accord-
ing to Eq. (8), is S ≈ 3.8. For a z-score to be deemed significant, we further require that no random assignment results in a 
mutual information equal or larger that the tested annotation. Note that, though we expect the mutual information to be zero 
for the randomized assignments, the average estimated mutual information for randomized data has a bias towards positive val-
ues due to finite-size effects [19,20]. As a rule of thumb, to obtain reliable estimate of the mutual information the number of 
genes should be at least three times larger than the number of clusters or functional categories [20].
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However, in our case, the multi-functions of genes, as
reflected in current annotation databases, defy the
straightforward approach outlined above. In the follow-
ing, we will make use of the curator-controlled annotation
of S. cerevisiae genes, as provided by the gene ontology
consortium (GO) [21].

The GO database is organized in a rooted directed acyclic
graph (DAG), with three branches corresponding to the
three categories 'cellular component', 'molecular func-
tion' and 'biological process'. Each gene (or rather gene
product) is annotated by one or multiple GO terms along
the graph. The hierarchical nature of GO implies that
genes annotated with a specific node are also annotated
with every ancestor of that node. Nodes closer to the root
of the graph usually correspond to more abstract func-
tional descriptions and cover more genes, while nodes far-
ther away from the root correspond to more detailed
functional descriptions. Note that the structure of GO is
not necessarily a tree since each node may have multiple
parents and may have multiple paths to the root of the
graph [22].

The GO database, as downloaded in June 2004. already
includes more than NA > 16000 nodes within all three

branches [23]. For further numerical processing, each
gene is assigned to a vector consisting of binary attributes

A = {A1, A2,..., } with Ai ∈ {0,1}, where Ai = 1 indi-

cates that the gene has been annotated with the GO term
Ai or one of its descendants.

Clearly, in such a situation, a straightforward estimation
of the mutual information must inevitably fail: We would
have to take into account all possible combinations of
attributes Ai, resulting in a contingency table with up to

 columns, as illustrated in Table 1. Even though the
vast majority of combinations does not occur for the

genes under consideration, a direct evaluation of Eq. (1),
even for just a few hundreds of different attributes, is
beyond all computational and statistical means.

To overcome this problem, Gibbons and Roth [13] sug-
gested to approximate the total mutual information as a
sum of the mutual information between clusters and each
individual attribute.

With

I(C, Ai) = H(C) + H(Ai) - H(C, Ai)    (4)

Note that this approximation assumes both, independ-
ence and conditional independence between all
attributes.

To illustrate this, we make use of a simple example involv-
ing just two attributes A1 and A2. One has to evaluate

I(C, [A1, A2]) = H(C) + H(A1, A2) - H(C, A1, A2)    (5)

Since for statistically independent attributes H(A1, A2) =
H(A1) + H(A2), we only need to consider the last term
H(C, A1, A2). Assuming conditional independence
H(A1|A2, C) = H(A1|C), we obtain

H(C, A1, A2) = H(C, A1) + H(C, A2) - H(C)    (6)

Thus Eq. (5) indeed reduces to

I(C, [A1, A2]) = I(C, A1) + I(C, A2)    (7)

Given the structure of the GO database, as described
above, the assumption of statistical independence is, of
course, not fulfilled: The attributes are not statistically
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Table 1: The multi-functions of genes defy a straightforward estimation of the mutual information. Each gene is assigned to a vector of 

binary attributes A = {A1, A2, ..., }, described by a number ai ∈ [0,  - 1]. The contingency table to evaluate the mutual 

information I(C, [A1, ..., ]), taking all possible combinations into account, would thus include up to  columns.
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independent but strongly dependent on each other. In
particular, any annotated attribute Ai implies that all of its
parents are also annotated. This interdependence will be
considered in more detail below.

Unfortunately, Eq. (3) does likewise not allow to give an
upper or lower bound on the true mutual information. It
is well established that this approximation does not result
in a systematic bias, i.e. in general one may not tell
whether the violation of the assumptions under- or over-
estimates the true mutual information [18].

However, for the moment we accept Eq. (3) as a reasona-
ble approximation of the mutual information. Based on
this assumption, it was already demonstrated that cluster-
ing results and the GO annotations indeed possess a
mutual information significantly different from zero [13].
Interestingly, the widely used hierarchical clustering gave
results not significantly different from random assign-
ments and was found to be far worse than other common
algorithms, such as k-means.

In the following, we will draw upon these results, using
the same datasets and preprocessing of the GO database
as described by Gibbons and Roth [13]. but addressing
slightly different questions instead.

The case of individual attributes
Given that clustering results and the known functional
annotation indeed yield a mutual information signifi-
cantly different from zero, the question arises how this
mutual information is distributed among the individual
attributes. Are there only few attributes which correspond
to and summarize the cluster? Or, on the other hand, is
the observed overlap tightly embedded within the struc-
ture of the GO annotations – a combined effect of a mul-
titude of attributes, where neither of them is sufficient to
characterize a given cluster on its own?

To evaluate this, we must have a closer look on the distri-
bution of the individual terms contributing to Eq. (3).
Restricting ourselves to a k-means algorithm (see appen-
dix), the individual mutual information I(C, Ai) between
the clustering C and all attributes was estimated.

To assess how related each each attribute is with the clus-
tering, we evaluate randomized assignments of genes to
clusters, i.e. each gene is randomly assigned to a cluster,
preserving the total number of genes within each cluster.
This results in the z-score

where σrandom denotes the standard deviation of the esti-
mated mutual information for the randomized data. For
the z-score to he considered significant, we further require
that the number of random assigments is larger that the
total number of tested attributes and that tor each
attribute all random assigments result in a lower mutual
information.

Figure 2 shows a histogram of the obtained scores, esti-
mated according to Eq. (8). for the cell cycle dataset of
Spellman et al. [24] and k = 25 cluster. As can be observed
the vast majority of annotated attributes shows no, or
only little, significant overlap with the data-driven cluster-
ing. However, the overall distribution is highly inhomo-
geneous: few attributes are singled out and possess a
remarkably high z-score with respect to their shuffled
counterparts. The ten highest scoring attributes are indi-
cated in Fig. 2. Likewise, we must also expect the aggre-
gated mutual information of Eq. (3) to be dominated by
only few addends of rather high value.

Interestingly, the highest scoring attributes do not change
substantially when different datasets are considered (see
Table 2 for all datasets under consideration). This indi-
cates that different experimental conditions, correspond-
ing here to different datasets, do not significantly
influence which attributes are selected as the most
descriptive for the clusters.

Combinatorial combinations of attributes
Two essential shortcoming of our analysis have to be
pointed out: First of all. Fig. 2 strongly suggests that the
top scoring attributes are largely redundant, i.e. that the
individual terms contributing to the aggregated mutual
information of Eq. (3) are not independent.

In fact, a gene product annotated with the cellular compo-
nent 'cytosolic ribosome' (GO:0005830) is necessarily
also annotated to the cellular component 'ribosome'
(GO:0005840). While this is a trivial consequence of the
tree structure of the database (the former node being a
child of the latter), other relationships between attributes
are less straightforward. For example, and even without
any computational assistance, gene products annotated to
the cellular component 'ribosome' (GO:0005840) can
mostly be expected to be also annotated to the biological
process 'protein biosynthesis' (GO:0006412). However, it
is worth pointing out that this, in contrast to the former
example, is not an inherent consequence of the tree struc-
ture of the database, as both nodes appear within distinct,
branches of the tree. More systematically, we can assess
the redundancy between two selected attributes again by
means of the (pair-wise) mutual information I (Ai, Aj)
between two attributes Ai arid Aj. Table 3 gives the contin-
gency tables for the five top scoring attributes of Fig. 2. As

S
I C A I C A= − 〈 〉 ( )( , ) ( , )data random

randomσ
8
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can be seen, the selected attributes are indeed highly inter-
dependent.

This, of course, points to a major drawback of the analysis:
The individual attributes contributing dominantly to the
sum of Eq. (3), do not represent independent information
about a specific grouping of genes or clustering result.
Rather, by selecting the attributes according to their indi-

vidual mutual information, we explore areas in which the
GO annotations are interdependent.

It should be noted that a similar situation occurs in the
conventional search for overrepresented attributes within
a group or cluster of genes. Again, not taking the non-
independence of attributes into account will often result
in a selection of mostly redundant functional annotation

Histogram of the z-score Eq. (8) for all individual attributesFigure 2
Histogram of the z-score Eq. (8) for all individual attributes. The attributes with the highest score are marked. The figure is for 
the cell cycle dataset of Spellman et al. [24] using the same preprocessing as described in [13] (sec appendix]. After filtering ≈ 
2500 GO attributes remained for evaluation. Repeating the analysis for all datasets given in Table 2 yields similar results. The 
clustering was obtained using a k-means algorithm with Euclidean distance and k = 25, the results do not change significantly for 
different choices of k (tested between k = 5 - 30, corresponding to the region where the z-score of the mutual information is 
largest [13]). Note that the top scoring attributes appear to be largely redundant, i.e. a gene that is annotated to the cellular 
component 'cytosolic ribosome' can be intuitively expected to be also annotated to the biological process 'protein biosynthe-
sis'. See next section for details.
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terms. This, of course, affects the interpretation of the
results, as these attributes do not actually contribute to a
characterization of the given clustering. In the following,
after pointing out a second drawback of our analysis, we
will thus devise a strategy that incorporates the interde-
pendence of attributes.

Detecting combinations of attributes
Apart from above described shortcoming, restricting our-
selves to the mutual information between a given cluster-
ing and single individual attributes, entails yet another
problem. While these (possibly redundant) attributes can
indeed indicate a functional association between the
genes gathered in a particular cluster, other, more specific,
functional descriptions might be easily missed.

In most cases, it will not only be one attribute that defines
or characterizes a group or cluster of genes, but rather a
specific combination of attributes. Table 4 gives an illus-
trative example of such a situation. Here, neither of the
attributes share any mutual information with the group-
ing of the genes into two clusters, nor is any attribute over-
represented within the two groups. However, looking at
the combination of both attributes does immediately
reveal that these attributes are nonetheless highly descrip-
tive for the given cluster: Their combination does
uniquely determine to which cluster a particular gene
belongs, or, vice versa, which annotation coincides with a
particular cluster.

Obviously, the tremendous computational demands pre-
vent to conduct an exhaustive GO-wide search for all pos-

Table 3: The contingency tables between the live top scoring attributes given in Fig. 2, along with the z-score S for the pair-wise 
mutual information I(Ai, Aj), estimated according to Eq. (8) with respect to 500 randomized realizations. High values of S indicate that 
both attributes are not independent, i.e. that the probability of observing such a value of the mutual information I(Ai, Aj) for 
statistically independent attributes Ai and Aj is low. Shown are the nodes: 'GO:0005830' (component: cytosolic ribosome). 
'GO:0003735' (function: structural constituent of ribosome). 'GO:0005840' (component: ribosome). 'GO:0006412' (process: protein 
biosynthesis), and 'GO:0019538' (process: protein metabolism). Note that the contingency tables, as well as the z-score, was estimated 
for the full set of 6312 genes. Reducing the analysis to those 3000 genes used in the creation of Fig. 2 increases the redundancy even 
more.

G0:0005830 GO:0003735 GO:0005840 GO:0006412 GO:0019538
1 0 1 0 1 0 1 0 1 0

GO:0005830 1 140 0 137 3 140 0 137 3 137 3
0 0 6172 61 6111 89 6083 421 5751 709 5463

- S ≈ 702 S ≈ 687 S ≈ 430 S ≈ 394

GO:0003735 1 137 61 198 0 196 2 198 0 198 0
0 3 6111 0 6114 33 6081 360 5754 648 5466

- - S ≈ 1037 S ≈ 704 S ≈ 585

GO:0005840 1 140 89 196 33 229 0 219 10 220 9
0 0 6083 2 6081 0 6083 339 5744 626 5457

- - - S ≈ 771 S ≈ 649

GO:0006412 1 137 421 198 360 219 339 558 0 558 0
0 3 5751 0 5754 10 5744 0 5754 288 5466

- - - - S ≈ 1663

GO:0019538 1 137 709 198 648 220 626 558 288 816 0
0 3 5463 0 5466 0 5457 0 5466 0 5466

- - - - -

Table 2: Several datasets were used to verity the results, corresponding to different experimental setups and conditions. In each case, 
only the 3000 genes with highest variance were selected for further analysis. Note that this implies that the set of selected genes is 
(slightly) different for each dataset. For details on the preprocessing and normalization of the data see Appendix. In the following, all 
shown results will refer to the dataset of Spellman et al.[24]

Name no. of points Description Ref.

Spellman at al. (1998) 75 Cell Cycle [24]
Zhu at al. (2000) 26 Cell Cycle [25]
Gasch at al. (2000) 175 Various conditions [26]
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sible combinations of attributes. To still detect relevant
combinations for large-scale data, we thus devise a simple
heuristic strategy: Starting with a seed attribute A0, the one
that gives the highest mutual information I(C, A0), we
iteratively look for attributes that result in the largest
information gain, i.e. the largest increase in mutual infor-
mation, when included in the list of attributes. Schemati-
cally:

initialize: A = A0

search ∀i : I(C, [A, Ai]) → max ⇒ Al

test for significance: I(C, [A, ])

update: A = (A, Al)

Thus, at each step a new attribute Al is included into the
vector A of already selected attributes and the mutual
information I(C, A) is calculated without using the
approximation of Eq. (3). In this way. attributes which are
highly redundant to those already included in A will not
be selected. For example, assume that after an attribute A0
a second attribute A1 is tested. If both are fully redundant,
then H(A0, A1) = H(A0) and H(C, A0, A1) = H(C, A0). Thus,
according to Eq. (5), I(C, [A0, A1]) = H(C) + H(A0, A1) -

H(C, A0, A1) ≡ H(C, A0), i.e. there is no gain in informa-
tion and the attribute will not be included into A.

The iteration stops after a predefined maximal number of
steps lmax or when no new attribute leads to a significant
increase in mutual information. The latter is tested at each
iteration step by comparing the result to randomized
counterparts of the attribute to be included. As in the pre-
vious section, we require that the number of randomized
assignments is larger that the total number of tested
attributes and that no randomized assignment yields a
mutual information equal or higher than the attribute
that is to be included. Otherwise, the increase in mutual
information is not considered significant and the iteration
stops. Note that this also avoids statistical problems due
to finite size effects [20]. If the vector of attributes
becomes too large, a reliable estimation of the mutual
information is no longer possible. In this case, the result-
ing values upon inclusion of a new attribute will not sig-
nificantly deviate from those of randomized attributes.

Thus, instead of conducting a comprehensive search for
all possible combinations, we consider only those
attributes which further contribute to a characterization of
a clustering result, given the already selected attributes. In
this way, we avoid the inclusion of a large number of
redundant attributes. Note that this procedure is reminis-
cent of a decision tree [29], aiming to predict the cluster
assignment based on the GO annotation.

Table 5 shows the result for the previously considered
dataset of Spellman at al. [24]. Starting with the highest
scoring attribute 'cytosolic ribosome' (GO:0005830),
already depicted in Fig. 2, new attributes were iteratively
included until lmax = 31, the first 20 are given in Table 5.

Constructing the associated contingency table of the 5 top
scoring attributes, analog to Table 3, indeed reveals that
the pair wise mutual information between the selected
attributes is significantly lower. The respective z-scores are
given in Table 6.

Again the results were not specific for the particular data-
set. Repeating the analysis for all datasets given in Table 2
resulted in similar attributes. Those attributes that were
selected among the top 32 for all datasets under consider-
ation are indicated in bold in Table 5.

This again indicates that the specific experimental condi-
tion, under which the dataset was obtained (two cell cycle
experiments and one alternative experiment, involving
several conditions.), has no, or only little, influence over
the prevailing functional annotations that characterizes
the clustering of this respective dataset. This is notewor-
thy, as in each case different genes were selected for the

Ai
random

Table 4: Combinations of GO attributes: Shown is a schematic 
example of 8 genes, separated into two distinct clusters (Table 
4a). As can be observed neither of the two given attributes is 
significantly enriched within any of the cluster, resulting in a 
vanishing mutual information between the clustering and the 
annotation (see the respective contingency tables in Table 4b 
and 4c). However, clearly the combination of both attributes 
does uniquely determine both cluster. In particular, genes with 
the combination A = (A1, A2) = (0, 0) or (1, 1) are grouped 
together in the first cluster 0. while genes sharing the annotation 
A = (0, 1) or (1, 0) are grouped together in the second cluster.

4a
gene 1 2 3 4 5 6 7 8

cluster 0 0 1 0 1 1 1 0

A1 1 0 0 0 0 1 1 1
A2 1 0 1 0 1 0 0 1

4b
Cluster: 0 1

A1 0 2 2
1 2 2

4c
Cluster: 0 1

A2 0 2 2
1 2 2
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analysis (see description in Table 2). Moreover, the clus-
tering results itself were sufficiently different, i.e. this
mutuality in descriptive annotations is not straightfor-
wardly apparent on the level of clusters itself.

Most importantly, the selected attributes indeed provide a
functional categorization of the obtained clustering,
improving the search for significantly enriched annota-
tions. This is visualized in Fig. 3. Shown is a graphical rep-
resentation of the contingency table between the
clustering result (see again Fig. 2 for details) and the com-
bined annotations. As can be observed, the combined
annotations provide a more specific functional descrip-
tions of the clustering result. For example, using solely the
highest scoring attributes of Fig. 2. genes included in the
clusters 13, 16 and 19 are assigned almost uniformly to all
selected attributes. However taking only the top five
selected attributes of Table 5 into account, several cluster
are dominated by specific combinations of attributes, e.g.
for cluster 6 genes annotated to 'cytoplasm'
(GO:0005737), but to none of the other four attributes,
are clearly overrepresented.

Conclusion
In this work, we have investigated the use of the mutual
information as a measure to detect and quantify the inter-
relation between data generated clusterings and the
known functional annotations of genes. Starting with the
contribution of individual attributes, we found that the
mutual information between a given clustering result and
the attributes is highly inhomogeneously distributed. Few
attributes show a remarkable overlap with the clustering,
while the vast majority of attributes show no, or only lit-
tle, overlap with the data-driven clustering. These results
were robust with respect to parameters in the clustering
algorithm, as well as to different choices of datasets.

One of the primary advantages of the mutual information
is that it is not restricted to consider only individual
attributes contained the GO database. Focusing on com-
binations of attributes that resulted in a maximal mutual
information between the (selected) annotations and the
clustering, we demonstrated that this approach extends
and enhances the more conventional search for overrepre-
sented attributes in a group of genes of interest. In partic-
ular, including only those attributes that further
contribute to a characterization of the clustering, in addi-
tion to the already selected ones, circumvents the problem
of redundant attributes. Within a group of highly depend-
ent attributes, only the one which results in the largest
information gain will be selected.

Interestingly, our results indicate that the experimental
conditions under which a particular dataset was obtained
has no major influence on the top-ranking attributes. For
all considered datasets a nearly identical list of highly
descriptive attributes was found. Also, these attributes
mostly referred to rather abstract functional descriptions,
such as 'cell growth', 'catalytic activity', or 'protein metab-
olism'. This, of course, questions the use of clustering
results to gain insight into specific phenomena, such as
the transcriptional response to a particular experimental
perturbation or knockout experiment. Rather, one usually
observes cluster of genes that are known to be tightly co-
regulated, such as protein synthesis genes. Only with mas-
sive experimental interventions, we must expect the
resulting pattern of gene expression to be fundamentally
changed and to be directly related to the respective exper-
imental condition.

Finally, it should be emphasized that the application of
the mutual information holds a vast potential for further
improvements of the method. As yet, we have not focused
at predicting a putative functional classification of a
specitic cluster. Rather, the mutual information, as used
here, represents an average quantity, quantifying the rela-
tionship between functional annotation and clusterings
as a whole. In this sense, the validity of clustering results

Table 5: Combinations of GO attributes selected for the dataset 
of Spellman et al. [24]. Starting with the highest scoring attribute 
'cytosolicribosome'. new attributes were iteratively included until 
kmax = 31, the first, 20 are given here. Note that the results do not 
depend specifically on which of the datasets was used: GO IDs 
that have been selected among the top 32 for all datasets listed in 
Table 2 are indicated in bold. The clustering was the same as 
considered above, see caption of Fig. 2 for details. Note that 
neither of the attributes is dedicatedly related to the cell cycle, 
except 'cell cycle' and 'mitosis', which were likewise found for all 
of the considered datasets.

rank k GO ID description

0 GO:0005830 cytosolic ribosome (sensu Eukaryota)
1 GO:0005737 cytoplasm
2 GO:0007049 cell cycle
3 GO:0005634 nucleus
4 GO:0003824 catalytic activity
5 GO:0006411 protein metabolism
6 GO:0016043 cell organization and biogenesis
7 GO:0008152 metabolism
8 GO:0003676 nucleic acid binding
9 GO:0016020 membrane

10 GO:0007275 development
11 GO:0009058 biosynthesis
12 GO:0008151 cell growth and/or maintenance
13 GO:0005215 transporter activity
14 GO:0005739 mitochondrion
15 GO:0006259 DNA metabolism
16 GO:0009056 catabolism
17 G0:0006519 amino acid and derivative metabolism
18 GO:0005975 carbohydrate metabolism
19 GO:0007067 mitosis
20 GO:0005488 binding
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can be judged and compared to existing functional anno-
tations. However, the approach tan be straightforwardly
extended to detect the prevailing functional annotations
of individual clusters, based on the information con-
tained in the GO database.

Along similar veins, the mutual information may also be
utilized to further improve the annotation of gene prod-
ucts. Reversing our approach, unknown functional anno-
tations can be predicted based on the available
annotations, as well as on membership in a specific clus-
ter. Another advantage of the mutual information in this
respect is that, in incorporating additional biological
information complementing the GO annotations, it is not
restricted to categorical data, but can be extended to
include continuous data as well. In particular, the addi-
tional information to which a clustering or grouping is
compared, is not necessarily restricted to functional anno-
tations. Table 1 may hold any attributes or quantities
related to a particular gene or gene product. In this sense,
the mutual information constitutes a systematic theoreti-
cal basis to investigate the relationship between groups of
genes and additional biological information.
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Appendix: Database preprocessing and 
clustering
Throughout this work, we have used the same preprocess-
ing of the GO database and the gene expression datasets
as described in : Prior to the evaluation of Eq. (3), the GO
attributes were filtered using the following parameters: i)
No attribute should be shared among almost all genes. All
attributes held by more than Nmax genes are removed. ii)
No attribute should be annotated to a single or only a few
genes. All attributes that are held by fewer than Nmin were
removed. iii) Redundant attributes should be avoided. To
account for this, the normalized pair-wise mutual infor-
mation (the 'uncertainly coefficient U') was estimated
between all attributes. One of each attributes of a pair that
had a (normalized) mutual information larger than Umax
was removed from the analysis. Note that this step does
not fully eliminate the problem of interdependence
between the annotation terms. As can be seen later in Fig.
2 and Table 3 the top scoring attributes will still be highly
redundant.

The preprocessing removes a large fraction of the
attributes. The results were found to be robust with respect
to particular choices of (Nmax, Nmin, Umax). In the follow-

Table 6: The contingency tables of the the live top scoring attributes listed in Table 5. Note that in this case the respective scores are 
significantly lower, as compared to the results given in Table 3. This indicates that the respective attributes are, though not 
statistically independent, much less redundant than in the previous case. Shown are the nodes: 'GO:0005830' (component: cytosolic 
ribosome), 'GO:0005737' (component: cytoplasm). 'GO:0007049' (process: cell cycle). 'GO:0005634' (component: nucleus), 
'GO:0003824' (function: catalytic activity).

GO:0005830 GO:0005737 GO.0007049 GO:0005634 GO:0003824
1 0 1 0 1 0 1 0 1 0

GO:0005830 1 140 0 140 0 0 140 1 139 0 140
0 0 6172 1108 5064 390 5782 520 5652 1153 5019

- S ≈ 288 S ≈ 11.2 S ≈ 11.0 S ≈ 41.6

GO:0005737 1 140 1108 1248 0 124 1124 46 1202 364 884
0 0 5064 0 5064 266 4798 475 4589 789 4275

- - S ≈ 21.3 S ≈ 33.3 S ≈ 72.4

GO:0007049 1 0 390 124 266 390 0 139 251 140 250
0 140 5782 1124 4798 0 5922 382 5540 1013 4909

- - - S ≈ 177.9 S ≈ 48.3

GO:0005634 1 1 520 46 475 139 382 521 0 193 328
0 139 5652 1202 4589 251 5540 0 5791 960 4831

- - - - S ≈ 81.2

GO:0003824 1 0 1153 364 789 140 1013 198 960 1153 0
0 140 5019 884 4275 250 4909 328 4831 0 5159

- - - - -
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ing the values Nmin = 10, Umax = 0.8, and Nmax = max (i.e.
no restriction on the maximal number of genes an
attribute is assigned to) were used. The clustering of the
data was performed using the open source clustering
library described in [27]. All results were compared with

the algorithms implemented in the software packages
matlab and R (http://www.r-project.org/, [28]). K-means
clustering was chosen in accordance with the results
obtained previously in [13]. All scripts used in the analysis
are provided as additional files [see additional file 1].

Combinations of GO attributes: Shown is a graphical representation of the contingency tables between the clustering result and the GO annotationsFigure 3
Combinations of GO attributes: Shown is a graphical representation of the contingency tables between the clustering result 
and the GO annotations. Darker color indicates more genes in that cluster with this annotation. Upper plot: The results corre-
sponding to Fig. 2. The highest scoring attributes as determined by the individual mutual information I(C,Ai). The attributes are 
sorted according to their appearance in the GO database. Lower plot: Combined attributes: Shown are the results for the first 
5 entries of Table 5. For simplicity, the combinations are given as binary code A = (A0,...,A4), where A0 = cytosolic ribosome, A1 
= cytoplasm. A2 = cell cycle. A3 = nucleus and A4 = catalytic activity. Genes not possessing any of the top five attributes listed in 
Table 5 are omitted.
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