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Abstract
Background: Reverse-engineering regulatory networks is one of the central challenges for
computational biology. Many techniques have been developed to accomplish this by utilizing
transcription factor binding data in conjunction with expression data. Of these approaches, several
have focused on the reconstruction of the cell cycle regulatory network of Saccharomyces cerevisiae.
The emphasis of these studies has been to model the relationships between transcription factors
and their target genes. In contrast, here we focus on reverse-engineering the network of
relationships among transcription factors that regulate the cell cycle in S. cerevisiae.

Results: We have developed a technique to reverse-engineer networks of the time-dependent
activities of transcription factors that regulate the cell cycle in S. cerevisiae. The model utilizes linear
regression to first estimate the activities of transcription factors from expression time series and
genome-wide transcription factor binding data. We then use least squares to construct a model of
the time evolution of the activities. We validate our approach in two ways: by demonstrating that
it accurately models expression data and by demonstrating that our reconstructed model is similar
to previously-published models of transcriptional regulation of the cell cycle.

Conclusion: Our regression-based approach allows us to build a general model of transcriptional
regulation of the yeast cell cycle that includes additional factors and couplings not reported in
previously-published models. Our model could serve as a starting point for targeted experiments
that test the predicted interactions. In the future, we plan to apply our technique to reverse-
engineer other systems where both genome-wide time series expression data and transcription
factor binding data are available.

Background
Reverse-engineering networks of transcriptional regula-
tion is a major goal of biology [1-6]. In the past few years,
dramatic progress has been made in this effort due to sig-

nificant improvements in experimental methodologies.
Using chromatin immunoprecipitation in conjunction
with microarrays, it is now possible to measure the bind-
ing of many transcription factors to the promoters of most
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genes, thus elucidating the underlying structure of the
transcriptional regulatory network. For example, in the
case of the yeast Saccharomyces cerevisiae, the binding pro-
files of 204 transcription factors to all promoters have
been measured in rich media [7,8].

Despite the significant advance in our understanding that
this data permits, it leaves a number of important ques-
tions unanswered. Does the binding of a specific tran-
scription factor to the promoter of a gene regulate its
expression? Does the transcription factor act alone or in
cooperation with other factors? Under which conditions
is a particular transcription factor active? In general, how
does the connectivity of the network change in different
conditions (e.g., during the cell cycle)?

To answer these questions, one must analyze the tran-
scription factor binding data in conjunction with expres-
sion data collected from multiple conditions. Expression
data is typically obtained using microarrays that allow
monitoring of changes in the transcription of all mRNAs
between samples. A variety of methods have been devel-
oped that utilize both expression data and transcription
factor binding data to model transcriptional regulation.
The simplest models identify transcription factor binding
sites (or cis regulatory motifs) that are over-represented in
the promoters of differentially-expressed genes [9].
Another approach estimates which transcription factors
are globally active in a particular expression profile using
multiple linear regression [5,10,11]. A more complex
approach models the coupling strengths between tran-
scription factors and their targets using Network Compo-
nent Analysis [12].

These approaches usually work with the logarithm of the
expression and binding data, and typically assume a linear
or affine relationship between the two. However, it is
likely that transcription factor binding affects gene expres-
sion in a nonlinear fashion, e.g., below some level it has
no effect and above some higher level the effect might sat-
urate. This type of behavior can be modelled using linear
splines [13] or sigmoidal functions [14,15]. Moreover,
there is abundant evidence that cooperative effects among
transcription factors also play a critical role in regulating
gene expression. As a result, a variety of approaches have
been developed to identify non-linear cooperative effects
between factors [13,16-19].

These methods allow one to identify biologically-mean-
ingful couplings between transcription factors and their
target genes in specific conditions. Other approaches
attempt to model time-dependent changes in the tran-
scriptional regulatory network. The dynamics of transcrip-
tional regulation are usually studied during the cell cycle
because time courses of gene expression of synchronized

yeast cells have been measured [20,21]. Various
approaches, including stochastic differential equations
[14] and maximum likelihood-based methods [15], have
been used to parameterize models of transcriptional regu-
lation during the yeast cell cycle. Other groups have used
experimental data to parameterize differential equations
that describe a model of the yeast cell cycle [22].

All of these previous studies have focused on modelling
the interactions between transcription factors and their
target genes. In contrast, here we focus on the regulatory
network of interactions among transcription factors them-
selves – such interactions play a central role in regulating
cellular programs. Thus, we set out to construct a dynam-
ical model of the couplings between the activities of tran-
scription factors, hoping to elucidate the dynamics of this
module. As in previous studies, we focus on the cell cycle
of S. cerevisiae due to the availability of genome-wide time
series expression data. The resulting model gives a view of
the temporal program of transcriptional regulation for the
key cell cycle regulators, thus defining the basic machinery
that regulates this fundamental process.

Previous studies have attempted to reconstruct the net-
work of transcription factors that regulate the cell cycle
primarily using transcription factor binding data [23,24].
Other studies have utilized expression and protein-pro-
tein interaction data to study the dynamics of transcrip-
tion factor complex formation during the cell cycle [25].
These studies were able to show that the primary regula-
tors of the cell cycle – the canonical transcription factors –
are the Swi4-Swi6-Mbp1, Fkh2-Ndd1-Mcm1, and Mcm1-
Swi5-Ace2 complexes. These regulate each other in a serial
fashion: the transcription factors that control one phase of
the cycle activate those that control the next phase (see
Figure 1). The underlying assumption of this model – the
canonical model – is that if a transcription factor binds to
the promoter of another factor, it likely regulates its
expression. However, as we have discussed above, these
models of transcription factor binding do not offer a com-
plete picture of transcriptional regulation since they do
not explicitly predict changes in gene expression. To
obtain a more complete understanding of transcriptional
regulation, one must construct a dynamical model that
accounts for expression data in terms of binding data.
Here, we construct such a model and compare it to the
canonical model.

For the sake of simplicity, we use a linear regression
approach to estimate transcription factor activities. Our
approach is similar to that used in Motif Regressor [5] and
REDUCE [26] except that we are fitting expression data
with transcription factor binding data instead of measure-
ments of the presence of cis regulatory sequences in pro-
moters. The "activity" of a transcription factor is measured
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by computing an α-coefficient, which is the regression
coefficient of that factor in our linear model (see Methods
below). The α-coefficient describes whether the genes a
transcription factor is bound to are differentially
expressed or not were the effects of other factors to be held
constant. Factors with α > 0 are generally bound to the
promoters of over-expressed genes while factors with α <
0 are binding to the promoters of under-expressed genes.
If a transcription factor is an activator, then α > 0 implies
that the factor is active and α < 0 implies that it is inactive.
For repressors, the interpretation is the opposite: α > 0 and
α < 0 correspond to the repressing transcription factor
being inactive and active, respectively.

When these calculations are applied to a time series of
expression profiles, we obtain the α-coefficients ("activi-
ties") of each transcription factor over time. Here, we are
interested in the changes in transcription factor α-coeffi-
cients during the cell cycle of S. cerevisiae. Yeast cells were
synchronized using yeast mating pheromone and the
expression of all genes were profiled over two periods of
the cell cycle [20]. From this data, we were able to not only
compute the α-coefficients of the canonical cell-cycle-reg-
ulating transcription factors, but also able to identify addi-
tional factors that may play a significant role in regulation
of the cell cycle.

We then investigated whether it was possible to model the
temporal couplings of these factors in the form of ordi-
nary differential equations (or difference equations, as
expression data was only available at a small number of
equally-spaced discrete times). Such a model would ena-
ble us to predict which factors are affecting each other's α-
coefficients across the different phases of the cell cycle. We
were able to construct such a model by generating a time-
translation matrix of transcription factor α-coefficients
using least squares [27]. The significant couplings in this
model may be displayed in the form of a network and this
network can be compared to the canonical model of tran-
scriptional regulation of the yeast cell cycle. Such a com-
parison demonstrates that our model is consistent with
the canonical model. At the same time, the new model
provides a more comprehensive view of transcriptional
regulation that includes additional factors and couplings.

Results
We set out to reverse-engineer the interactions of the tran-
scription factors comprising the core module of regulators
of the S. cerevisiae cell cycle. The model captures the time-
dependent α-coefficients of transcription factors and how
they are coupled to control this important cellular pro-
gram. The first step in our approach is to determine the α-
coefficients of transcription factors during the cell cycle
and to identify the factors that are the most significant reg-
ulators of the cell cycle.

We assume that changes in expression of a specific gene
depend on the product of the binding ratios of all the
transcription factors that bind to its promoter, i.e.,

where Ri is the ratio of the expression level of gene i in two
conditions, the α-coefficient αj is a measure of the contri-
bution of transcription factor j, bij is a constant (equal to 1
when transcription factor j is unrelated to gene i) giving
the coupling between gene i and factor j, and N is the
number of transcription factors in the model. In practice,
we work with logarithms of expression ratios and loga-
rithms of binding profiles so that (see Methods) one may
solve for the αj by multiple linear regression. As discussed
earlier, αj is a surrogate for the activity of transcription fac-
tor j and positive values indicate an active activator or
inactive repressor and negative values indicate an active
repressor or inactive activator. Without prior knowledge
of the nature of transcription factor j, we do not know
from its αj if that factor is active or inactive; rather (and
more of concern as regards gene expression), we know
that it is tending to bind over-expressed (αj > 0) or under-
expressed (αj < 0) genes. Of course, in some cases we do
know whether a transcription factor is an activator or

R bi ij
j

N
j= ( )

=
∏ α

1

Equation 1

The canonical model of cell cycle regulationFigure 1
The canonical model of cell cycle regulation. The canonical 
model is determined primarily from transcription factor 
binding data. It contains 8 transcription factors that comprise 
3 complexes that activate each other in a serial fashion to 
regulate the expression of genes during the cell cycle.
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repressor and can therefore easily transform its α-coeffi-
cient to activity. Nonetheless, for the remainder of this
manuscript we focus on α-coefficients and not activities.

We applied the above to model the α-coefficients of tran-
scription factors during two periods of the yeast cell cycle.
We concentrated on modelling the expression data that
was obtained by using yeast mating pheromone to syn-
chronize yeast cells, although we also present models
based on data from synchronization using a temperature-
sensitive cdc15 mutant and from elutriation [20]. The
binding was measured for 204 transcription factors in rich
media using chromatin immunoprecipitation [7]. We
computed α-coefficients not only for the canonical tran-
scription factors, but also for additional factors we identi-
fied to be significant in regulating the cell cycle. These
additional factors were selected by determining the signif-
icance of the contribution of each coefficient in regres-
sions. For each time point, we identified the most
significant transcription factors based on p-value, and fac-
tors were rank-ordered based on the number of time
points in which they were significant. We filtered out fac-
tors that did not show periodic behavior. We identified
four additional transcription factors – Bas1, Spt2, Ste12,
and Yox1 – that are likely significant regulators of the cell
cycle; stopping at four additional factors maintains a rea-
sonable data-to-parameter ratio in the model. Details of
the procedure used appear in the Methods section.

Having selected significant transcription factors and
found their α-coefficients at each time point in the cell
cycle, the second step in our approach is to model the sys-
tem's dynamics. We accomplished this by computing a
transition (or time-translation) matrix T that can be used to
determine the α-coefficients of transcription factors at
other time points from the α-coefficients at the current
time point by matrix multiplication. Estimated using least
squares, the matrix T permits inference of the network of
couplings between transcription factors (see Methods).

We chose to perform constrained least squares and require
the estimate of T to have only non-negative entries. This
choice was made for several reasons. First, it generates
models that are more readily interpretable biologically. It
is clear that a positive entry may be interpreted as the pos-
itive α-coefficient of transcription factor A increasing the
α-coefficient of transcription factor B at the next time
point, as one might expect for activators. A positive entry
may also be seen as the negative α-coefficient of transcrip-
tion factor A decreasing the α-coefficient of transcription
factor B at the next time point, as one might expect for
repressors. In contrast, a negative entry suggests that the
negative α-coefficient of a factor increases the α-coeffi-
cient of another, or vice-versa, which we expect to be less
likely in 7-minute intervals for both activators and repres-

sors. A second reason to apply non-negativity constraints
to the entries of the time-translation matrix is that an
unconstrained matrix tends to have no zero entries (i.e.,
all entries non-zero). This leads to an undesirable model
in which all transcription factors depend on all other fac-
tors, which we know not to be true. Finally, applying con-
straints to the time-translation matrix can reduce the
number of parameters needed to be fit and improve the
model's data-to-parameter ratio.

We compared our model to the canonical model of the
network of cell-cycle-regulating transcription factors (Fig-
ure 1) that has been inferred primarily from binding data
by Simon, et al. [23,24]. Three groups of transcription fac-
tors – Swi4-Swi6-Mbp1, Fkh2-Ndd1-Mcm1, and Mcm1-
Swi5-Ace2 – are known to be active in three phases of the
cell cycle (G1/S, G2/M, and M/G1, respectively), binding
to each other in a serial fashion: the first group binds to
promoters of the second, the second to the third, and the
third to the first. This basic mechanism serves to regulate
the transcription of genes during the cell cycle.

To compare this model to the one generated using our
approach, we started with the 8 canonical transcription
factors. We computed the α-coefficients of these transcrip-
tion factors in the cell cycle time course data (see Figure 2)
and then computed the transition matrix that describes
their dynamics. This matrix may be viewed as a network,
seen in Figure 3. (Note that if two transcription factors are
connected in a model by arcs in both directions, we dis-
play only the more significant direction.) In Additional
files 1 and 2, we show the same network computed using
two other time courses in the Spellman, et al. data set.
Additional file 1 shows the network derived from the
cdc15 synchronization experiments and Additional file 2
displays the network derived from the elutriation time
series. In all three networks, we see the same central rela-
tionship Fkh2 → Ndd1 → Mcm1 → Ace2 → Swi4/Swi6/
Mbp1 between transcription factors, demonstrating the
robustness of our approach in reconstructing the core reg-
ulatory cycle independently of the synchronization
method used to generate the expression data.

The resulting models are quite similar to the canonical
one. They show a flow of influence from Ace2, a compo-
nent of the M/G1 complex, to the Swi4-Swi6-Mbp1 com-
plex active in G1/S. The Swi4 subunit of this complex
influences the α-coefficient of Fkh2, which in turn affects
Ndd1 and subsequently Mcm1, both subunits of the G2/
M complex. The cycle is then completed with interactions
from Ndd1 and Mcm1 back to Ace2 and Swi5. All of these
interactions recapitulate the basic flow of the canonical
model indicating strong support for this model using our
approach. Nonetheless, we note that although 8 of the 16
edges in Simon, et al.'s model [23] are recapitulated in our
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25-arc model derived from the pheromone-synchronized
data, the resulting p-value for the overlap of arcs between
the two models is not statistically significant. We believe
that this is due in part to limitations inherent in Simon's
model which captures only binding data and omits influ-
ences of the activity of one factor on another which may
be mediated by mechanisms other than by the binding of
a transcription factor to the promoter of another. The arcs
missing from our model and present in Simon's may be
explained as well. If multiple transcription factors are acti-
vating transcription of another factor (as in Simon's
model), our model may select only a single one of these
to best fit the data.

We next built a more general model by identifying in an
unsupervised fashion which additional transcription fac-
tors most significantly regulate the cell cycle. As explained
in the Methods section, for each of the 204 transcription
factors we measure not only its α-coefficient at each time
point, but also the significance of this estimate in the form
of a p-value. We used an iterative approach, keeping only
transcription factors that had a p-value below 0.1, re-com-
puting the α-coefficients and p-values for the reduced set
of transcription factors. We retained the factors that were
significant in the largest number of time points. Among
these, we selected those that had periodic α-coefficients.
Periodicity was determined using a discrete Fourier trans-
form to compute the fraction of the power spectrum of the
α-coefficients of a given transcription factor that laid
within a range consistent with the measured time period
of 1 cell cycle of S. cerevisiae (see Methods).

As a result, we selected four additional transcription fac-
tors – Bas1, Spt2, Ste12, and Yox1 – that significantly reg-
ulate the cell cycle. Their α-coefficients are shown in
Additional file 3. As shown in Table I, most of these have
some supporting evidence that they are involved in cell
cycle regulation. The exception is Bas1, a factor involved
in the purine and histidine pathways that has no known
connection to the cell cycle. The robustness of our unsu-
pervised selection methodology is evident by its recovery
of 6 of the 8 canonical transcription factors among the top
10 factors (and the probability of seeing such a significant
overlap by chance is less than 10-3). Finally, we computed
the transition matrix for the 12 factors (the 8 canonical
and 4 additional factors). This gives our most complete
model of transcription factor couplings in the yeast cell
cycle (see Figure 4).

Although the model with 12 transcription factors is signif-
icantly more complex than the network of canonical tran-
scription factors, it recapitulates much of the basic flow
observed earlier. For example, we still see the flow of
influence from Swi4 to Fkh2 to Ndd1 to Swi5 and back to
Swi6. Furthermore, we see additional interactions that are
supported by experimental evidence. For instance, the
edge between Ste12 and Mcm1 is supported by experi-
mental evidence that Ste12 interacts physically with
Mcm1 [28]. Similarly, the link between Mcm1 and Yox1
is supported by experimental evidence that these two
interact [29]. We show the mean absolute error (i.e., aver-
age magnitude of residuals) in the 12-factor model in Fig-
ure 5. The model has significant predictive power,
although (not unexpectedly) this diminishes as the cell
cycle progresses; the residuals are an increasing fraction of
mean absolute activity as time increases. This is consistent
with the experimental yeast cells gradually losing syn-
chrony in the real data but not in the model.

We performed an analysis of the long-term dynamical
properties of the model. As explained in detail in the
Methods section, an eigensystem decomposition of the
model allows us to identify its modes. In particular, we are
interested in the modes whose complex eigenvalues are of
magnitude closest to unity, since these modes give the
long-term cyclical behavior of the system. Modes whose
eigenvalues have magnitude less than 1 die off exponen-
tially over time. Our model also has a single real eigen-
value greater than 1. The mode associated with this
eigenvalue captures the fact that α-coefficients of the tran-
scription factors grow over multiple cycles.

The modes from the eigenvalues of magnitude closest to
unity generate periodic behavior with a period of 60 min-
utes, which is very close to the 63-minute period observed
in the Spellman, et al. data. Furthermore, we can estimate
the long-term (i.e., asymptotic) behavior of each factor,

α-coefficients of transcription factors regulating the cell cycleFigure 2
α-coefficients of transcription factors regulating the cell 
cycle. A heat map of the α-coefficients of the canonical tran-
scription factors during two periods of the cell cycle. Red 
indicates α > 0 (transcription factor generally bound to over-
expressed genes), green indicates α < 0 (transcription factor 
generally bound to under-expressed genes), and black indi-
cates α = 0. Factors are ordered based on their phase in the 
long-term asymptotic behavior of our dynamical model. The 
α-coefficients have been quantile normalized for each factor 
across the time points.
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which we describe in terms of amplitude and phase (see
Methods) and report in Table I and Figure 6. We see that
the order of the phases of each factor corresponds closely
to those expected from the canonical model: Swi5 and
Ace2 are around 0°, Swi4, Swi6, and Mbp1 are around
270°, and Ndd1 is close to 90°. In contrast to the canon-
ical model, however, we see that the α-coefficient of Fkh2
peaks before that of Ndd1. We note that the α-coefficient

of Mcm1 peaks between that of Ndd1 and those of Swi5
and Ace2, which is not surprising since it is involved both
in the G2/M and M/G1 complexes. We also see from our
analysis that Mbp1 and Ndd1 appear to have the highest
amplitudes during the course of the cell cycle, while Bas1
– the factor that appears to have no other evidence of its
involvement in the cell cycle – has the smallest amplitude.

Discussion
Many cellular programs, such as control of the cell cycle or
the metabolic cycle [30], are regulated through the tempo-
rally-patterned activation of specific transcription factors.
In order to understand these programs more completely,
it is necessary to build dynamical models of transcrip-
tional regulation. Approaches to the construction of these
models often involve either the collection of coupling
parameters between molecules by direct experimental
measurements or estimation of model parameters from
high-throughput data.

Model building using the former approach by using sets
of individual molecular coupling measurements can
severely limit the scope of the model. Such measurements
are often only available for a small number of molecules.
As a result of this limitation, most of these types of models
capture couplings between proteins and not between tran-
scription factors and their target genes due to the larger
number of parameters such would involve. Furthermore,
these types of models are difficult to validate since they
cannot be compared to systematically-collected compre-
hensive time series data covering all model variables.

A previous dynamical model [22] of the yeast cell cycle
following the direct-measurement paradigm included
about a dozen molecules that are known to be involved in
regulating the cell cycle (e.g., clb2, clb5, cln2, and cdc14),
including the transcription factors SBF (composed of Swi4
and Swi6), MBF (composed of Swi6 and Mbp1), and
Mcm1. The more than 100 parameters that are involved in
this model were estimated from individual experiments
and so only a very limited number of couplings between
the transcription factors in the model and their targets
were included. One appealing characteristic, however, is
that this model allows one to explicitly predict the dynam-
ics of mutant strains that lack individual components of
the model. In fact, the authors were able to demonstrate
that their model reproduced the phenotypes of many cell-
cycle-deficient mutants. However, these comparisons are
inevitably more qualitative than quantitative and can only
be performed for mutations of modelled genes.

Utilizing the second paradigm, various methodologies
have been developed to reconstruct the regulatory net-
work of the yeast cell cycle from high-throughput data
[14,15]. These approaches allow systematic comparison

Transcription factor network of canonical cell cycle regula-torsFigure 3
Transcription factor network of canonical cell cycle regula-
tors. We depict the network of canonical transcription fac-
tors derived using our approach. We construct a dynamical 
model of their α-coefficients and show the non-zero edges in 
this matrix as directed links between factors. A line from fac-
tor A to factor B indicates that the activity of A affects the 
activity of B at the next time point. The displayed order of 
factors minimizes the number of upward arcs (these arcs 
being grouped on the right side of the figure).
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of model predictions to genome-wide data and they are
not restricted a priori to include only a small subset of
molecules. However, since these models only account for
the regulation of genes by transcription factors, they have
not been used to predict the phenotype of cell cycle
mutants as such phenotypes do not usually involve muta-
tions in transcriptional regulation.

In contrast to both of these approaches, we have pre-
sented a methodology for constructing dynamic models
of the core modules of transcriptional regulation from
high-throughput data sets. Our model describes the time-
dependent α-coefficients of transcription factors during
the cell cycle. As described above, the model was esti-
mated using both expression and transcription factor
binding data. As with other cell cycle models derived from
high-throughput data, we are able to directly measure the
fit of our model with respect to the data (e.g., as in Figure
5). Our approach need not make any a priori assumptions
about which proteins should be included as these may be
determined directly from the data.

Using our model, we are able to incorporate the effect of
transcription factors binding to all of their known targets
rather than just a select subset and demonstrate that cou-
plings between transcription factors are similar to those
found in the canonical models of cell cycle regulation.
These couplings permit the activity of a transcription fac-
tor to affect the activity of another by, for example, activat-
ing its transcription, as well as allowing for the possibility
that two factors act cooperatively to turn on genes. The
underlying principle of our model (e.g., as seen in Equa-
tion 1) is that all factors act cooperatively at each pro-

moter at some level. The α-coefficient of a given factor at
a given time point is a measure of the extent of the global
influence that factor has at that time. Cooperation
between factors in our model is therefore manifested by
correlation in the α-coefficients of two factors. For exam-
ple, in Figure 2, it is clear that Mbp1 and Swi6 have corre-
lated α-coefficients and they are indeed known to act in a
cooperative fashion since they form the MBF complex.
The link between these factors in our networks is captur-
ing cooperative activity (and not transcriptional activa-
tion of one factor by another).

In conclusion, unlike other genome-wide models of cell
cycle transcription, our approach focuses on the relation-
ships between transcription factors and not on the identi-
fication of the regulators of individual genes. Since
transcription factors are the key regulators of transcrip-
tional programs, we believe this approach provides a
more comprehensive view of how these processes are reg-
ulated temporally. Furthermore, although it is not possi-
ble to completely validate the resulting networks, the
results are reasonable from a biological perspective and
largely conform to previous models of transcriptional reg-
ulation of the yeast cell cycle. As a result, our methodol-
ogy should reasonably reconstruct regulatory networks
whenever expression time series and transcription factor
binding data are both available.

Conclusion
We have presented a methodology for describing the tem-
poral regulation of the yeast cell cycle. Our approach
allows us to first identify the key regulators of this process,
recovering most of the known regulators as well as new

Table 1: Predicted cell cycle regulators.

TF Phase Amplitude Periodicity Notes

Ste12 318° 0.03 0.26 interacts with Mcm1
Mbp1 280° 0.10 0.30 G1/S, member of the Swi6-Mbp1 (MBF) and Swi4-Swi6-Mbp1 complexes
Swi6 278° 0.07 0.32 G1/S, member of the Swi4-Swi6 (SBF), Swi6-Mbp1 (MBF), and Swi4-Swi6-Mbp1 complexes
Swi4 252° 0.07 0.33 G1/S, member of the Swi4-Swi6 (SBF) and Swi4-Swi6-Mbp1 complexes
Spt2 164° 0.03 0.24 interacts with both histones and SWI-SNF components
Fkh2 160° 0.04 0.26 G2-specific transcription in the mitotic cell cycle, forms complex with Ndd1 and Mcm1
Ndd1 098° 0.08 0.30 late S, forms complex with Fkh2 and Mcm1
Bas1 084° 0.02 0.21 regulation of basal and induced expression of genes of the purine and histidine biosynthesis 

pathways
Mcm1 044° 0.03 0.27 DNA replication initiation (TAS), member of Fkh2-Ndd1-Mcm1 and Mcm1-Swi5-Ace2 complexes
Yox1 025° 0.06 0.19 binds to Mcm1p and Early Cell-cycle Boxes (ECBs) in the promoters of cell cycle-regulated 

genes expressed in M/G1
Swi5 002° 0.06 0.20 G1 and at the M/G1 boundary, forms complex with Mcm1 and Ace2
Ace2 001° 0.05 0.29 G1, forms complex with Mcm1 and Swi5

Shown are the cell cycle regulators used in the expanded 12-factor model. The phases and amplitudes of the α-coefficients of each factor are 
calculated from the model's long-term asymptotic dynamics. Transcription factors are ordered by phase and those not in the canonical model are 
shown in bold.
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ones for which there is some supporting evidence for their involvement. More importantly, our methodology allows

Full network of transcription factors regulating the cell cycleFigure 4
Full network of transcription factors regulating the cell cycle. We identified the 4 transcription factors that were most signifi-
cantly regulating the cell cycle and considered them along with the 8 canonical factors. We constructed a dynamical model of 
their α-coefficients and show here the non-zero entries in this matrix as directed links between the 12 factors. The resulting 
network represents the complete network of couplings between cell cycle regulating transcription factors. A line from factor A 
to factor B indicates that the activity of A affects the activity of B at the next time point. The displayed order of factors mini-
mizes the number of upward arcs (these arcs being grouped on the right side of the figure).
Page 8 of 12
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us to synthesize the manner in which these transcription
factors coordinately regulate the cell cycle. This approach
goes beyond existing static models of transcriptional fac-
tor networks involved in cell cycle regulation by demon-
strating how the estimated transcriptional activities of
these proteins are coupled in time.

We believe the methodology we have presented may be
applied to model many different biological phenomena.
In the case of Saccharomyces cerevisiae, time series expres-
sion data of a variety of cellular programs (e.g., the diauxic
shift [31] and the metabolic cycle [30]) are already availa-
ble. In higher eukaryotes, high-throughput data measur-
ing transcriptional changes during circadian cycles has
been measured (e.g., [32]). The availability of this and
other data presents us a unique opportunity to model the
key modules of the associated transcriptional networks,
shedding new light on how cells control these complex
phenomena.

Methods
Estimation of transcription factor α-coefficients
Taking a logarithm of both sides of Equation 1, we model
the logarithm of the ratio of expression data as a linear
combination of the logarithms of the transcription factor
binding data:

Here, Ri is the ratio of expression of gene i to control, αj is
the regression coefficient of transcription factor j, and bij is
the measured binding of transcription factor j to the pro-
moter of gene i. We estimate the coefficients αj using mul-
tiple linear regression as implemented in the MATLAB
function robustfit, a function that also returns an estimate
of the standard error of each αj. The binding coefficients
bij are from Harbison, et al. [7] and we treat these as
known parameters that are not to be fitted. The expression
ratios Ri are from Spellman, et al. [20].

log( ) log( ).R bi j
j

N

ij=
=
∑α

1

Model residualsFigure 5
Model residuals. Shown is a comparison of the α-coefficients 
of transcription factors estimated using regression and dis-
played in Additional file 3 to those predicted by our dynami-
cal model. We plot the mean absolute value of the α-
coefficients across two periods of the cell cycle versus the 
mean absolute value of the residuals (i.e., the difference 
between the measured and predicted α-coefficients). Each 
time step represents a 7-minute interval. We see that the 
model has significant predictive power, although this dimin-
ishes as the cell cycle progresses. This may be due in part to 
gradual loss of synchrony over time in the experimental yeast 
cells from which expression was measured.
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Asymptotic magnitudes and phases of transcription factor α-coefficientsFigure 6
Asymptotic magnitudes and phases of transcription factor α-
coefficients. We perform a dynamical analysis of our 7-
minute time-translation matrix to identify the mode that cor-
responds to the long-term oscillatory behavior of our sys-
tem. For this mode, we compute the amplitudes and phases 
that describe the α-coefficients of each factor. The cell cycle 
proceeds clockwise. Relative to Figure 1, this figure is 
rotated by approximately 180°.
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We pre-filtered the binding data by eliminating all tran-
scription factors that had more than 10 missing values
across all genes, leaving 181 factors. We next eliminated
all genes that had more than 3 missing values across the
18 time points, leaving 4,033 genes.

For each of the 181 transcription factors, robustfit com-
putes the probability that each αj is non-zero. Roughly, a
t-test is made for the ratio of each coefficient divided by its
standard error. A detailed derivation of the p-value, which
is beyond the scope of this manuscript, may be found in
standard statistical texts [33,34]. We next use an iterative
approach to select only transcription factors that have a p-
value below 0.1. We first perform a regression step (ini-
tially with the full transcription factor binding matrix)
and obtain a p-value for each of the αj. We then remove
from the binding matrix bij all columns that are associated
with transcription factor α-coefficients whose p-values do
not pass the threshold. This procedure is repeated with the
reduced binding matrix until all transcription factor α-
coefficients have p-values below 0.1. The choice of 0.1 as
threshold is somewhat arbitrary, but this choice has only
a minimal effect on the calculation; we have repeated the
procedure with other p-value thresholds such as 0.01 and
0.001 and we obtain similar lists of significant factors and
α-coefficients as seen in Additional file 4. We also note
that the p-values for the final α-coefficients of the factors
that are selected by the iterative procedure are very signif-
icant (p < 10-10) in all cases.

Determination of time-translation matrices
We model the dynamics of the system by determining the
transition matrix T that predicts the α-coefficients at the
next time point from the α-coefficients at the current time
point:

A(t+1) = TA(t).

The matrix T is computed using least squares constrained
to produce only non-negative entries via the MATLAB
function lsqnonneg. From this matrix, we can infer the
network of couplings between transcription factors by
identifying the most significant interactions. In cases
where two factors were linked by arcs in both directions,
we display only the more significant arc.

Computation of asymptotic amplitudes and phases of 
transcription factor α-coefficients
To analyze the dynamics of the time-translation matrix,
we compute an eigensystem of it using the MATLAB func-
tion eigen. Since we are interested in the long-term asymp-
totic behavior of our model, we focus on the two non-real
conjugate eigenvalues whose magnitude is closest to unity
and the two conjugate eigenvectors associated with them.
The eigenvectors with eigenvalues smaller than these in

magnitude decay exponentially in time compared to this
mode and hence contribute nothing asymptotically. The
spectrum of eigenvalues is shown in Additional file 5. The
spectrum does contain a single real eigenvalue greater
than 1. This generates growing α-coefficients, and is likely
a result of the cyclical nature of the network with only
non-negative coefficients, these generating positive feed-
back. However, for the purpose of estimating the relative
phases and amplitudes of the transcription factor α-coef-
ficients, it is appropriate to focus on the already-men-
tioned non-real eigenvalues of greatest magnitude.

Using the polar form

λ = |λ|eiθ

for the dominant non-real eigenvalue of the time-transla-
tion matrix in the upper half-plane, the period of the asso-
ciated mode is given by

where ∆t is the time (here, 7 minutes) between successive
points (e.g., microarrays) in the expression time series.

Collect the eigenvectors of the time-translation matrix as
the columns of a complex matrix V and let complex
matrix W be the matrix inverse of V. To find the long-term
asymptotic phase and amplitude of each transcription fac-
tor, let z be the complex number that is the dot product of
the row of W corresponding to one of the dominant non-
real eigenvalues with the initial state, and let v be the col-
umn of V corresponding to this same eigenvalue. Then the
asymptotic amplitudes and phases of the transcription
factors are the polar forms of the successive entries of 2zv.
A detailed derivation is provided in Additional file 6.

Identification of periodic transcription factors
To identify the transcription factors that have periodic α-
coefficients, we compute the discrete Fourier transform of
the α-coefficient profile for each factor. Taking the magni-
tudes of Fourier components (i.e., the "power spectrum")
we calculate the fraction of spectral power that falls in
components 7, 8, 9, and 10 as these correspond to an
interval of periods containing the expected period for a
single cycle of the Spellman data.
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