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Abstract
Background: In this paper we present a method for the statistical assessment of cancer predictors
which make use of gene expression profiles. The methodology is applied to a new data set of
microarray gene expression data collected in Casa Sollievo della Sofferenza Hospital, Foggia – Italy.
The data set is made up of normal (22) and tumor (25) specimens extracted from 25 patients
affected by colon cancer. We propose to give answers to some questions which are relevant for
the automatic diagnosis of cancer such as: Is the size of the available data set sufficient to build
accurate classifiers? What is the statistical significance of the associated error rates? In what ways
can accuracy be considered dependant on the adopted classification scheme? How many genes are
correlated with the pathology and how many are sufficient for an accurate colon cancer
classification? The method we propose answers these questions whilst avoiding the potential pitfalls
hidden in the analysis and interpretation of microarray data.

Results: We estimate the generalization error, evaluated through the Leave-K-Out Cross
Validation error, for three different classification schemes by varying the number of training
examples and the number of the genes used. The statistical significance of the error rate is
measured by using a permutation test. We provide a statistical analysis in terms of the frequencies
of the genes involved in the classification. Using the whole set of genes, we found that the Weighted
Voting Algorithm (WVA) classifier learns the distinction between normal and tumor specimens
with 25 training examples, providing e = 21% (p = 0.045) as an error rate. This remains constant
even when the number of examples increases. Moreover, Regularized Least Squares (RLS) and
Support Vector Machines (SVM) classifiers can learn with only 15 training examples, with an error
rate of e = 19% (p = 0.035) and e = 18% (p = 0.037) respectively. Moreover, the error rate
decreases as the training set size increases, reaching its best performances with 35 training
examples. In this case, RLS and SVM have error rates of e = 14% (p = 0.027) and e = 11% (p =
0.019). Concerning the number of genes, we found about 6000 genes (p < 0.05) correlated with
the pathology, resulting from the signal-to-noise statistic. Moreover the performances of RLS and
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SVM classifiers do not change when 74% of genes is used. They progressively reduce up to e = 16%
(p < 0.05) when only 2 genes are employed. The biological relevance of a set of genes determined
by our statistical analysis and the major roles they play in colorectal tumorigenesis is discussed.

Conclusions: The method proposed provides statistically significant answers to precise questions
relevant for the diagnosis and prognosis of cancer. We found that, with as few as 15 examples, it
is possible to train statistically significant classifiers for colon cancer diagnosis. As for the definition
of the number of genes sufficient for a reliable classification of colon cancer, our results suggest
that it depends on the accuracy required.

Background
Gene expression from DNA microarray data offers biolo-
gists and pathologists the possibility to deal with the
problem of cancer diagnosis and prognosis from a quan-
titative point of view [1]. Conventional tumor diagnosis
consists of the examination of the morphological appear-
ance of tissue specimens by trained pathologists. It is sub-
jective and generally it does not allow the establishing of
a unique therapy as tumors with similar histopathological
appearances can follow different clinical courses [2]. Gene
expression data provide a snapshot of the molecular status
of a sample of cells in a given tissue, returning the expres-
sion levels of thousands of genes simultaneously. They
make it possible to analyze the genes involved in a partic-
ular type of cancer [3] as well as the classification of tumor
specimens in different categories [4,5]. Although DNA
microarray data offer enormous opportunities for the def-
inition and understanding of several pathologies, they
hide potential pitfalls in their analysis and interpretation
[6,7]. A large number of overoptimistic results have been
recently published in the literature regarding the possibil-
ity of constructing very accurate prediction rules for cancer
from only a few genes. Zhang et al. [8] showed that a three
gene classification tree had an error rate of 2% in colon
cancer diagnosis, and Guyon et al. [9] showed that a Sup-
port Vector Machine (SVM) trained on only two genes had
a zero Leave-One-Out (LOO) error in classifying patients
with leukemia.

There exists a twofold explanation for such misleading
results. The first one concerns the data. Normally, a typical
experiment of cancer classification by gene expression
data consists of a few number � of specimens, between 10
and 100 examples, each one of which is composed of a
large number d (in the order of tens of thousands) of gene
expression levels. We know that [10] the VC-dimension of
the class of linear indicator functions in �d is d + 1. This
means that the simplest classifier, consisting of a separat-
ing hyperplane living in the space of the input specimens,
is able to separate d + 1 points independently of their
labelling. In the application at hand, where the number of
features (gene expression levels) d is some order of mag-
nitude greater than �, the possibility of separating per-
fectly the specimens without errors is implied. This

problem, known in machine learning literature as "over-
fitting", is exactly the kind of problem that should be
avoided in order to construct predictors able to generalize,
i.e. which are able to correctly predict the labels of new
specimens.

The second reason concerns the methods of analysis. This
can be better illustrated through some examples. It has
just been said that the ultimate goal of a learning machine
is that of generalizing. How is the generalization error of
a predictor measured? What is the statistical significance
of such a quantity given that it is measured by using only
a few examples? Different methodologies will return very
different answers. It is well know that the LOO-error pro-
vides an almost unbiased estimate of the generalization
error of a predictor [11]. Although the bias of the said esti-
mator is low, it is highly variable [6] and has little statisti-
cal significance [12]. On the contrary, the Leave-K-Out
Cross Validation (LKOCV) error provides a more signifi-
cant estimate of the generalization error and it should be
used to assess the accuracy of a classifier [12]. One further
example concerns the methods that select a subset of
genes to work with to reduce the problem of overfitting
and for finding informative genetic markers of a particular
pathology [8,9]. As Ambroise and McLachlan in [6] have
admirably pointed out, such methods should carefully
avoid the selection bias problem if reliable estimations of
the generalization error of predictors are to be obtained.
In the present paper a general methodology for the statis-
tical assessment of prediction rules trained by using gene
expression data is described, which can be seen as a natu-
ral extension of [13] and [12]. The method answers pre-
cise questions relevant to cancer diagnosis, avoiding the
potential pitfalls connected to microarray data. In this
study a new data set of gene expression data is used which
was collected from 25 patients affected by colon cancer in
"Casa Sollievo della Sofferenza" (CSS) Hospital, San Gio-
vanni Rotondo (FG), Italy. The first set of questions posed
concerns the data set. Is the size of the available data set
sufficient to build accurate predictors? In which ways does
accuracy depend on the prediction model? What is the sta-
tistical significance of the prediction error measured? The
second set of questions is about the number of gene
expression levels. How many genes are correlated with the
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pathology? How do the accuracy and the statistical signif-
icance of the predictor change with respect to the number
of the genes used? How does the adopted feature selection
strategy influence the prediction error with respect to a
random selection of genes? Answers to these questions
were provided by using well established models for the
classification of gene expression data. In particular we
resorted to Weighted Voting Algorithm (WVA) classifiers
[1,14], Regularized Least Squares (RLS) classifiers [15,16]
and Support Vector Machine (SVM) classifiers [10]. For
the assessment of the statistical significance of the classifi-
cation errors measured, non parametric permutation tests
[17,18] were adopted.

Results
Data set description
Study population
Twenty-five patients (14 males; mean age: 60 ± 14 years),
who underwent colonic resection for colorectal cancer
(CRC) at CSS hospital, were prospectively recruited into
this study. Two samples from each patient were available,
one from colon cancer tissue and one from normal
colonic mucosa tissue. The samples had been obtained
during the surgery, immediately frozen in liquid nitrogen
and then stored at -80°C. All of them were reviewed by
the same experienced pathologist to confirm the histolog-
ical diagnosis. None of the patients suffered from heredi-
tary CRC or had received preoperative chemo-
radiotherapy. Informed consent to take part in this study
was obtained from all the patients. The study was
approved by the Hospital's Ethics Committee.

RNA extraction from fresh frozen tissue
Total RNA from 150–200 mg of fresh frozen tissue was
isolated by phenol-chloroform extraction (TRIzol Rea-
gent, Invitrogen, Carlsbad, CA) and subsequently purified
through column chromatography (RNeasy Mini Kit, Qia-
gen, Valencia, CA) according to the manufacturer's
instructions. RNA integrity was monitored using denatur-
ing agarose gel electrophoresis in 1X MOPS. Three neo-
plastic samples were discarded from the final analysis
since their RNA preparation was suboptimal.

Microarray assays
Biotinylated target cRNA was generated from 12 mg as
described by the Affymetrix Expression Analysis Gene-
Chip Technical Manual (Affymetrix, Santa Clara, Califor-
nia). Briefly, double-stranded cDNA was synthesized from
total RNA using the Superscript Choice System (Invitro-
gen, Carlsbad, California), a primer containing poly(dT)
and a T7 RNA polymerase promoter sequence. In vitro
transcription using double-stranded cDNA as a template
in the presence of biotinylated UTP and CTP was carried
out using BioArray High Yield RNA Transcript Labeling
Kit (Enzo Diagnostics, Farmingdale, New York). The

resulting biotynilated-cRNA "target" was purified and
quantified. Fifteen micrograms of biotinylated cRNA were
randomly fragmented to an average size of 50 nucleotides
by incubating in 40 mM TRIS-acetate, pH 8.1, 100 mM
potassium acetate, and 30 mM magnesium acetate at
94°C for 35 minutes. The fragmented cRNA was hybrid-
ized for 16 hours at 45°C on Human Genome U133A
GeneChips containing a total of 22,283 probe sets and
after stained in a Fluidics station with streptavidin/phyco-
erythrin, followed by staining through a streptavidin anti-
body and streptavidin/phycoerythrin. Arrays were
scanned on a Genearray scanner G2500A by using stand-
ard Affymetrix protocols. Absolute data analysis was per-
formed using the Affymetrix Microarray Suite 5.0
software.

Algorithms
Estimating the number of training examples

We are given a data set S = {(x1, y1), (x2, y2), ..., (x�, y�)}

composed of � labelled specimens, where xi ∈ �d and yi ∈
{-1, 1} for i = 1, 2,...,�. Let us suppose we have �+ positive

and �- negative examples, such that � = �+ + �-. In order to

estimate the minimum number of examples to be used for
the training of a classifier with a low error rate and a high
statistical significance we used a two-step method: a cross
validation procedure for the estimation of the error rate of
classifiers trained through a given number of examples,
and a permutation test for the assessment of the statistical
significance of the classification accuracy obtained. In par-
ticular, let n be the training set size, with n = 1, 2,...,� - 1.
For every value of n, s1 pairs (Dn, Tk) of training and test

sets are built by random sampling without replacement
into the data set S, with n and k as their respective exam-
ples, where � = n + k. In the training/test split of the data,
the same proportion of positive and negative examples as
S is preserved. For every random split, a classifier is trained

by using the examples in Dn and its error rate  is evalu-

ated by testing it on Tk. The selection of the parameter on

which the classifier depends (C for SVM and λ for RLS
classifiers) is carried out by using the examples in Dn only.

In particular, the C parameter in SVM is selected minimiz-

ing the three-fold cross validation error [19] and the λ
parameter in RLS is selected minimizing the LOO-error.
Note that in the case of RLS, the evaluation of the LOO-
error requires just one training [16]. This procedure for

selecting the parameter ensures that  is unbiased as it

does not involve the test set Tk. So, for each value of n, the

average error rate  is evaluated. Notice
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that when n = � - 1, the classical procedure for the meas-
urement of the LOO-error which involves s1 = � training/

test pairs (D�-1, T1) is used. The second step consists of

evaluating, for every n, the statistical significance of the
error rate en. In a nutshell, we are interested in measuring

to what extent the accuracy observed is due to the existing
correlation between gene expression levels xi and class

labels yi, and how it is observed by chance because of the

high dimensionality of the space where the examples live.
In order to assess the statistical significance of the error
rate the classical method of hypothesis testing is applied.
Let H0 be the null hypothesis in which it is assumed that

the random variables x and y are independent. To evaluate
the p-value corresponding to en, it is necessary to know the

probability density function of en under the null hypothe-

sis. Since this is unknown, a nonparametric permutation
test [17] is needed, the latter being a method of estimating
the empirical probability density function of any statistic
under H0 from the available data. In the contest of classi-

fication, the method consists of a) permuting randomly
the labels of the training set; b) training a random classi-
fier on this randomly labelled training set and c) testing
the classifier obtained on a test set having correctly
labelled examples. The reason for this lies in the circum-
stance that under the null hypothesis all the training sets
generated through label permutations are equally likely to
be observed, given that the random variables x and y are
independent. Permutation test technique then allows us
to determine the percentage of classifiers trained on ran-
domly labelled data having an error rate less than en in

classifying correctly labelled data. In particular the follow-
ing steps are carried out. For every random split of S in
training and test sets (Dn, Tk), we perform s2 random per-

mutations of the labels of examples belonging to the

training set Dn. Let  be the training set with randomly

permuted labels. For every permutation, a classifier is

trained by using  and the classifier itself is tested on

the test set Tk which has correctly labelled examples. Even

in such a case, the parameter on which the classifier

depends is selected by using only the examples in . Let

us indicate with  the error rate of the random classifier

trained on n examples in the i-th cross validation and in
the j-th random permutation. Then the empirical proba-
bility density function of the error rate under the null
hypothesis is:

composed of a sum of delta functions centered on the
errors measured. The statistical significance (p-value) of
the error rate en is given by the percentage of error rates
smaller than en.

Estimating the number of genes
The procedure described in the previous section makes it
possible to determine the number n of training examples
to use for building, in principle, an accurate and statisti-
cally significant classifier. This section is focused instead
on the following problems. How many genes are needed
to classify a new specimen? What is the statistical signifi-
cance of the error rate of a classifier trained by using n
examples, each of which composed of a subset of g genes?
In order to answer these questions a methodology is used
similar to the one described in the previous section, with
the main difference being that this time the specimens are
composed of subsets of g genes. In particular, for every g =
1,2,...,d, where d is the total number of genes available, s1
pairs (Dn, T�-n) of training and test sets are built by ran-
dom sampling without replacement into the data set S,
with n and � - n examples respectively. Also in this case,
the same proportion of positive and negative examples as
in S is preserved. It should be noted that here the number
of training and test examples is constant. The training set
is employed to rank the genes according to the value of the
statistic [1]:

where j is the gene index. (µ+ (j), σ+ (j)) and (µ- (j), σ- (j))

are the mean and the standard deviation of the expression
levels of the j-th gene in the positive and negative exam-
ples respectively, belonging to the current training set. By
using the gene list thus sorted, reduced training and test

sets ( n, �-n) containing the same examples as the cur-

rent training and test sets are built, each of which is com-
posed of the g genes that are most correlated with the class
labels. In particular, each example in the reduced training
and test sets contains the expression levels of the first g/2
and of the last g/2 genes in the list. Such a gene selection
strategy provides better results than those provided by
ranking the genes according to the absolute value of (2) as
reported also in [1,14]. For every random split, a classifier

is trained by using those examples in n having g compo-

nents, and its error rate  is evaluated by testing it on
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�-n having examples with g components too. Then, for

every value of g, we evaluate the average error rate

. Two observations should be made. The

first is that the procedure of gene ranking involves the
examples in the training set only. That is to say, for each
iteration the set of g genes is determined on the basis of
the training examples only. The test set is thus out of the
selection process. This makes the estimated error rate
selection bias free [6]. The second is that, in general, after
each cross validation the list of the g selected genes
changes.

The second step of the procedure consists in evaluating,
for every g, the statistical significance of the error rate eg.

For this purpose, for every random split of S, s2 random

permutations of the labels of examples in the reduced

training set n are performed. Let  be the training set

with randomly permuted labels. For every permutation, a

random classifier is trained by using  and the classifier

is tested on the reduced test set �-n having correctly

labelled examples. Let  be the error rate of the random

classifier trained on  in the i-th cross validation and in

the j-th random permutation. Then the empirical proba-
bility density function of the error rate under the null
hypothesis is:

composed of a sum of delta functions centered on the
errors measured. The statistical significance (p-value) of
the error rate eg is given by the percentage of error rates
smaller than eg.

Frequency assessment of the genes selected
It has been stated that the list of g genes selected in each
cross validation changes because the selection of n exam-
ples from the data set S is random. Nevertheless, since the
statistic (2) assigns high scores in absolute value to the
genes most correlated with the class labels, the most
informative genes are expected to appear in the first/last
positions of the list, irrespective of the n examples used for
evaluating the TS2N statistic. Therefore the frequency fj of
appearance of gene j in the lists of the genes selected dur-
ing the cross validation procedure can be used as a meas-
ure of the importance of gene j in the problem at hand. fj
is given by the ratio between the number of appearances
of the gene j in the top g positions and the number s1 of
cross validations. To assess the statistical significance of fj,
it is necessary to resort to the permutation test. In particu-
lar, s1 random drawings of n examples from S are per-
formed and for each one of them s2 random permutations
of the labels of the n examples are carried out. For each
random permutation of the labels, the genes are sorted
according to the values of the statistic (2). The p-value
associated to fj is given by the frequency of the gene j in the
top g positions in the s1 × s2 random permutations of the
labels.

Testing
In this section we try to answer the numerous questions
previously raised, showing the results of the methods
described as applied to our colon cancer data set. Irrespec-
tive of the classifier adopted, the genes are appropriately
normalized to have zero mean and unit variance. In par-
ticular, for each training and test pair with n and �-n exam-
ples respectively, the n training examples are employed to
compute the mean and variance of each gene and these
parameters are used to normalize the genes in both train-
ing and test set. Moreover, linear kernels in RLS and SVM
classifiers are used.

Training set size
The first question posed concerns the data set size. How
many examples are sufficient for an accurate classification
of microarray data of colon cancer? The answer depends,
of course, on the classification model adopted. Table 1
shows the error rate e and the p-value p of three classifica-
tion schemes, obtained by varying the number of training
examples. The error values were estimated performing s1 =
500 cross validations and s2 = 500 random permutations
of the labels. WVA reaches its minimum error rate of e =
19% with n = 35 examples, but this estimate has a poor
statistical significance (p > 5%). The best performance of
this model on our data set is reached with n = 25 training
examples, providing an error rate of e = 21% (p = 0.045).
This table shows that WVA has a limited learning ability,
because the error rate does not decrease significantly as
the number of training examples is increased (see fig. 1a).
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Table 1: Error rate e and p-value p for different training set sizes.

WVA RLS SVM

n e p e p e p

10 25% 0.078 21% 0.048 21% 0.053
15 24% 0.056 19% 0.035 18% 0.037
20 23% 0.066 16% 0.028 15% 0.026
25 21% 0.045 16% 0.028 14% 0.022
30 21% 0.050 15% 0.027 13% 0.017
35 19% 0.069 14% 0.027 11% 0.019
40 21% 0.102 15% 0.109 12% 0.022
46 21% 0.493 14% 0.489 11% 0.495
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RLS and SVM classifiers show a different behavior. Both
methods provide classifiers with error rates of e ≤ 19% (p
< 5%) with only a few training examples, and their ability
of separating tumor from normal specimens improves as

the number of training examples increases. The best per-
formances of these classifiers are obtained with n = 35
examples. Moreover, the error rate does not improve by
increasing the number of training examples, suggesting
that n = 35 is the optimal number of examples to use for
the training of accurate RLS or SVM classifiers (see fig. 1b
and 1c). The behavior of the statistical significance of the
three classifiers odopted as a function of the training set
size is shown in figure 2. As the picture shows, the LOO
error exhibits poor statistical significance. Such evidence,
reported in [12] as well, seems counter-intuitive if associ-
ated to its having been obtained by using the maximum
training set size. This is immediately evident if we associ-
ate it to the test set size. In the LOO error procedure, the
test set is made up of a single example and the likelihood
that a random classifier can correctly classify the test
example by chance is high. The likelihood decreases as the
test set size increases. Having the same the number of
training examples, RLS and SVM classifiers show compa-
rable p-values which are always smaller than those of
WVA. It should be noted that in all the classification
schemes, the LOO error (last row in table 1), in spite of its
poor statistical significance, shows values which are com-
parable to the ones of the LKOCV error when n is 30 or 35.
This means that the LOO error provides a good estimate
of the generalization error of a learning machine [11] and
it can be used as a valid alternative to LKOCV error to
compare the performances of different classification rules.
This aspect is relevant for RLS classifiers which require just
one training for the evaluation of the LOO error [16].
Moreover, our results coincide with the ones described in
[12] where it is shown that 10–20 examples suffice for the
training of classification rules with a statistically signifi-
cant error rate.

Number of genes
The second question concerns the number of genes. How
many genes are sufficient for an accurate classification of
gene expression data of colon cancer? In order to be able
to answer this question, we applied the method described
in the section Algorithms. First of all, the number of genes
differentially expressed in our data set, i.e. the ones having
a statistically significant value of the statistics (2) had to
be determined. To do this, we evaluated (2) on the actual
data set and determined the number of genes having a
value of the statistics greater than a given threshold. The
denoted curve "observed" in figure 3 depicts the number
of genes as a function of the statistics TS2N in the actual
data set. Every point (x, y) of the curve represents the
number y of genes g such that TS2N(g) ≥ x. The same pro-
cedure was applied on data sets with randomly permuted
class labels. Every point (x, y) of the curve denoted 1%
(5%) in figure 3 represents the number y of genes g having
TS2N(g) ≥ x with p-value p ≤ 1% (5%). In this analysis we
carried out 1000 random permutations of the labels of the

Error rate of a) WVA, b) RLS and c) SVM classifiers varying the training set sizeFigure 1
Error rate of a) WVA, b) RLS and c) SVM classifiers varying 
the training set size.
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whole data set. As shown in the picture (see the point
where observed and 5% curves intersect), about 6000
highly expressed genes (p < 5%) were found in the two
classes: 3000 genes more highly expressed in normal tis-
sues (figure 3a) and 3000 more highly expressed in tumor
tissues (figure 3b).

Table 2 shows the error rate e and the p-value p of three dif-
ferent classifiers, obtained by varying the number of the
genes used. We used n = 25 examples for the training of
WVA classifiers and n = 35 examples for those of RLS and
SVM classifiers. We used s1 = s2 = 500 in this case as well.

It should be noted that WVA always provides error rates
with a poor statistical significance, except when the whole
set of genes is used. Moreover, the behavior of e as a func-
tion of g shows that this classification model is highly sen-
sible to the noise embedded in the gene expression data.
In fact, when the less informative genes are discarded
from the classification process, the error rate improves sig-
nificantly down to 13% with only 32 genes. On the con-
trary, RLS classifiers show good statistical significance and
poor sensibility to the noise because the error rate remains
unchanged, as it were, in the whole range of values of g.
Nevertheless, they are not able to exploit the information
embedded in the less informative genes as fully as SVM
does. When the whole set of genes is employed, the error
rates of RLS and SVM are e = 14% (p = 0.027) and e = 11%
(p = 0.019) respectively and the errors do not change
when the 74% of genes (g = 16384) is used. The error rates
of the two machines can be compared only when the 37%
of genes (g = 8192) is used. These results point out that
SVM is not influenced by the noise embedded in the data
and, most of all, that it is able to exploit the subtle differ-
ence between normal and tumor specimens hidden in the
less informative genes. Moreover, the results described
above show that several cell products are altered in colon
cancer and that an accurate classification is possible only
by taking into account the expression levels of thousands
of genes simultaneously.

Frequency analysis of the genes selected
In order to analyze the frequency of appearance fj of the
gene j = 1, 2,..., d in the lists of the genes g selected in the
cross validation procedure, s1 = 100 random drawings of n
= 35 examples from the data set S were carried out; for
each drawing, the genes were sorted according to the value
of the statistic (2). The frequency fj was evaluated by
counting the presence of the gene j in the top g = 2048
positions (the first 1024 and the last 1024) in the lists of
the sorted genes. Figure 4a) depicts the frequencies of all
the genes available. It can be seen that more than half of
the genes do not appear in the top g positions of the list.
Moreover, 1078 genes were found (467 more highly
expressed in normal specimens and 611 in tumor ones) to
have a frequency greater than 80% (see figure 4b) and,
among these, 516 had a frequency of 100%. Aiming to
assess the statistical significance of these frequencies, we
performed s2 = 100 random permutations of the labels of
the n examples in each random drawing. Figure 4c)
depicts the number of genes with fj ≥ 80% of which having
a given p-value. Thanks to this analysis, 647 statistically
significant genes (p < 0.05) were found.

Biological analysis
Among the statistically significant genes, 92 genes differ-
entially expressed between normal tissue and matched
tumour tissue, are reported in tables 3 and 4. Most genes

Table 2: Error rate e and p-value p of classifiers trained with a 
fixed number of examples and a different number of genes.

WVA RLS SVM

g e p e p e p

22283 21% 0.045 14% 0.027 11% 0.019
16384 20% 0.065 14% 0.021 11% 0.025
8192 18% 0.073 14% 0.034 14% 0.039
4096 16% 0.116 14% 0.021 14% 0.039
2048 15% 0.168 14% 0.034 14% 0.033
1024 14% 0.216 13% 0.024 13% 0.040
512 13% 0.118 13% 0.028 14% 0.033
256 13% 0.127 13% 0.040 14% 0.025
128 13% 0.139 13% 0.036 14% 0.013
64 13% 0.142 13% 0.036 14% 0.022
32 13% 0.131 13% 0.022 14% 0.031
16 14% 0.242 13% 0.030 14% 0.040
8 15% 0.202 14% 0.029 14% 0.041
4 16% 0.165 14% 0.041 16% 0.031
2 19% 0.213 16% 0.046 16% 0.041

Estimated statistical significance for different training set sizes using WVA, RLS and SVM classifiersFigure 2
Estimated statistical significance for different training set sizes 
using WVA, RLS and SVM classifiers.

10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

Training set size

p−
va

lu
e 

(lo
g−

sc
al

e)

RLS
SVM
WVA
Page 7 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:387 http://www.biomedcentral.com/1471-2105/7/387
have been already shown to be involved in colorectal tum-
origenesis. A brief description of 45 genes up- and 47
genes down-regulated in tumour tissue, which could be
used as diagnostic biomarkers or targets for therapy, is
reported. At least 31 genes of cell cycle have been shown
to be up-regulated in our colon cancer specimens. The
mitotic checkpoint is an important signalling cascade that
arrests the cell cycle in mitosis when even a single chro-
mosome is not properly attached to the mitotic spindle
[20]. It has been postulated that defects in the levels of
mitotic checkpoint proteins could be responsible for
mitotic checkpoint impairment and aneuploidy with dis-
ruption of genomic integrity. However, until now, no
functionally significant sequence variations of mitotic
checkpoint genes has been detected in colorectal cancer

[21]. Conversely, we found that 6 genes involved in the
mitotic spindle checkpoint (TTK, BUB1, BUB3, CDC20,
MAD2L1, and BUB1B) are overexpressed in colon cancer
specimens. Very recently, an increased expression of
mitotic spindle checkpoint transcripts has been reported
in breast cancers with chromosomal instability [22] sug-
gesting that mitotic checkpoint impairment in human
tumor cells (and chromosomal instability) could be due
to increased levels of mitotic checkpoint proteins rather
than mutations in checkpoint genes. In tumour, these
changes could occur through altered transcriptional regu-
lation by tumour suppressors or oncogene products.
Drugs that specifically and efficiently interfere with
mitotic checkpoint signalling could therefore be useful as
anticancer agents. Another process which is deeply disor-
ganized in cancer is cell growth with several cellular proc-
esses and mechanisms that control cell cycle progression
deregulated. In non neoplastic cells, these events are
highly conserved due to the existence of conservatory
mechanisms and molecules such as cell cycle genes and
their products: cyclins, cyclin dependent kinases, Cdk
inhibitors (CKI) and extra cellular factors (i.e. growth fac-
tors). At least 25 genes of cell cycle progression have been
shown to be up-regulated in our colon cancer specimens.
They include CDC2, the universal inducer of mitosis, cyc-
lin B and CDC25, which interact with the CDC2 to regu-
late both G1/S and G2/M transitions (checkpoints) of the
cell cycle, and the MCM genes which are required for the
entry in S phase and for genome duplication.

Four up-regulated genes involved in the cell cycle progres-
sion are of particular interest in colon tumorigenesis:
CKS1, CKS2, SKP2, and FOXM1. Both CKS1 and SKP2 are
involved in regulation of G1/S transition and in degrada-
tion of CDKN1B (p27) a putative gene suppressor. Color-
ectal tumours with high levels of CKS1 and SKP2
generally exhibit a more aggressive behaviour and are
associated with low levels of CDKN1B (p27) and loss of
tumor differentiation [23]. Moreover, CKS2 is expressed
at significantly higher levels in colorectal tumors with
liver metastasis [24]. Apart from their prognostic signifi-
cance, these genes could also represent optimal targets for
gene therapy. Recently, the effect of transfection of Cks1-
specific small interfering RNA (siRNA) in human Cks1-
overexpressing H358 lung cancer cell lines has been
tested: Cks1 siRNA down-regulated Cdc2 kinase activity
and induced G2/M arrest. Long-term treatment of Cks1
siRNA induced caspase activation and apoptosis [25]. The
FOXM1 gene is critical for G1/S transition and essential
for transcription of cell cycle genes such as SKP2 and CKS1
[26]. Other 7 up-regulated genes involved in cell mitosis
are STK15, SRPK1 and TOP2A, and SMC4L1, CNAP1,
HCAP-G, and KIF4A. All of them have been found overex-
pressed in some cancer lines and some tumour cells and
may represent both prognostic indicators and molecular

Number of genes more highly expressed in a) normal and b) tumor tissues determined in the actual data set (observed curve) and in data sets with randomly permuted class labels (1% and 5% curves) for different values of the TS2N statisticsFigure 3
Number of genes more highly expressed in a) normal and b) 
tumor tissues determined in the actual data set (observed 
curve) and in data sets with randomly permuted class labels 
(1% and 5% curves) for different values of the TS2N statistics.
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target for anticancer drugs. STK15 is a critical centrosome-
associated kinase-encoding gene overexpressed in multi-
ple human tumour cell types which is involved in the
induction of centrosome duplication-distribution abnor-
malities, chromosomal instability, and aneuploidy in
mammalian cells [27]. It could represent an optimal tar-
get for chemotherapy. SRPK1 and TOP2A are part of a
multisubunit complex, named toposome, containing
ATPase/helicase proteins (RNA helicase A and RHII/Gu),
HMG protein (SSRP1), and pre-mRNA splicing factors
(PRP8 and hnRNP C) which is involved in separating
entangled circular chromatin DNA during chromosome
segregation. In particular, SRPK1 plays a central role in the
pre-mRNA splicing, a critical step in the posttranscrip-
tional regulation of gene expression. Aberrant patterns of
pre-mRNA splicing have been established for many
human malignancies. Recently, it has been shown that
SRPK1 is overexpressed in tumors of the pancreas, breast,
and colon and siRNA-mediated down-regulation of
SRPK1 in tumour cell lines results in a dose-dependent
decrease in proliferative capacity and increase in apoptotic
potential [28]. These findings support SRPK1 as a new,
potential target for the treatment of cancer.

Finally, SMC4L1, CNAP1, and HCAP-G are components
of the condensin complex, which also contains other four
subunits: SMC2L1, BRRN1, CAPH, and CAPD2 [29].
KIF4A is proposed to be a motor protein carrying DNA as
cargo in condensed chromosomes throughout mitosis
interacting with condensin complex [30]. The condensin
complex is required for conversion of interphase chroma-
tin into mitotic-like condense chromosomes. Interest-
ingly, CDC2, the universal inducer of mitosis,
phosphorylates HCAP-G, CNAP1, and BRRN1, thus acti-
vating the condensin complex and chromosome conden-
sation. Among the up-regulated genes in colorectal cancer,
we found 14 genes involved in signal transduction
(TDGF1 and ENC1), transcription (SOX9, MYC, and
HGFR/MET), nuclear transport (NUP62, NUPL1,
NUP155, KPNA2, RANBP5, CSE1L/CAS, NTF2, and
RANBP1) and cellular transport (SLCO4A1). TDGF1, a
growth factor with an EGF-like domain, is over-expressed
in breast, cervical, ovarian, gastric, lung, colon, and pan-
creatic carcinomas in contrast to normal tissues where
TDGF1 expression is invariably low or absent. TDGF1 is
released or shed from expressing cells and may serve as an
accessible marker gene in the early to mid-progressive
stages of breast and other cancers [31]. ENC1 is another
transduction gene probably involved in differentiation of
epithelial cells as well as in cell proliferation. ENC1 is reg-
ulated by the beta-catenin/Tcf pathway and up-regulated
in colorectal cancer where it may suppress differentiation
of colonic cells [32]. SOX9 is a transcription factor and
seems to be expressed throughout the intestinal epithe-
lium under the control of the Wnt-pathway. Its function

Frequency analysis of the genes selectedFigure 4
Frequency analysis of the genes selected. a) Frequencies of all 
the genes in the top g = 2048 positions in the sorted gene 
list. The frequencies of the highly expressed genes in normal 
and tumor specimens are indicated with HN and HT respec-
tively. b) Number of genes with frequency ≥ 80% and c) the 
number of genes with a given p-value.
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may be to maintain healthy and tumor epithelial cells in
undifferentiated state [33]. MYC and HGFR/MET are two
well-known oncogenes which activate the transcription of
growth-related genes. Overexpression of MYC and HGFR/
MET is implicated in the aetiology of a variety of tumours
and would serve as an important therapeutic target. Eight

genes involved in nucleocytoplasmic transport were up-
regulated in colon cancer. Nuclear-cytoplasmic transport,
which occurs through special structures called nuclear
pores, is an important aspect of normal cell function, and
defects in this process have been detected in many differ-
ent types of cancer cells.

Table 3: 45 genes up-regulated in tumoral tissue, comparing normal mucosa to matched tumor colon tissue.

Function Gene OMIM Accession no. p-value Gene description

Cell cycle: mitosis (spindle 
checkpoint)

TTK 604092 NM_003318.1 0.029 Threonine-tyrosine kinase

BUB1 602452 AF043294.2 0.035 Budding uninhibited by benzimidazoles 1 homolog (yeast)
BUB3 603719 NM_004725.1 0.037 Budding uninhibited by benzimidazoles 3 homolog (yeast)
CDC20 603618 NM_001255.1 0.044 Cell division cycle 20
MAD2L1 602686 NM_002358.2 0.049 MAD2 (mitotic arrest deficient, yeast, homolog) like-1
BUB1B 602860 NM_001211.2 0.050 Budding uninhibited by benzimidazoles 1 homolog beta (yeast)

Cell cycle: G0/G1 
transition

INSIG1 602055 NM_005542.1 0.039 Insulin induced gene 1 (cell division cycle, G0 to G1)

Cell cycle: mitosis (G1/S 
checkpoint)

CKS2 116901 NM_001827.1 0.047 CDC28 protein kinase regulatory subunit 2

CKS1B 116900 NM_001826.1 0.046 CDC28 protein kinase regulatory subunit 1B
SKP2 601436 BG105365 0.050 S-phase kinase-associated protein 2 (p45)
FOXM1 602341 NM_021953.1 0.045 Forkhead box M1
MCM4 602638 AA 604621 0.036 Minichromosome maintenance deficient (S. cerevisiae) 4
MCM3 602693 NM_002388.2 0.048 Minichromosome maintenance deficient (S. cerevisiae) 3
MCM7 600592 D55716.1 0.048 Minichromosome maintenance deficient 7 (S. cerevisiae)
MCM2 116945 NM_004526.1 0.049 Minichromosome maintenance deficient (S. cerevisiae) 2
MCM6 601806 NM_005915.2 0.050 Minichromosome maintenance deficient (S. pombe) 6

Cell cycle: mitosis (G1/S 
and G2/M checkpoints)

CRKRS M68520.1 0.039 Cdc2-related kinase, arginine/serine-rich

CDC2/CDK1 116940 NM_001786.1 0.044 Cell division cycle 2, G1 to S and G2 to M
CDC25A 116947 NM_001789.1 0.050 Cell division cycle 25A
CDC25B 116949 NM_021873.1 0.050 Cell division cycle 25B
CCNA2 123835 NM_001237.1 0.050 Cyclin A2

Cell cycle: mitosis (G2/M 
checkpoint)

CCNB1 123836 Hs.23960 0.047 Cyclin B1(cell division cycle, G2 to M)

CCNB2 602755 NM_004701.2 0.047 Cyclin B2 (cell division cycle, G2 to M)
NEK2 604043 NM_002497.1 0.037 NIMA (never in mitosis gene a)-related kinase 2

Cell cycle: mitosis STK15 602687 NM_003600.1 0.039 Serine/threonine kinase 6 (chr segregation)
SRPK1 601939 NM_003137.1 0.046 SFRS protein kinase 1 (chr segregation)
TOP2A 126430 NM_001067.1 0.050 Topoisomerase (DNA) II alpha (170 kD) (chr segregation)
KIF4A 300521 NM_012310.2 0.035 Kinesin family member 4A (spindle formation/chr condensation)
CNAP1 609689 NM.014865 0.046 Chromosome condensation-related SMC-associated protein 1
SMC4L1 NM_005496.1 0.048 SMC4 structural maintenance of chromosomes 4-like 1 (yeast)
HCAP-G 606280 NM_022346.1 0.042 Chromosome condensation protein G (chr condensation)

Signal transduction TDGF1 187395 NM_003212.1 0.048 Teratocarcinoma-derived growth factor 1 (EGF signaling)
ENC1 605173 NM_003633.1 0.048 Pig 10, ectodermal-neural cortex (WNT//beta-catenin pathway)

Transcription SOX9 608160 NM_000346.1 0.045 Sex determining region Y-box 9
MYC 190080 NM_002467.1 0.047 V-myc avian myelocytomatosis viral oncogene homolog
HGFR/MET 164860 NM_002467.1 0.047 Met proto-oncogene

Transport: intracellular NUP62 605815 NM_012346.1 0.039 Nucleoporin 62 kD
NUPL1 607615 NM_007342.1 0.050 Nucleoporin-like 1
NUP155 606694 NM_004298.1 0.045 Nucleoporin 155 kD (NUP155)
KPNA2 600685 NM_002266.1 0.045 Karyopherin alpha 2 (RAG cohort 1, importin alpha 1)
RANBP5 602008 NM_002271.1 0.050 RAN binding protein 5 or karyopherin (importin) beta 3
CSE1L/CAS 601342 NM_001316 0.050 CSE1 chromosome segregation 1-like (yeast)
NXT1 605811 NM_005796.1 0.050 Nuclear transport factor 2 (NTF2)
RANBP1 601180 NM_002882.2 0.048 RAN binding protein 1

Transport SLCO4A1 605495 NM_016354.1 0.048 Solute carrier family 21 (organic anion transporter)
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Overproduction of nuclear transport factors such as
KPNA2, RANBP5, NTF2, and CSE1L/CAS may disrupt the
nuclear import and export machinery leading to loss of
nuclear transport of several proliferation activating pro-
teins, transcription factors, oncogene and tumour sup-
pressor gene products and, finally, to cell transformation
[34]. One up-regulated gene with transport function has
been detected: SLCO4A1/OATP1 belongs to a membrane
transport systems superfamily with multiple expression in

the liver, kidney, small intestine, and choroid plexus bar-
rier. It acts as a mediator in the sodium-independent
transmembrane solute transport and has a strategic posi-
tion for absorption, distribution and excretion of xenobi-
otic substances [35]. At least 3 genes involved in apoptosis
have been shown to be down-regulated in our colon can-
cer specimens. FAS and CASP7 are involved in the activa-
tion cascade of caspases responsible for apoptosis. Both
could be involved in tumour progression and poorer

Table 4: 47 genes down-regulated in tumoral tissue, comparing normal mucosa to matched tumor colon tissue.

Function Gene OMIM Accession no. p-value Gene description

Apoptosis PDCD4 608610 NM_014456.1 0.032 Programmed cell death 4 (neoplastic transformation inhibitor)
FAS 604306 NM_000043.1 0.044 Fas (TNF receptor superfamily, member 6)
CASP7 601761 NM_001227.1 0.050 Caspase 7, apoptosis-related cysteine protease

Transport SLC30A10 NM_018713.1 0.036 Solute carrier family 30, member 10 (zinc transport?)
SLC9A2 600530 AF073299.1 0.041 Solute carrier family 9 (sodium/hydrogen exchanger), member 2
SLC4A4 603345 AF069510.1 0.041 Solute carrier family 4, sodium bicarbonate cotransporter, member 4
SLC26A3 126650 NM_000111.1 0.044 Solute carrier family 26, member 3
SLC26A2 606718 AI025519 0.044 Solute carrier family 26 (sulfate transporter), member 2
SGK2 607589 NM_016276.1 0.038 Serum glucocorticoid regul. kinase 2 (potassium channel activation)
KIF5C 604593 NM_004522.1 0.040 Kinesin family member 5C (intracellu-lar transport)
KIF13B 607350 NM_015254.1 0.046 Kinesin family member 13B (intracel-lular transport)
VAPA 605703 AF154847.1 0.047 VAMP (vesicle-associated membrane protein)-assoc. protein A,33 kDa

Signalling MAP2K4 601335 NM_022129.1 0.033 Mitogen-activated protein kinase kinase 4 (MAPK signaling pathway)
RPS6KA5 603608 AF074393.1 0.040 Ribos. prot. S6 kinase, 90 kDa, polyp. 5(MAPK signalling pathway)
MEF2C 600662 L08895.1 0.033 MADS box transcr. enhancer factor 2, (MAPK signalling pathway)
PPP2R3A 604944 NM_002718.1 0.037 Protein phosphatase 2, regulatory sub-unit B, alpha (Wnt signalling)
PDE9A 602973 NM_002606.1 0.040 Phosphodiesterase 9A (signal transduc-tion)
PPAP2A 607124 AF014403.1 0.042 Phosphatidic acid phosphatase type 2A (signal transduction)
MUC4 158372 AJ242547.1 0.044 Mucin 4 (Erb2 signalling pathway)
DSCR1 602917 AL049369.1 0.045 Down syndrome critical region gene 1 (signal transduction)
SHOC2 602775 NM_007373.1 0.046 Soc-2 suppressor of clear homolog (MAPK signaling pathway)
SOCS2 605117 NM_003877.1 0.049 Suppressor of cytokine signaling 2 (GH/IGF1 signaling pathway)
SMAD2 601366 NM_005901.1 0.049 SMAD, homolog 2 (Drosophila) (TGF-beta_signaling)

Cell-surface signalling TSPAN7 300096 NM_004615.1 0.036 Tetraspanin 7
EDG2 602282 NM_001401.1 0.041 Lysophosphatidic acid G-protein-coupled receptor, 2
TMPRSS2 602060 AF270487.1 0.046 Transmembrane protease, serine 2
CEACAM7 NM_006890.1 0.047 Carcinoembryonic antigen-related cell adhesion molecule 7

Cell adhesion DSC2 125645 NM_004949.1 0.045 Desmocollin 2
Cell differentiation NDRG2 605272 NM_016250.1 0.038 NDRG family member 2

EPB41L3 605331 NM_012307.1 0.044 Erythrocyte membrane protein band 4.1-like 3 (suppressor gene?)
MTUS1 609589 NM_024307.1 0.045 Mitochondrial tumor suppressor 1

Metabolism HMGCL 246450 NM_000191.1 0.040 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase
UGDH 603370 NM_003359.1 0.041 UDP-glucose dehydrogenase
CA12 603263 NM_001218.2 0.044 Carbonic anhydrase XII
CA2 259730 NM_000067.1 0.049 Carbonic anhydrase II
CA4 114760 NM_000717.2 0.050 Carbonic anhydrase IV
CA1 114800 NM_001738.1 0.050 Carbonic anhydrase I
CA7 114770 NM_005182.1 0.050 Carbonic anhydrase VII
HPGD 601688 U63296.1 0.046 Hydroxyprostaglandin dehydrogenase 15-(NAD)
FUCA1 230000 NM_000147.1 0.047 Fucosidase, alpha-L-1, tissue
ACAT1 607809 NM_000019.1 0.048 Acetyl-Coenzyme A acetyltransferase 1
ADH1C 103730 NM_000669.2 0.048 Alcohol dehydrogenase3 (class I), gamma polypeptide
AQP8 603750 NM_001169.1 0.050 Aquaporin 8

Cell growth FAM107A 608295 NM_007177.1 0.040 Family with sequence similarity 107, member A (TU3A)
EMP1 602333 NM_001423.1 0.047 Epithelial membrane protein 1 (growth arrest)
BTG1 109580 NM_00173 1.1 0.050 B-cell translocation gene 1, anti-proliferative
KLF4 602253 NM_004235.1 0.050 Kruppel-like factor 4 (gut)
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prognosis as shown in urothelial cancer [36]. PDCD4 is a
well known tumour suppressor gene involved in apopto-
sis and inhibition of protein translation. Loss of PDCD4
is associated with tumour progression and prognosis [37]
while overexpression of PDCD4 in human colon carci-
noma cells is able to suppress tumour progression by
inhibiting c-Jun and AP-1 pathways [38]. These findings
implicate a potential value of PDCD4 as a molecular tar-
get in cancer therapy. Molecular transport and cell metab-
olism are strongly impaired in cancer cells. Consequently
it is not surprising that microarray analysis revealed
down-regulation of several genes coding for proteins of
transport and metabolism. Loss of carriers profoundly
affects the intracellular concentration of solutes such as
sodium, potassium, hydrogen, and bicarbonate which are
involved in several metabolic pathways. Loss of enzymes
which control the most important metabolic pathways
have a negative influence on cell physiology and, most
importantly, might render cancer cell less sensitive or
resistant to anticancer drugs.

Of relevance is the down-regulation of most carbonic
anhydrases which control pH homeostasis and modulate
the behaviour of cancer cells. In our specimens, several
isozymes of carbonic anhydrases (I, II, IV, VII, and XII)
were down-regulated implying a pathogenic role in cancer
development or progression. Several genes coding for pro-
teins involved in intracellular and cell surface signalling
pathways were down-regulated in colon cancer. In our
analysis, down-regulation of genes such as MAP2K4,
RPS6KA5, MEF2C, SHOC2 produces a serious impair-
ment of the MAPK signalling cascade involved in cell
growth and differentiation. Similarly, other down-regu-
lated genes such as PPP2R3A, MUC4, SOCS2 and SMAD2
may contribute to impair Wnt, Erb2, GH, and TGF-beta
pathways involved in several cellular processes. NDRG2,
EPB41L3, MTUS1 are three down-regulated genes impli-
cated in cell differentiation. They represent three candi-
date tumour suppressor genes and are often inactivated in
tumours [39,41]. Their relevance in colon cancer progres-
sion and prognosis is still to be determined. Other three
down-regulated genes implicated in negative control of
cell growth have been identified by microarray analysis:
FAM107A (TU3A), BTG1, and KLF4. TU3A has been
found also down regulated in renal cancer cells [42]: even
if its molecular function is unknown, it could represent a
novel suppressor gene. BTG1 is an antiproliferative pro-
tein involved in apoptosis. Its role in colonic carcinogen-
esis is still to be elucidated. Finally, KLF4, an inhibitor of
the cell cycle, has been recently found down-regulated in
colonic [43] and gastric cancer. Loss of expression of KLF4
is associated with cancer progression [44].

Discussion and conclusions
The present paper describes a general methodology for the
assessment of the statistical significance of prediction
rules trained to classify DNA microarray data. The
method, which can be considered a natural extension of
the ones proposed in [12,13], provides statistically signif-
icant answers to precise questions relevant to the diagno-
sis and prognosis of cancer. The method has been applied
to a new DNA microarray data set collected in Casa Sol-
lievo della Sofferenza Hospital, Foggia – Italy, relative to
patients affected by colon cancer. We have found that it is
possible to train statistically significant classifiers for
colon cancer diagnosis with as few as 15 examples. This
result agrees with the one described in [12] and it bears
out the empirical observation that tumor morphological
distinctions (including disease versus normal classifica-
tion) are, in general, easier to deal with than those con-
cerning the treatment outcome prediction. In our case, the
best classification performance was achieved by training
an SVM classifier with 35 examples, which produced an
error rate of e = 11% (p = 0.019). This shows that the size
of our data set is sufficient to build statistically significant
classifiers for colon cancer diagnosis.

Concerning the problem of determining a sufficient
number of genes to be used for an accurate classification
of colon cancer, our results suggest that it depends on the
accuracy required. In fact, the error rate ranges between e
= 11% (p = 0.025), obtained training SVM classifiers with
g = 16384 genes, and e = 16% (p < 0.05) obtained training
RLS or SVM classifiers with only g = 2 genes. This result
indicates that a remarkable number of genes are altered in
the pathology and that a lot of them convey useful infor-
mation for the classification of new specimens. In order to
verify such a result, the following experiment was carried
out. We trained an SVM classifier with 35 examples each
of which composed of 64 genes randomly drawn from the
set of all the genes available, thus obtaining an error rate
of e = 23% (p = 0.038). This value, although higher than
the one obtained by using gene lists ranked with the TS2N
statistic (see table 2), indicates that many different sets of
64 genes can be used to build accurate classifiers. The
behavior of e as a function of g is consistent and has been
pointed out by other authors. For example, [45] finds a
decreasing behavior of the error rate w.r.t. g by analyzing
three microarray data sets, with different gene selection
criteria. In conclusion, our results indicate that a highly
accurate and statistically significant classification of colon
specimens is possible even when a small number of genes
is employed.

Some conclusions can be drawn concerning the classifica-
tion models involved in our analysis. WVA classifiers
show poor generalization ability and they are greatly
influenced by the noise embedded in the microarray data.
Page 12 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:387 http://www.biomedcentral.com/1471-2105/7/387
They rarely provide statistically significant classification
performances and, for these reasons, they should not be
used as predictors of DNA microarray data. On the con-
trary, RLS classifiers performances are comparable to
those of SVM classifiers, the state-of-the-art supervised
learning machines in many application domains, includ-
ing cancer classification by DNA microarray data [5]. The
main advantage of RLS machines in solving a classifica-
tion problem lies in their employment of a linear system
of order equal to either the number of genes or the
number of training examples. This property is extremely
important and reduces the computational cost of the per-
mutation test because, for a fixed random split of the data,
the coefficients of random classifiers are obtained by mul-
tiplying a constant matrix with vectors of randomly per-
muted labels [16]. Moreover, RLS machines allow us to
get an exact measure of the LOO error with just one train-
ing. For all these reasons and because of their simplicity
and low computational complexity, RLS classifiers pro-
vide a valuable alternative to SVM classifiers with regard to
the problem of cancer classification by gene expression
data. Moreover, RLS classifiers show generalization abili-
ties comparable to the ones of SVM classifiers even when
the classification of new specimens involves very few gene
expression levels. The last consideration concerns the way
in which these two classification schemes represent the
solution. SVM tends to give sparse solutions in terms of
number of training examples and RLS tends to give sparse
solutions in terms of number of features used for classify-
ing.

Colorectal cancer is the third most common cancer in
men and women and accounts for 11% of all cancer
deaths. Whereas the 5-year survival rate is extremely favo-
rable when detected at a localized stage (90%), most
colorectal cancers are either locally or distantly invasive at
diagnosis, limiting treatment options and lowering sur-
vival rates. Clearly, a more comprehensive view of the
molecular events associated with colorectal tumorigenesis
is needed to identify tumours earlier and to treat colorec-
tal tumours more effectively. Microarray technology has
the potential to detect tumour-specific genes which can be
used as biomarkers for early diagnosis and specific treat-
ments. Potential uses of this technology include determin-
ing who will benefit from chemotherapy, further
classifying patients into responders and nonresponders,
predicting apoptotic response, developing classifiers to
recognize chemosensitive tumors, identifying genes that
portend a poor prognosis, revealing genes associated with
metastases, predicting the outcome according to clinical
stage, and avoiding surgery in patients who would not
benefit from resection.

In this study, by means of specific statistical methods, we
have found several genes up- and down-regulated in

colon cancer which could be used as diagnostic biomark-
ers or therapeutic targets. Among the up-regulated genes,
the most representative are those implicated in mitotic
checkpoint signalling cascade and those controlling cell
cycle progression. Inhibition of overexpressed genes is
potentially useful to control cancer growth. Among the
down-regulated genes, the most interesting for their
potential therapeutic implication are those of apoptosis,
intracellular and cell surface signalling, and cell arrest.
Reactivation of their function could be useful to suppress
cancer development or progression. A few of these up-
and down-regulated genes have not been described in
colon cancer yet. Further studies focused on these genes
and related transcripts are necessary to better elucidate
their pathogenic role in colon cancer disease and their
clinical relevance in diagnostics and therapeutics.
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