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Abstract

Background: The diverse functions of ncRNAs critically depend on their structures. Mutations in
ncRNAs disrupting the structures of functional sites are expected to be deleterious. RNA
deleterious mutations have attracted wide attentions because some of them in cells result in
serious disease, and some others in microbes influence their fitness.

Results: The RDMAS web server we describe here is an online tool for evaluating structural
deleteriousness of single nucleotide mutation in RNA genes. Several structure comparison
methods have been integrated; sub-optimal structures predicted can be optionally involved to
mitigate the uncertainty of secondary structure prediction. With a user-friendly interface, the web
application is easy to use. Intuitive illustrations are provided along with the original computational
results to facilitate quick analysis.

Conclusion: RDMAS can be used to explore the structure alterations which cause mutations
pathogenic, and to predict deleterious mutations which may help to determine the functionally
critical regions. RDMAS is freely accessed via http://biosrv|.bmi.ac.cn/rdmas.

Background

In addition to its central role in information transfer from
DNA to protein, RNA performs a remarkable range of
functions [1]. Large numbers of noncoding RNA (ncRNA)
transcripts are being revealed [2]. Exploring the role and
diversity of these numerous ncRNAs now constitutes a
main challenge in life science [3]. In a broad sense, the list
of functional ncRNAs also includes functional motifs
within protein-coding genes, located mostly in the non-
translated 5' or 3' regions of messenger RNAs.

Mutations in RNA genes may lead to striking alterations in
RNA structures that impair functions, resulting in dis-
eases. Mutations in some RNA regulators have been
reported to be associated with neuropsychiatric disorders
[4]. Mutations of tRNAs in mitochondria are reported to
harbor more than half of all known mitochondrial patho-
genic mutations [5]. Some recent researches also show
that mutations in microRNA (miRNA) genes and its flank-
ing sequences may contribute to cancer [6-8].

On the other hand, RNA deleterious mutations could be

"beneficial" in some situation. The distribution of the rec-
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ognized ribosomal functional sites and the antibiotic
action sites has been found to be clearly correlated with
the location of the known deleterious mutations in bacte-
rial rRNAs. Therefore, deleterious mutations in rRNAs can
serve as hallmarks of both functionally important ribos-
omal centers and antibiotic sites [9]. In their study on
influenza viruses, Herlocher et al. found a nonsense muta-
tion on PB2 segment which causes much difference in the
secondary structure responsible for cold adaptation [10],
that implies that viruses with similar deleterious muta-
tions have potential for live vaccines.

In principle, a RNA mutation could be deleterious
because it disrupts a functional site involved in catalysis,
ligand-binding, or interaction with proteins. Since the
functions of the ncRNAs critically depend on their specific
structures, nucleotide alterations which result in structure
change are expected to be deleterious. From this point of
view, structure analysis should help to identify deleterious
mutations. Some structure based method for RNA delete-
rious mutation analysis have been presented [11,12],
which are applicable when few homologs are available. A
user friendly Java application named RNAmute for RNA
deleterious mutation analysis has also been reported
[13,14].

The RDMAS we describe here is a noncommercial web
application for RNA deleterious mutation analysis. Sev-
eral secondary structure comparison methods have been
implemented in RDMAS to evaluate structure deleterious-
ness of single nucleotide substitution in RNA molecules.

Implementation

Structural dissimilarity metric

There are 3 x N possible single point mutations for a RNA
molecule with N nucleotides. The deleteriousness of these
mutations is analyzed in RDMAS on the basis of structure
difference. The dissimilarity of secondary structures

http://www.biomedcentral.com/1471-2105/7/404

between wild-type and mutant, D(R, R"), is used to pre-
dict the deleteriousness of mutations. Four types of metric
are employed, which are:

(i) Difference between free energy of RNA secondary
structures, i.e.D(R, R™) = |E(R) - E(R")|, where E(-) is the
free energy computation function.

(ii) Edit distance between tree or their string representa-
tions of RNA secondary structures, i.e.D(R, R*) = ED(R,
R"), where ED(-) represents the edit distance computa-
tion functions. The structure comparisons are imple-
mented using Vienna RNA package [15,16] based on four
different tree representations, including full, homeomor-
phically irreducible tree (HIT), coarse grained and
weighted coarse representation.

(iii) Difference between topological indices of RNA struc-
tures, i.e. D(R, R") = |I(R) - I(R")|, where I(-) represents
the topological index computation functions. Several top-
ological indices defined on the RNA tree graph represen-
tation has been presented [12,17-20]. Suggested by Merris
and tested by Barash's group, the Wiener index which has
been widely used in computational biochemistry has also
been introduced into RNA graph [21,22] recently. There is
an interesting relation [23] between the Wiener number
and the Laplacian spectrum of tree graph used in RNAM-
ute. We have also proposed and employed novel topolog-
ical descriptors defined on Shapiro's coarse grained and
weighted coarse grained RNA tree [24] to characterize
RNA structures (details will be published elsewhere). The
topological indices used in RDMAS are listed in Table 1.
Detailed descriptions can be found in the online manual
of the web server (Figure 1C).

(iv) Base pair distance between dot-bracket representa-
tions of RNA structures, i.e. D(R, R") = BP(R, R"), where

Table I: Topological indices used to measure the structural difference between RNAs in RDMAS.

Topological index Description
Ar Second eigenvalue of Laplacian matrix of Shapiro's coarse grained RNA tree
W Second eigenvalue of Laplacian matrix of Shapiro's weighted coarse grained RNA tree
Oy Zero-order Randi index defined on Shapiro's coarse grained RNA tree
ly First-order Randiz index defined on Shapiro's coarse grained RNA tree
2y Second-order Randiz index defined on Shapiro's coarse grained RNA tree
0w Zero-order Randiz index defined on Shapiro's weighted coarse grained RNA tree
Lypw First-order Randiz index defined on Shapiro's weighted coarse grained RNA tree
29w Second-order Randiz index defined on Shapiro's weighted coarse grained RNA tree
w Wiener index defined on Shapiro's coarse grained RNA tree
Ww Wiener index defined on Shapiro's weighted coarse grained RNA tree
J Balaban index defined on Shapiro's coarse grained RNA tree
v Balaban index defined on Shapiro's weighted coarse grained RNA tree
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Web interface of RDMAS. (A) Input page. (B) Output page. (C) Online manual.

BP(-) represents the base pair distance computation func-
tion.

The secondary structure prediction in RDMAS is imple-
mented using RNAfold and RNAsubopt [25] from the
Vienna RNA package [15,16]. The former is a variation of
the Zuker and Stiegler [26,27] minimum free energy prob-
lem that extends McCaskill's algorithm [28] and com-
putes the complete density of states of an RNA sequence
at predefined energy resolution, while the latter is for the
calculation of all suboptimal structures within a user

defined energy range above the MFE. In order to mitigate
the uncertainty of the MFE structure, suboptimal struc-
tures of mutants within 1 kcal/mol (the default setting of
RNAsubopt) above the minimum free energy (MFE) are
considered. Three methods are used to estimate the differ-
ence between the structures of the wild-type and possible
structure set of the mutant " = { Ry, R;,..., R;, }, where
R’ represents the i th predicted structure of the mutant.

The two extreme values, D'(R, I'") = max{D(R,Ri*)} and
1
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D'(R, T7) = mjax{D(R,Rf )} are taken for the most opti-
1

mistic and the most pessimistic estimation, respectively.
The synthetic estimation is given by summing the contri-
bution of all structures weighted by their Boltzmann
probabilities, which is similar to the methods used in
some research [29]. In this case, the deleteriousness is

n n
given by D'(RT")=> w; -D(RR])/ D w;, where
i=1 i=1

w; = exp{ —[E(R}) — E(Riyypp) /KT }

Input and options

With a step-by-step style input interface (Figure 1A), the
RDMAS web server is easy to use. The sequence of a RNA
molecule can be input either by pasting raw sequence or
by uploading sequence file in FASTA format. Multi-FASTA
(MFA) format sequence file is also supported to facilitate
users. The limit of sequence length is 200 bases for imme-
diate jobs and 2,000 bases for batch jobs, which meets the
need of ncRNA analysis in most cases. For batch jobs, a
valid email address is required. The analysis scheme is
designed to be custom-built for users. The algorithms for
computing structure difference and the methods for using
the sub-optimal structures can be selected by users.

Output

The intermediate result report page will be refreshed auto-
matically every 5 seconds after immediate jobs submis-
sion. The output page (Figure 1B) of an immediate job
can be seen within 1 minute. Served as an online interac-
tive analysis interface, all the output result can be viewed
as graphic representation or text list by selecting the con-
tent item and clicking the "view" button on the output
page. For batch jobs, a notification email containing a
URL linked to the output page will be sent to the user
when the job has been completed. The URL remains valid
for 48 hours.

To make the analysis results intuitive, the maximum dif-
ference in structures between the wild-type and the possi-
ble mutants at each position are extracted into a structural
deleteriousness profile and plotted as waveforms (Figure
2B). The structurally important sites can be easily revealed
by peaks with high structural deleteriousness on the pro-
file. The list of the structural deleteriousness values (Fig-
ure 2D) and the corresponding dot-bracket
representations of secondary structures (Figure 2E) can be
displayed as plain text on the output page.

The statistical distributions of the deleteriousness value
are calculated and illustrated as histograms (Figure 2C),
which may facilitate the analysis on RNA mutational
robustness.

http://www.biomedcentral.com/1471-2105/7/404

With a hyperlink located at the bottom of the output page
(Figure 1B), the output page offers download of the
results as a single packed file in ".gz" format for off-line
analysis. In addition to the structural deleteriousness pro-
file and deleteriousness distribution histogram (all in
"PNG" image format), the secondary structure illustration
of the wild-type and the mutants (all in PostScript format)
are also included in the result file. The result file name is
in the form "yymmddhhmmss.no", where "yy" is year,
"mm" is month, "dd" is day, "hh" is hour, mm is minute,
"ss" is second and "no" is serial number.

Results and discussion

Performance of the web server

To test the computational efficiency of RDMAS, 500 ran-
dom sequences (listed in Additional files) with 10 differ-
ent lengths were submitted. All types of structure distance
measurement are used in these tests. The CUP time of
these 500 tests is illustrated in Figure 3.

Case study

By using artificial mutants, some investigations have been
done on the sequence and structural requirements for
miRNA processing and functions [30-32]. These experi-
mental results have shown that the base-pairing at the
base of the precursor stem is critical for miRNA process-
ing, while the internal loops, terminal loops and bulges
are proved to be not essential.

To demonstrate how our web application can be helpful
to the analysis on deleterious mutations in ncRNAs, the
precursor of human miRNA miR-21 (pre-miR-21), a stem-
loop of 71 nt, has been analyzed using RDMAS. Figure 2B
is the structural deleteriousness profile of pre-miR-21
computed based on the tree edit distance of HIT represen-
tation. Figure 2C is the corresponding deleteriousness dis-
tribution histogram. The structures of the wild-type and
three mutants G5U, A17C and U38A are illustrated in Fig-
ure 2A. The structural deleteriousness of possible mutants
and the corresponding dot-bracket representations of the
structures are listed partly in Figure 2D and Figure 2E.

It is shown that most mutants in pre-miR-21 are not dele-
terious. The mutations opening the base of the precursor
stem lead to marked difference in RNA structure, while the
mutations in the terminal loop and bulge seem to be less
deleterious. These results are in good accord with the
main conclusions drawn in the aforementioned experi-
mental studies.

Future works

Although the suboptimal structures of the mutant can be
used in RDMAS, the structural distance measurement
using multiple predicted structures is still a challenge to
the present methods. Further research is needed to find
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A
D
poition wild type mutant stru. diff. mutant stru. diff. mutant stru. diff.
C U 17.16 A 17.161054 G 17.16
5 G U 13.16 C 13.161054 A 6.70
17 A G 7.36 C 7.362883 U 6.70
37 A U 6.70 C 6.703376 G 6. 70
38 U A 6.70 C 6.703376 G 6. 70
39 C A 6.70 U 6.703376 G 6.70
E
Wild type LCCCCCCCCCCACCCCCCLE =M - D))
Cau G LG mmMM M- )--))-
G5U G L CoammmmMEMMMMMN))--)-)))-
Al7G CCCCCCCCCCCLLCCCCCLEC=mMMMMMMMMN)-))-
Al7C CCCCCCCCCCLC L= mMMMMMN)- D))
U38A CCCCCCCCCCCAC L= IMMMMMMMMMNN) - D))-
Figure 2

Analysis result of microRNA miR-21 precursor. The computation is based on the weighted second-order Randiz index
2y defined on the stem-loop graph representation. (A) Structure illustrations of the wild-type and two mutants with great del-
eteriousness (G5U, Al7C and U38A). The mutated nucleotides are marked by red circles. (B) Structural deleteriousness pro-
file of pre-miR-21. (C) Deleteriousness distribution histogram of pre-miR-21. (D) Structural deleteriousness of some possible

mutants of pre-miR-21. (E) Secondary structures of some possible mutants of pre-miR-21.
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Figure 3
The CPU time of 10 groups of tests.

approaches to measure the structural distance taking sub-
optimal structures of both the wild-type and the mutant
into consideration at the same time.

On the basis of the criteria of conservation and compen-
satory co-evolution, Kondrashov presented a method
using multiple homologous sequences to predict patho-
genic mutations in mitochondria encoded human tRNAs
[33]. In some other mutation studies on ncRNAs, espe-
cially on viral and bacterial RNAs, enough amounts of
homologous sequences are also available. Our further
research will also focus on developing methods for RNA
deleterious mutation analysis using both homologic and
structural information.

Conclusion

Compared to single nucleotide mutation analysis in pro-
tein-coding gene, research on RNA mutation has been
insufficient, both bioinformatics algorithms and applica-
tions are needed. Like RNAmute [13], the RDMAS we
developed is a non-commercial software for RNA deleteri-
ous mutation analysis, and will be helpful both in the
researches on the structure-function relationship of
ncRNAs (such as functionally critical region identifica-
tion) and in the RNA-targeted drug design.

Awvailability and requirements
Project name: RDMAS

Project home page: http://biosrv1.bmi.ac.cn/rdmas
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License: GPL
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