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Abstract
Background: The goal of most microarray studies is either the identification of genes that are
most differentially expressed or the creation of a good classification rule. The disadvantage of the
former is that it ignores the importance of gene interactions; the disadvantage of the latter is that
it often does not provide a sufficient focus for further investigation because many genes may be
included by chance. Our strategy is to search for classification rules that perform well with few
genes and, if they are found, identify genes that occur relatively frequently under multiple random
validation (random splits into training and test samples).

Results: We analyzed data from four published studies related to cancer. For classification we used
a filter with a nearest centroid rule that is easy to implement and has been previously shown to
perform well. To comprehensively measure classification performance we used receiver operating
characteristic curves. In the three data sets with good classification performance, the classification
rules for 5 genes were only slightly worse than for 20 or 50 genes and somewhat better than for
1 gene. In two of these data sets, one or two genes had relatively high frequencies not noticeable
with rules involving 20 or 50 genes: desmin for classifying colon cancer versus normal tissue; and
zyxin and secretory granule proteoglycan genes for classifying two types of leukemia.

Conclusion: Using multiple random validation, investigators should look for classification rules
that perform well with few genes and select, for further study, genes with relatively high frequencies
of occurrence in these classification rules.

Background
An important goal of microarray studies with two classes
is to identify genes, for further investigation, that
"explain" much of the class differences. One common
approach is to look separately at genes that exhibit high
differential expression. The disadvantage of this approach
is that it ignores the role of gene combinations in leading
to good classification. Another approach is to investigate
classification rules for combinations of genes. While this

approach accounts for gene interactions, too often these
rules involve so many genes that it is difficult to determine
those genes that are not included simply by chance. Our
strategy is to look for classification rules that perform well
with few genes, so as to have a stronger "signal" to detect
genes that contribute most to good classification.

There are various approaches to developing classification
rules for microarrays and identifying genes for further
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investigation. Almost all approaches involve a split of the
data into training and test samples. In the training sample
a classification rule is developed, and in the test sample its
performance is determined. Two common measures of
performance are cross-validation [1] and multiple ran-
dom validation [2]. In k-fold cross-validation, the data are
divided into k subsets. On each iteration of the cross-vali-
dation a different collection of the k-1 subsets serve as the
training sample and the remaining subset serves as the test
sample. The performance of the classification rule is the
average performance in the k test samples [1]. In multiple
random validation, the data are randomly split into train-
ing and test samples many times. Unlike cross-validation,
the goal is not to average performance over test samples
but to investigate the variability of performance over test
samples and the frequencies of genes selected on random
splits [2].

There are also various approaches for formulating a classi-
fication rule in the training sample. One common
approach, called a filter, selects genes with the best indi-
vidual performances prior to formulation of the classifica-
tion rule. Another common approach, called a wrapper,
splits the training sample into a training-training sample
and a training-test sample and uses cross-validation within
the training sample to both select genes and formulate a
classification rule [3]. Unlike a filter, a wrapper can iden-
tify genes that perform poorly individually but well
together, but the price is likely increased variability in the
measure of performance due to a small training-test sam-
ple (although to our knowledge this has not been investi-
gated). Importantly, both approaches for gene selection
involve a threshold for the number of genes to include in
a classification rule. Without a threshold it is possible to
obtain excellent classification in the training sample (for
example categorizing gene expression levels and ranking
cross-classified cells by the ratio of true to false positives
[4]) that would likely do poorly in the test sample because
the classification rule has been overly tailored to the train-
ing sample. The threshold is either specified in advance or
determined by a performance criterion and typically
yields a moderate to large number of genes [2,5-8]

The identification of a moderate number of genes is theo-
retically desirable because the genes likely form a net-
work. However we are concerned that, despite the use of
refined approaches, it is more likely that with classifica-
tion rules involving a moderate number of genes rather
than a few genes, that some genes will be detected by
chance Therefore our goal was to identify classification
rules that perform well with the fewest genes, and so may
be more "robust" than rules with more genes. Importantly
with fewer genes in the classification rule, it is easier to
identify genes with relatively high frequencies in multiple
random validation. Such genes are most likely to repre-
sent a true "signal." The identification of a few genes that
contribute to good classification and are not likely
detected by chance allows investigators to better focus fur-
ther research efforts, perhaps leading to easier clinical
application, simpler dissemination of results, and possi-
bly improved scientific insights.

Although our general strategy could be applied to any of a
variety of microarray classification techniques, we chose a
simple approach. For classification we used a filter and the
nearest centroid rule, which is easy to implement and has
been previously shown to perform well [9]. To measure
performance in a comprehensive manner that captures
errors in assignments to both classes, we used receiver
operating characteristic (ROC) curves and the estimated
area under the ROC curve (AUC), which ranges from 1/2
for chance classification to 1 for perfect classification [10].
To characterize chance variability we used the previously
mentioned multiple random validation procedure that
involves repeated random splits of training and test sam-
ples [2].

We analyzed data from four published microarray studies
involving colon cancer [11], leukemia [12], medulloblas-
toma [13], and breast cancer [14]. See Table 1. Although
multiple random validation strategy had been used with
the colon cancer, medulloblastoma, and breast cancer
data sets, these analyses did not involve a comparison of
performances for few (less than 20) versus many genes.

Table 1: Description of studies

Data set Number of genes Number per class

Colon cancer [11] http://microarray.princeton.edu/oncology 2000 22 normal
40 tumor

Leukemia [12] http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 7219 47 acute lymphoblastic leukemia
45 acute myeloid leukemia

Medulloblastoma [13] http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 7129 39 survivors over two years
21 deaths over two years

Breast cancer [14] http://data.cgt.duke.edu/west.php 7129 25 estrogen receptor positive
24 estrogen receptor negative
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Results
The classification performance generally improved as the
number of genes in the classification rule increased from
1 to 5 to 20 to 50 with small decreases in improvement
likely due to chance. See Figure 1 and Table 2. Because the
classification for the medulloblastoma data was poor with
an estimated AUC not significantly better than chance
(Table 2), we only report in detail the results for the three
other data sets. For these data sets, the performance of the
classification rule was more similar between rules with 5,
20, and 50 genes than between rules with 1 and 5 genes,
particularly when considering the lower bound of the esti-
mated AUC. Results when the training sample split was
one half the data are given below. For the colon cancer
data set the estimated AUC (95% confidence interval) was
.77 (.55 to .99), .82 (.62 to .95), .84 (.66 to .95), and .85
(.69 to .95) with 1, 5, 20, and 50 genes respectively; for
leukemia data set it was .90 (.72 to 1), .95 (.84 to .99), .97

(.90 to .99), and .98 (.93 to 1) for 1, 5, 20, and 50 genes,
respectively; and for the breast cancer data set it was .81
(.58 to .99), .88 (.71 to .97), .91 (.75 to .99), and .92 (.76
to .99) for 1, 5, 20, and 50 genes, respectively. Similar
results were obtained with a four-fifths split into the train-
ing sample (Table 2).

For the three data sets in which the classification rule for
5 genes performed well, we investigated the classification
rule for 5 genes to determine if any genes had relatively
high frequencies of selection. Gene histograms are shown
in Figure 1. For the breast cancer data set, no gene had a
relatively high frequency. For the colon cancer data set,
the human desmin gene had a relatively high frequency
(57% versus the next four highest of 32%, 28%, 28% and
26% when training sample contained half the data and
97% versus the next highest of 52%, 50%, 49%, and 45%
when the training sample contained four-fifths of the

Smoothed ROC curves in test sample derived from multiple splitting of training and test samplesFigure 1
Smoothed ROC curves in test sample derived from multiple splitting of training and test samples. Graphs depict 40 randomly 
selected ROC curves out of 1000 splits. AUC is the mean area under the ROC curve from 1000 splits (95% confidence inter-
val). FPR is false positive rate (one minus specificity) and TPR is true positive rate (sensitivity).
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data). Human desmin is essential for maintaining the
structural integrity of skeletal muscle [15]. Desmin has
also been used in a study of colon cancer as a marker for
fat storing cells [16], and, in a study of colon polyps from
10 cases, all were negative for desmin [17].

For the leukemia data the zyxin gene had a high relative
frequency (82% versus the next four highest of 42%,
37%,30% and 20% when the training sample contained
half the data and 100% versus the next four highest of
82% (which we also discuss), 44%, 34%, and 31% when
the training sample contained four-fifths the data.) Zyxin
plays a pivotal role in mitosis [18]. After completing our
analysis, we found that other investigators of the same
data set identified zyxin has the most significant feature
for classification, discussed some possible biological
links, and recommended further investigation of the role
of zyxin in leukemia [19].

Secretory granule proteoglycan was the other gene with
high relative frequency in the leukemia data set when the
training sample contained four-fifths of the data. The pep-
tide core of a secretory granule proteoglycan, serglycin,
has been implicated in gene methylation of leukemia cells
[20]. Methylation is an important process in the regula-
tion of expression in many genes. Serglycin is also
involved in the formation of granules in neutrophil gran-
ulocytes [21]. Granules are important for distinguishing
the two classes of leukemias. Interestingly secretory gran-
ule proteoglycan was not listed among identified genes in
other classifications of these data [8,19].

Discussion
Other classification rules for the same data sets performed
similarly to ours [2,7,12]; however precise comparison of
misclassification rates is not meaningful due to differ-
ences in the validation procedures, particularly when
there was no random splitting of training and test sam-
ples. In terms of methodology for gene selection and clas-
sification, there are several related approaches: a filter
with multiple random validation of the entire sample [2],

a wrapper with multiple random validation of the entire
sample [7], and a wrapper with multiple random cross-
validation within the training sample and no independent
test sample [8] (so there is no clearly unbiased estimate of
classification performance). See Table 3. Our approach
can be viewed either as (i) a wrapper with multiple ran-
dom validation (instead of cross-validation) and a train-
ing-test sample instead of a test sample or (ii) a filter with
multiple random validation of the entire sample. These
related approaches computed either gene frequencies or a
relevancy measure [8] that can be viewed as a frequency
when the weights equal 1. Our general strategy of finding
classification rules with few genes that perform well and
then identifying genes with relatively high frequencies
under multiple random validation applies to both classi-
fication rules with filters and wrappers. Future research
using a wrapper would be of great interest because of the
potential of the wrapper to identify genes that have good
classification when considered together but poor classifi-
cation when considered separately.

The inclusion of additional genes in the classification rule
can affect performance in one of two ways depending on
whether or not the additional genes are predictive of out-
come or not. If the additional genes are not predictive
(being selected by chance), the performance of the rule in
the test sample will likely worsen due to additional
"noise". If the additional genes are predictive, then per-
formance in the test sample will improve with more "sig-
nals." Improvement in performance is greatest if the
additional predictive genes are independent and smaller if
the additional predictive genes are correlated. In our
microarray studies, which showed small gains in perform-
ance with additional genes, the genes were likely predic-
tive and correlated.

Our goal is to identify genes with high relative frequencies
of selection in the classification rule with few genes. It is
important to consider only classification rules with few
genes because with moderate numbers of genes in the
classification rules, many genes invariably appear in

Table 2: Estimates of area under ROC curve (AUC) and 95% confidence intervals

Number of genes in classification rule

Data set Percent in training sample 1 gene 5 genes 20 genes 50 genes

Colon cancer 50% .77 (.55 to .92) .82 (.62 to .95) .84 (.66 to .95) .85 (.69 to .95)
80% .86 (.59 to 1) .90 (.69 to 1) .89 (.69 to 1) .90 (.70 to 1)

Leukemia 50% .90 (.72 to 1) .95 (.84 to .99) .97 (.90 to .99) .98 (.93 to 1)
80% .95 (.76 to 1) .97 (.84 to 1) .99 (.91 to 1) .99 (.93 to 1)

Medulloblastoma 50% .60 (.50 to .77) .62 (.50 to .78) .65 (.50 to .79) .67 (.51 to .82)
80% .65 (.50 to .88) .69 (.50 to .88) .75 (.50 to .94) .78 (.50 to .97)

Breast Cancer 50% .81 (.58 to .94) .88 (.71 to .97) .91 (.75 to .99) .91 (.76 to .99)
80% .85 (.62 to 1) .93 (.78 to 1) .96 (.80 to 1) .95 (.78 to 1)
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nearly all the classification rule and hence there is a con-
cern that many genes are included by chance. With few
genes in the classification rule, one can sometimes find, as
in two of our data sets, one or two genes with relatively
high frequencies, which seems like a strong "signal" that
these genes make a real contribution to classification and
are hence worthy of further study. It is, however, possible
that many highly associated genes could have similarly
high frequencies of occurrence in classification rules with
few genes and one should be aware of this potential sce-
nario.

Throughout this study we have been "conservative" in our
identification of genes for further study by trying to rule
out, as much as possible, the role of chance in explaining
good classification. Hence we used multiple random vali-
dation and focused on as few genes as possible. We also
wanted our measure of performance to be as informative
as possible by using ROC curves. The 95% confidence
intervals we report are only approximate because they are
based on repeated sampling from a finite population,
namely 49 to 92 specimens. However for our purposes,
approximate confidence intervals are acceptable, because
the main focus is not precisely estimating the variability of
classification performance but rather the identification of
genes that make a strong contribution to good classifica-
tion performance.

Conclusion
A relevant quote attributed to the noted mathematician
Henri Poincare is, "Science is built up of facts, as a house
is with stones. But a collection of facts is no more a science
than a heap of stones is a house." Often investigators

report large numbers of genes that are either differentially
expressed or constitute a classification rule, but which,
due to the influence of chance, may be more of a "heap of
stones" than part of a "house." To confidently identify the
basic "building blocks" for classification of cancer out-
comes, investigators should use multiple random valida-
tion to find classification rules that perform well with few
genes and select genes with relatively high frequencies of
occurrence in these classification rules.

Methods
The data were repeatedly randomly split into training and
test samples. We investigated a both 50-50 and a 80-20
split for the training and test samples. For the single gene
filter applied to the training sample, genes were ranked by
the absolute value of the difference in mean levels
between classes divided by the estimated standard error.
The highest ranking genes of a specified number (1, 5, 20,
or 50), were used to create the classification rule. For the
selected set of genes in the training sample, the centroid (a
list of average values for each gene expression level across
all specimens in the sample) was computed for each class
(designated 0 or 1) [9]. Thus the classification rule was a
list of genes and their centroids for each class. Let d0i (d1i)
denote the distance from the ith test sample specimen to
the class 0 (1) centroid in the training sample where dis-
tance is the square root of the sum (over genes in the rule)
of the squared differences between the gene level in test
sample specimen and the training sample centroid. The
score for the ith test sample specimen was d0i/(d0i+d1i).

Performance was measured using an ROC curve com-
puted by applying the classification rule developed in the

Table 3: Comparison of related methods.

Authors Training sample Test sample Random aspect Results

Michiels et al, 2005 [2] (1) Selected genes most 
correlated with prognosis,
(2) Created nearest centroid 
classification rule.

Used Test and training sample 
splits in entire data set.

(1) Misclassification rate for test 
samples
(2) Frequencies of genes selected in 
training sample

Ma et al, 2006 [7] (1) Split into training-training 
sample and training-test sample,
(2) Using cross-validation, 
maximized the binormal area 
under ROC curve as a linear 
function of genes; then selected 
genes with non-zero coefficients.

Used Training-training and 
training-test samples (i.e. 
the cross-validation and 
evaluation is repeated)

(1) Area under ROC curve for test 
samples,
(2) Frequencies of genes selected in 
training sample.

Li et al, 2004 [8] (1) Split into training-training 
sample and training-test sample,
(2) Cross-validated classification 
tree to maximize fit.

Not used Resampling for training-
training samples and 
training test samples.

(1) Relevancy intensity, which equals 
frequencies of genes selected in 
training sample when weights equal 
1.

Proposed method (1) Selected genes with highest 
individual, classification 
performance
(2) Created classification rule 
using nearest centroid and score 
function.

Used Test and training samples 
splits in entire data set.

(1) ROC curve and area under ROC 
curve for test samples with 
emphasis on comparing many versus 
few genes,
(2) Frequencies of genes selected in 
training sample.
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training sample to the complementary test sample. The
ROC curve plots the false positive rate (FPR), which
equals one minus specificity, versus the true positive rate
(TPR) which equals sensitivity. An ROC curve is more
informative than total misclassification error (the sum of
one minus TPR and FPR), which is a commonly used out-
come measure for classification studies with microarray
data. For each random split into training and test samples
a new ROC curve was generated in the test sample.

The part of the ROC curve of interest depends on the pur-
pose of the study. For early detection of cancer only a
small part of the ROC curve is of interest, the portion with
a very low FPR [22]. For these studies involving the classi-
fication of cancer patients, as in the data sets used here,
the entire ROC curve is of interest as well as the area under
the curve (AUC), which is the area between the ROC curve
and horizontal axis. A very good classifier has a high true
positive rate for a given false positive rate, so that the ROC
curve occupies the upper left hand side of the graph with

an AUC approaching the ideal of 1.0. A classifier with no
predictive values beyond random chance follows the diag-
onal from false and true positive rates of 0 to false and true
positive rates of 1 and has an AUC of 0.5. The AUC can
also be interpreted as the true positive rate averaged uni-
formly over the range of false positives [10]

A preliminary ROC curve was obtained by dividing the
score into cutpoints and computing sensitivity and specif-
icity for each cutpoint. To obtain a final ROC curve, the
preliminary ROC curve was smoothed by taking, as the
next successive point from left to right, the midpoint
between the two points with the steepest slope from the
previous point. Our measure of performance, the area
under the ROC curve (AUC), was computed as the sum of
the trapezoids [23].

The random split of training and test samples was
repeated 1000 times, creating a set of 1000 ROC curves
and a list of 1000 AUC's. A random sample of 40 ROC

Histograms of the 20 genes selected most frequently in 1000 randomly selected training samples when forming classification rules involving 1, 5, 20, and 50 genesFigure 2
Histograms of the 20 genes selected most frequently in 1000 randomly selected training samples when forming classification 
rules involving 1, 5, 20, and 50 genes. The horizontal axis is the percent of all classification rules (with the indicated number of 
genes) for which the gene appears. Each horizontal bar represents a different gene.
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curves was graphically displayed along with the mean
AUC and the 95% confidence interval for the 1000 splits.
The lower (upper) bound of the 95% confidence interval
was the value of the AUC at the 2.5 (97.5) percentile of the
distribution of the 1000 AUC values. When lines from
ROC curves coincided with the axes, a small random error
away from the axis was added so that the thickness would
indicate multiple lines. Another outcome measure was the
frequencies of genes selected in the training sample [2].
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