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Abstract

Background: Understanding how amino acid substitutions affect protein functions is critical for
the study of proteins and their implications in diseases. Although methods have been developed for
predicting potential effects of amino acid substitutions using sequence, three-dimensional
structural, and evolutionary properties of proteins, the applications are limited by the complication
of the features and the availability of protein structural information. Another limitation is that the
prediction results are hard to be interpreted with physicochemical principles and biological
knowledge.

Results: To overcome these limitations, we proposed a novel feature set using physicochemical
properties of amino acids, evolutionary profiles of proteins, and protein sequence information. We
applied the support vector machine and the random forest with the feature set to experimental
amino acid substitutions occurring in the E. coli lac repressor and the bacteriophage T4 lysozyme,
as well as to annotated amino acid substitutions occurring in a wide range of human proteins. The
results showed that the proposed feature set was superior to the existing ones. To explore
physicochemical principles behind amino acid substitutions, we designed a simulated annealing
bump hunting strategy to automatically extract interpretable rules for amino acid substitutions. We
applied the strategy to annotated human amino acid substitutions and successfully extracted several
rules which were either consistent with current biological knowledge or providing new insights for
the understanding of amino acid substitutions. When applied to unclassified data, these rules could
cover a large portion of samples, and most of the covered samples showed good agreement with
predictions made by either the support vector machine or the random forest.

Conclusion: The prediction methods using the proposed feature set can achieve larger AUC (the
area under the ROC curve), smaller BER (the balanced error rate), and larger MCC (the Matthews'
correlation coefficient) than those using the published feature sets, suggesting that our feature set
is superior to the existing ones. The rules extracted by the simulated annealing bump hunting
strategy have comparable coverage and accuracy but much better interpretability as those
extracted by the patient rule induction method (PRIM), revealing that the strategy is more effective
in inducing interpretable rules.
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Background

Variants in single bases of DNA sequences yield single
nucleotide polymorphisms (SNPs), among which non-
synonymous single nucleotide polymorphisms (nsSNPs)
occurring in protein coding regions lead to amino acid
substitutions in protein products, potentially affect pro-
tein functions, and are closely related to human inherited
diseases. Hence, predicting potential effects of non-synon-
ymous single nucleotide polymorphisms and their result-
ing amino acid substitutions on protein functions is of
central importance in modern pathological and pharma-
ceutical studies [1]. Recently, increasing amounts of
amino acid substitutions occurring in human proteins
have been detected and collected in various databases
such as the Swiss-Prot database [2], the Human Gene Muta-
tion Database (HGMD) [3], and the Online Mendelian
Inheritance in Man* (OMIM) database [4]. Stand alone
data sets such as the unbiased laboratory mutagenesis
data derived from experiments on the E. coli lac repressor
[5,6] and the bacteriophage T4 lysozyme [7] are also avail-
able. With these data sources, the prediction is typically
based on a set of features derived from the sequence and
structural properties, as well as the phylogenetic informa-
tion of the proteins containing the substitutions. For
instance, Chasman and Adams derived sequence and
structure-based features from a structural model and the
phylogenetic information [8]. Sunyaev et al. analyzed
amino acid substitutions on the basis of protein three-
dimensional structure and multiple alignments of homol-
ogous sequences [9,10]. Ferrer-Costa et al. characterized
disease-associated substitutions in terms of substitution
matrix, secondary structure, accessibility, free energies of
transfer from water to octanol, etc. [11,12]. Saunders and
Baker created mutation models by means of a variety of
structural and evolutionary features [13]. Krishnan and
Westhead used the physicochemical classes of residues,
sequence conservation score, secondary structure, solvent
accessibility, and buried charge, etc. [14]. Ng and
Henikoff utilized the sequence conservation and the BLO-
SUM amino acid substitution matrices [15]. With a set of
features ready, the prediction is conventionally performed
by making use of either the standard machine learning
methods such as the decision tree [16], the support vector
machines [17,18], the random forest [19], the statistical
and classification models [8,9,13], or certain specifically
designed methods such as the SIFT (Sorting Intolerant
From Tolerant amino acid substitutions) [15].

No matter what kind of method is used, the quality of the
features plays an important role in predicting the poten-
tial effects of given amino acid substitutions. To construct
these features, amino acid substitutions were mapped to
protein 3D structures [8-10,13]; evolutionary properties
were measured from statistical models [8,9]; secondary
structure and accessibility were computed from various
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prediction programs [11,13]; database annotations were
also included [12]. However, the availability of protein or
homologous proteins' structures limits the scope of the
applications of these methods. In addition, most of these
prediction methods are complicated and the prediction
results are difficult to interpret, because a large number of
complicated features are used and many of them rely
heavily on other computational models. Although in
some methods simple features were used with some spe-
cifically designed statistical models [15], the prediction
accuracy is not as high as those methods using combined
multiple features [1,8-14].

A good feature set should contain as few features as possi-
ble, while each feature should have clear physicochemical
meaning and is easy to be interpreted in biological terms.
To achieve these objectives, we derived a novel feature set
(including a continuous form and a discrete form) based
on three physicochemical properties (molecular weight, pI
value, and hydrophobicity scale) of amino acids, three rela-
tive frequencies of occurrences of amino acids in the sec-
ondary structures (helices, strands, and turns) of proteins
with known secondary structural information, and the
evolutionary profile of the protein containing the substi-
tution. We compared the quality of the proposed feature
set with other more complicated ones by applying the
decision tree [16], the support vector machine [17,18],
and the random forest [19] to the experimental amino
acid substitution data of the E. coli lac repressor [5,6] and
the bacteriophage T4 lysozyme [7], as well as to a wide
range of human amino acid substitutions collected in the
Swiss-Prot database. The results showed that our simple
yet interpretable feature set was superior to other pub-
lished ones [15,14,20] in terms of the area under the
receiver operating characteristic (ROC) curve (AUC), the
balanced error rate (BER), and the Matthews' correlation
coefficient (MCC).

Although existing machine learning methods could make
predictions, they acted like "black boxes" in that they were
not capable of capturing physicochemical principles
behind the predictions. In many circumstances, however,
these hidden principles were of more importance since
they could reveal how amino acid substitutions affected
protein functions and why some amino acid substitutions
would result in diseases. In order to explore these princi-
ples and associate amino acid substitutions with biologi-
cal knowledge, we would use rule induction methods to
automatically search rules for amino acid substitutions.
These rules should be (1) interpretable, consisting of a
small set of simple features; (2) high-quality, with very few
exceptions; and (3) general, capable of explaining a signif-
icant number of substitutions.
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In this paper, we considered rules as sub-regions (boxes)
in the feature space composed of amino acid substitu-
tions. More specifically, the boxes were defined in terms
of the feature intervals. A previous method for finding
boxes in the feature space was the patient rule induction
method (PRIM) [21], which searched for optimal boxes
using a steepest-ascent approach and was intuitively
referred to as a "bump hunting" method. When applied to
our problem, the PRIM had drawbacks in that the imbal-
ance between the numbers of data samples in different
categories was not considered, and some redundant fea-
tures in the boxes should be manually removed and the
quality of the resulting boxes significantly decreased. To
overcome these shortcomings, we incorporated a new cri-
terion called the discrimination power to take the imbal-
ance between the numbers of data samples in different
categories into consideration, and developed a novel sim-
ulated annealing bump hunting strategy which made use
of the simulated annealing method to automatically dis-
card redundant features while extracting high quality
rules. We validated this strategy using heterogenous exper-
imental amino acid substitutions occurring in both the E.
coli lac repressor [5,6] and the bacteriophage T4 lysozyme
[7], and showed that our approach could extract rules
with comparable converge and accuracy but much better
interpretability as those extracted by the original PRIM
method. We then applied our strategy to annotated
human amino acid substitutions collected in the Swiss-
Prot database and successfully identified several rules
which could be interpreted using physicochemical terms
and were consistent with the current biological knowl-
edge. We further applied the induced intolerant rules to
unclassified human amino acid substitution data, and the
results showed that these rules could cover a large portion
of data samples and most of the covered samples showed
good agreement with predictions made by either the sup-
port vector machine or the random forest. Beyond the
highly confident predictions, these rules more impor-
tantly revealed the physicochemical principles behind the
covered amino acid substitutions and explained why
these substitutions would result in diseases.

Results

Data sources

A large number of amino acid substitutions occurring in
human proteins have been collected in the Swiss-Prot pro-
tein database [2]. In version 50.0 (released on May-30-
2006), the Swiss-Prot database contained 25,994 amino
acid substitution entries in 4,324 human proteins, with
each substitution being annotated as "Disease", "Poly-
morphism", or "Unclassified". For a clear and concise
presentation, we would refer to amino acid substitutions
with the annotation "Disease" as intolerant ones and
those with the annotation "Polymorphism" as tolerant
ones. In this paper, we studied human proteins having at
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least 20 homologous proteins in the Pfam database [22]
(version 20.0, released in May-2006), and focused on the
substitutions occurring in known protein domains. In
total, we collected 9, 610 intolerant substitutions, 4, 556
tolerant substitutions, and 1,487 unclassified ones in 2,
579 human proteins.

In order to validate the proposed feature set and the sim-
ulated annealing bump hunting strategy, two sets of
experimental amino acid substitution data for the E. coli
lac repressor [5,6] and the bacteriophage T4 lysozyme [7]
were used. In these data sets, the effects of amino acid sub-
stitutions on the function of the corresponding protein
were rated and classified to four categories. In the case of
the lac repressor, the four categories were "+" (no effect),
"+-" (slight effect), "-+" (larger effect), and "-" (complete
absence). In the case of the T4 lysozyme, the four catego-
ries were "++" (no effect), "+" (slight effect), "+/-" (larger
effect), and "-" (complete absence). Following the defini-
tion used by Chasman and Adams [8], as well as by
Krishnan and Westhead [14], substitutions falling into the
"no effect" category were treated as tolerant ones, and sub-
stitutions in the other categories were regarded as intoler-
ant ones. In total, for the E. coli lac repressor, we collected
1,187 intolerant substitutions and 1,760 tolerant ones.
For the T4 lysozyme, we collected 494 intolerant substitu-
tions and 1,048 tolerant ones.

Prediction of the experimental amino acid substitutions
We first show that the proposed feature set can outper-
form other published feature sets in the prediction of
potential effects of experimental amino acid substitutions
occurring in the E. coli lac repressor [5,6] and the T4 lys-
ozyme |7]. We performed 10-fold cross-validation experi-
ments using both the support vector machine and the
random forest with the proposed feature set on the substi-
tution samples, calculated the area under the ROC curve
(AUC), the minimum balanced error rate (BER), and the
maximum Matthews' correlation coefficient (MCC), and
compared them with other published results. Detailed
descriptions regarding the prediction methods and the
definition of the criteria are presented in the method sec-
tion.

The cross-validation results using our feature set (both the
continuous form and the discrete form) are shown in
Table 1. First, we can see from the table that for the exper-
imental substitutions occurring in homogenous proteins,
our feature set works well with both the support vector
machine and the random forest. When working with the
random forest, the discrete form of our feature set can pro-
duce an AUC of 0.944, a BER of 0.125, and a MCC of
0.741 for the experimental substitutions occurring in the
E. coli lac repressor, suggesting that about 88% of the sub-
stitutions can be predicted accurately. When working with
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Table I: Results for predicting potential effects of experimental amino acid substitutions occurring in the E. coli lac repressor, the

bacteriophage T4 lysozyme, and the mixed samples.

Support vector machine

Random forest

AUC BER MCC AUC BER MCC

Continuous Lac repressor 0912 0.152 0.694 0.939 0.143 0.723
T4 lysozyme 0.897 0.177 0.614 0.907 0.167 0.640

Mixed 0.889 0.185 0.612 0.921 0.158 0.678

Discrete Lac repressor 0.905 0.170 0.654 0.944 0.125 0.741
T4 lysozyme 0.878 0.199 0.588 0.911 0.167 0.651

Mixed 0.887 0.187 0.622 0.927 0.148 0.693

the support vector machine, the results are slightly worse,
but the continuous form of our feature set can still predict
about 85% substitutions accurately. For experimental
substitutions occurring in the T4 lysozyme, we obtain
similar results. Second, the results show that our feature
set can also work well for experimental substitutions
occurring in heterogenous proteins. When applied to the
mixed samples occurring in both the E. coli lac repressor
and the T4 lysozyme, the random forest with the discrete
form of our feature set can produce an AUC of 0.927, a
BER of 0.148, and a MCC of 0.693, suggesting that about
85% of the substitutions can be predicted accurately.
Thirdly, we notice that in our studies, the random forest
works slightly better than the support vector machine
with our feature set in terms of the AUC, the BER, and the
MCC.

We compared the cross-validation results using our fea-
ture set with those obtained by the SIFT (Ng and Henikoff
[15]) and another published feature set (Krishnan and
Westhead [14]). As a sequence homology-based method,
the SIFT can achieve BERs of 33% and 34% for experimen-
tal amino acid substitutions occurring in the E. coli lac
repressor and the T4 lysozyme, respectively. By compari-
son, the continuous form of our feature set can achieve
corresponding BERs of 14% and 17% when working with
the random forest (15% and 18% when working with the
support vector machine), respectively. These results sug-
gest that our feature set can outperform the SIFT in the
prediction of potential effects of experimental amino acid
substitutions occurring in homogenous proteins. The
published feature set by Krishnan and Westhead [14] uses
16 features, including 13 sequence based ones (the resi-
due identities of the original and mutated residue, the
physicochemical classes of these residues (hydrophobic,
polar, charged, glycine), sequence conservation score at
the mutated position, molecular mass shift on mutation,
and hydrophobicity difference), and 3 structure based
ones (secondary structure, solvent accessibility, and bur-
ied charge). When working with the support vector
machine, this feature set can achieve BERs of 27%, 29%,

and 28% for experimental amino acid substitutions
occurring in the E. coli lac repressor, the T4 lysozyme, and
the mixture of them, respectively, while the continuous
form of our feature set can achieve corresponding BERs of
15%, 18%, and 19%, respectively. When working with the
decision tree, the published feature set can achieve BERs
of 16%, 20%, and 21% for experimental amino acid sub-
stitutions occurring in the E. coli lac repressor, the T4 lys-
ozyme, and the mixture of them, respectively, while the
continuous form of our feature set can achieve corre-
sponding BERs of 16%, 18%, and 19%, respectively.
These results suggest that our feature set can work as good
as or outperform the published feature set [14] in the pre-
diction of potential effects of experimental amino acid
substitutions occurring in both homogenous and heterog-
enous proteins.

Prediction of the disease related amino acid substitutions

We performed 10-fold cross-validation experiments using
both the support vector machine and the random forest
with the proposed feature set on amino acid substitutions
occurring in highly heterogenous human proteins and
collected in the Swiss-Prot database, and compared the
results with other published results (Bao and Cui [20]).

The published method [20] used a complicated feature
set. For every substitution pair, they directly used two
three-dimensional structural information predicted by the
ENVIRONMENT program [23], one secondary structural
information predicted by the STRIDE program [24], and
one statistical score calculated by the SIFT program [15].
Their feature set also included another feature derived
from the prediction results of these programs, and the
wild-type amino acid identity. Altogether, they used six
features. Five of them were three-dimensional structural
or statistical ones, and needed to be calculated using other
programs. Due to the limited availability of three-dimen-
sional structural information, only a small fraction of
available substitutions (3, 686 intolerant ones in 323 pro-
teins and 532 tolerant ones in 305 proteins) in the Swiss-
Prot database could be considered in their method. In
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Figure |

The ROC curves for predicting amino acid substitutions
occurring in human proteins using the support vector
machine and the random forest with the continuous form of
the proposed feature set. For those using the discrete form,
the curves (not shown) are similar.

contrast, our proposed feature set used only sequence
information and evolutionary profiles, and did not
depend on any other prediction programs. Consequently,
we could predict more substitutions (9, 610 intolerant
ones and 4, 556 tolerant ones) in a wider range of (2, 579)
human proteins.

For comprehensive measures, Figure 1 shows the ROC
curves for the support vector machine (AUC = 0.817) and
the random forest (AUC = 0.831) using the proposed con-
tinuous form of our feature set. When compared with the
SIFT and the method used by Bao and Cui (both pre-
sented in [20]), we can see clearly that both methods
using our feature set produce better ROC curves (see Fig-
ure 1 and Fig.1 in [20]), indicating that the proposed fea-
ture set is superior to both the SIFT and the feature set
presented in [20] in terms of comprehensive prediction
power (the area under the ROC curve). For the discrete
form, the AUC is 0.806 for the support vector machine
and 0.817 for the random forest, and the ROC curves (not
shown) are similar to those using the continuous form.
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More specifically, we compared the two criteria for a cer-
tain single decision threshold, as shown in Table 2. When
working with the support vector machine, the continuous
form of our feature set leads the SIFT (results presented in
[20]) by about 4% (26% vs. 30%) in BER and about 0.15
(0.46 vs. 0.31) in MCC. When working with the random
forest, the continuous form of our feature set leads the
SIFT by about 5% (25% vs. 30%) in BER and about 0.18
(0.49 vs. 0.31) in MCC. Similar results are obtained when
comparing the discrete form of our feature set with the
SIFT. These results suggest that our feature set can outper-
form the SIFT in the prediction of amino acid substitu-
tions occurring in human proteins. When comparing our
results with those obtained using the feature set proposed
in [20], we can see from the table that for both prediction
methods using the proposed feature set, the BERs are
much smaller while the MCCs are much larger than the
corresponding method using the feature set presented in
[20], indicating that our feature set are much better than
the published one.

Correlation and relative importance of the proposed
features

For better understanding of the relationship between the
proposed features, we calculated the pairwise Pearson's
correlation coefficients between the proposed features
(continuous form) based on the amino acid substitutions
occurring in human proteins and presented the (upper tri-
angle) correlation matrix in Figure 2. We divided the fea-
tures to 7 groups according to their definitions in the
method section, and named these groups at the top of the
matrix. First, we can see from the matrix that the two evo-
lutionary conservation scores (features 43 and 44) have
very weak correlations with other 42 features. Second, for
the original amino acid group (features 1 to 6), the win-
dow-sized group (features 13 to 18), and the column-
weighted group (features 19 to 24), features derived from
the same (physicochemical or relative frequency) proper-
ties (e.g., 1-13-19, 2-14-20, etc.) show medium positive
correlations, as illustrated in region 1, 2, and 3 in the
matrix. Third, the relative change features (features 25 to
42) show strong positive correlations with the substitu-
tion features derived from the same properties (e.g., 25-7,
26-8, etc.) and strong negative correlations with the orig-

Table 2: Results for predicting potential effects of annotated amino acid substitutions occurring in human proteins and collected in the

Swiss-Prot database.

Support vector machine

Random forest

AUC BER MCC AUC BER MCC

Bao & Cui [20] N/A 0318 0.274 N/A 0.292 0.315

Continuous form  0.817 0.258 0.463 0.831 0.245 0.491

Discrete form 0.806 0.259 0.457 0.817 0.262 0451
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inal, the window-sized, or the column-weighted features
(e.g., 25-1, 37-19, etc.), as illustrated in region 4, 5, and
6, respectively. Finally, as shown in region 7 in the matrix,
the relative change features derived from the same proper-
ties show strong positive correlations (e.g., 25-31-37, 26-
32-38, etc.). We also calculated the correlation matrix for
the discrete form of the proposed features based on the
amino acid substitutions occurring in human proteins
and observed similar results (data not shown). These
observations, though can be intuitively explained from
the definitions and calculation schemes of the features
(see the method section for details), provide us informa-
tive understanding and quantitative measurement of the
relationship between the proposed features and can be
used as evidences in the future feature selection proce-
dure.

Original Substitution Window-sized Column-weighted

1 2 3 4 5 6| 7 8 9 10 11 12|13 14 15 16 17 18|19 20 21 22 23 24|
10 05 -04 03 04 Fo — 02 008 o3 05 oa  odl
10 -04 I 04 103 07 03 I

05 -04 03 03 : 0.31 :703 03 02 04 4).4=

0.7 1 04 03 03 .7 05

1.0 -0.6 03 0.2] 03 | 04 07 03]

1.0 ] -02 03 -02 04] -04 04 -0.6 -05 08]
T T T T 1

10 02 03 04

Figure 2

Substitution-Original
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We then
evaluated
the relative

importance of the proposed features using the scheme
included in the random forest and presented the results in
Figure 3. In the random forest, the raw importance of a
feature is calculated by randomly permuting the values of
the feature in the Out-Of-Bag (OOB) cases, calculating the
difference of classification errors between the original and
the permuted cases, and averaging this difference over all
the trees in the forest [19]. To make the measurement of
importance more understandable, a normalization proce-
dure is further applied to the raw importance of each fea-
ture by dividing the raw importance with the maximum
raw importance over all the features (assuming it to be a
positive number). Consequently, the relative importance
of every proposed feature (a real number which is less
than or equal to 1.0) is obtained. For the continuous form
of the proposed features (Figure 3A), we can see that the
two evolutionary conservation scores (features 43 and 44)

Substitution-Window Substitution-Column

26 27 28 29 30|31 32 33 34 35 36[37 38 39 40 41 42]43 44

50 w02 odl 04 02 1 1.00
08 03 1 04 2 0.95
03 06 03: 02 02 3 0.91
08 06 03 02 02 05 04 4 0.86
06 03] 03 03 5 0.81
02 As 03 07] 03 0.4 04 02 6 0.77
7014 0008 03 04 03 ol 08 o5 03 0z o 7 072
07 03 1040 03 103008 03 1 8 0.67
0.2 0.6 ()2: 03 03 09 0.5 -0.4: <03 03 08 0.3 -0.3: 9 0.63
08 05) 03 09 06 02 08 06 10 0.58
02 07 03] 05 09 -0.6] 03 08 04 11 0.53
03 -05 -03 07] 04 05 L6 -06 09] 03 04 -06 0.5 08] 12 0.49
________ | 5 13 0.44
14 0.40
15 0.35
16 0.30
17 0.26
18 0.21
__________ 9 0.16
20 0.12
21 0.07
2 0.00

23
24 0.07
___________________ 25 0.12
26 0.16
27 0.21
28 -0.26
29 -0.30
30 0.35
_________ E -0.40
32 -0.44
33 0.49
34 -0.53
35 -0.58
36 -0.63
__________ 37 0.67
38 -0.72
39 -0.77
40 0.81
41 -0.86
42 -0.91
|43 0.95
ﬂ -1.00

The Pearson correlation coefficient matrix (upper triangle) of the proposed features (continuous form). The Pearson correla-
tion coefficients are calculated based on the amino acid substitutions occurring in human proteins and collected in the Swiss-
Prot database. For a clear and concise presentation, correlation coefficients with absolute values less than 0.2 are ignored in
the figure. For the discrete form of the proposed features, the correlation coefficient matrix (not shown) is similar.
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The relative importance of the proposed features. (A) the continuous form. (B) the discrete form. The raw importance for the
features are calculated by the random forest [19]. The normalization is performed by dividing the raw importance with the

maximum raw importance over all the features.

are of the most importance. The column-weighted group
(features 19-24) and the substitution-column group (fea-
tures 37-42) have similar importance and follow the evo-
lutionary score group. For other groups of features, the
order of importance is the substitution-original group
(features 25-30) > the original group (features 1-6) > the
substitution-window group (features 31-36) > the substi-
tution group (features 7-12) > the window-sized group
(features 13-18). For individual features, the first 10 most
important features are ordered as X, > X3 > X5, > X1 > X549
> Xy, > X5, > X4 > X4, > X,5. On the one hand, all of the
10 features except for X, in this order are calculated with
the evolutionary conservation scores (see the method sec-
tion for details), revealing the significant importance of
the evolutionary information in the prediction of poten-

tial effects of amino acid substitutions. On the other hand,
the frequent appearances of the features derived from the
molecular weight (X,,, X5, and Xj,), the hydrophobicity
scale (X,;, X,,, and X;,), and the relative frequency in
turns (X,, and X,,) in this order suggest the importance of
these properties in the identification of human disease
related amino acid substitutions. For the discrete form of
the proposed features (Figure 3B), the results show that
the relative importance of the window-sized, the column-
weighted, and the relative change features are not as good
as their continuous forms, suggesting that the discretiza-
tion procedure causes information loss for individual fea-
tures. When looking at the order of the top 10 most
informative features (X, > X35> X;> X, > X35> Xs> X,, >
X5 > Xy, > X39), we confirm the importance of the evolu-

Table 3: Results for validating the simulated annealing bump hunting strategy using the mixed experimental amino acid substitutions
occurring in the E. coli lac repressor and the bacteriophage T4 lysozyme.

Training set Test set

Number of Box mean Box size Discrimination Box mean Box size Discrimination

features power power
Intolerant | 0.933 0.033 23.374 0.938 0.021 25.057

2 0.934 0.020 23.794 0917 0.015 18.383

3 0.926 0.040 20.782 0.900 0.020 15.034

4 0.953 0.021 33.947 0.955 0.015 35.042

5 0.947 0.041 29.729 0.936 0.021 24.228
Tolerant | 0917 0.056 6.588 0.933 0.120 8.377

2 0.955 0.052 12.734 0.944 0.048 10.168

3 0919 0.054 6.820 0.947 0.050 10.633

4 0.983 0.060 35.248 0.927 0.064 7613

5 0.961 0.051 14.673 0.936 0.052 8.741
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Comparison of the rules (boxes) extracted by the simulated annealing bump hunting strategy and the original bump hunting
method (the SuperGEM software). (A) intolerant rules. (B) tolerant rules. Red circles are rules extracted by the proposed sim-
ulated annealing bump hunting strategy and green triangles are those extracted by the SuperGEM. The x-axes denote the cov-
erage of the extracted rules, and the y-axes denote the accuracy of the extracted rules. The numbers beside the circles and the
triangles denote the number of features included in the corresponding rules.

tionary information (X,; and X,,), the molecular weight
(X, and X;,), the hydrophobicity scale (X5, X,;, and X;,),
and the relative frequency in turns (X, and X,,).

Validation of the simulated annealing bump hunting
strategy

A merit property of the discrete form of our feature set is
that every feature has strong physico-chemical meaning,
which enables us to induce interpretable rules to explain
the biological principles behind amino acid substitutions.
We first validated the proposed simulated annealing
bump hunting strategy using the heterogenous experi-
mental amino acid substitution data. We randomly
divided the mixed substitution samples occurring in the E.
coli lac repressor and the T4 lysozyme into a training set
(containing 2/3 of the data) and a test set (containing the
rest 1/3 of the data), applied the simulated annealing
bump hunting strategy to the training set, and evaluated
the resulting rules on the test set. As an example, Table 3
lists ten rules (five intolerant ones and five tolerant ones,
respectively) extracted by the simulated annealing bump
hunting strategy. From the table, we can see that the
extracted rules have comparable coverage (box-size),
accuracy (box-mean), and discrimination power for the
training and test set, suggesting that our strategy is capable
of extracting general rules. For example, for intolerant
rules, the simulated annealing bump hunting strategy
extracted a 1-feature rule with a coverage of 0.033 and an
accuracy of 0.933 from the training set, while the same

rule have a coverage of 0.021 and an accuracy of 0.938
when evaluated using the test set.

We also made a comparison between the simulated
annealing bump hunting strategy and the original patient
rule induction method (PRIM), which was implemented
in the SuperGEM software [21]. Some candidate rules (7
intolerant ones and 7 tolerant ones) are shown in Figure
4. From the figure, we can see that the rules extracted by
the simulated annealing bump hunting strategy have
comparable coverage and accuracy but much better inter-
pretability (less number of features) as the rules extracted
by the original PRIM method. For example, for intolerant
rules (Figure 4A), the simulated annealing bump hunting
strategy extracted a 5-feature rule with a coverage of 0.042
and an accuracy of 0.98, while the original PRIM method
extracted a 19 feature rule with comparable coverage and
accuracy. Similarly, for tolerant rules (Figure 4B), the sim-
ulated annealing bump hunting strategy extracted a 4-fea-
ture rule with a coverage of 0.06 and an accuracy of 0.98,
while the original PRIM method extracted a 17 feature
rule with comparable coverage and accuracy.

Amino acid substitution rules

We applied the simulated annealing bump hunting strat-
egy with the discrete form of our feature set to the human
amino acid substitution data and extracted several rules
which were consistent with current biological knowledge.
As examples, Figure 5 presents a group of three intolerant
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[Ru]el:[3=29% ,Y=88% ,p=35

iy (The substituted am no acid never appears in the

multple sequence alignm ent) (X44=00)
THEN (The substtution is ntolerant)

(Ruk2:B=59% ,y=92% ,p=57

¥ (The substituted am no acid appears In the
multple sequence alignm entw ith a very low
frequency) (0.000 < Xg4 < 0.001)

THEN (The substtution is intolerant)

(Ruk3:B=14% ,y=95% ,p=96 ]

iy (The original am o acid appears I the m uldple
sequence alignm entw ith a very high frequency)
(095 < X33 < 1.00)

THEN (The substtution is intolerant)

Figure 5

Three general intolerant rules. In the figure, 5, % and p for
each rule are the coverage, the accuracy, and the discrimina-
tion power of the corresponding rule, respectively.

rules which uses conservation scores and provides us gen-
eral understanding regarding the intolerant substitutions.
Detailed descriptions regarding the notations and defini-
tions of the features are presented in the method section.

[Ruk4:p=42% ,y=91% p=47 ]

¥ (C ystetne is substituted by any otheram ino acids)
THEN (The substtution is intolerant)

[Ruke5:B=66% ,y=95% ,p=90 ]

W HEN G Iycine is substhuted by any otheram o acids)

gy (The evolutionary profilem ediim orhighly
preferstums) 6 <Xpa<7)

THEN (The substiution is ntolerant)

[Ruk6:p=57% ,y=93% p=61 ]

s \

W HEN @Anyam ino acid is substituted by A rginine)

g (The evolutionary profile isacidicAND the
substituted am o acid hasam edim to soongly
negative change 1 hydrophobicity versus the
evolutionary profile) 1< X50<3)N 1<X39<2)

THEN (The substution is htolerant)

J

Figure 6

Three intolerant rules for individual amino acids. In the fig-
ure, 5, % and p for each rule are the coverage, the accuracy,
and the discrimination power of the corresponding rule,
respectively.

http://www.biomedcentral.com/1471-2105/7/417

Rule 1 in Figure 5 says that for a substitution pair, if the
substituted amino acid never appears in the column (cor-
responding to the substitution position) of the Pfam mul-
tiple sequence alignment, the substitution is very likely to
be intolerant. This rule uses a single feature (X,,) and cov-
ers 29% (4,137 out of 14,166) data samples with an accu-
racy of 88% and a discrimination power of 3.5.

Rule 2 in Figure 5 says that for a substitution pair, if the
substituted amino acid rarely (e.g., with a very low fre-
quency < 0.1%) appears in the corresponding column of
the Pfam multiple sequence alignment, the substitution is
very likely to be intolerant. This rule uses a single feature
(X44), covering 5.9% (836) data samples with an accuracy
of 92% and a discrimination power of 5.7.

Rule 3 in Figure 5 says that for a substitution pair, if the
original amino acid very abundantly (with a very high fre-
quency = 0.95) appears in the corresponding column of
the Pfam multiple sequence alignment, the substitution is
very likely to be intolerant. This rule uses a single feature
(X43), covering 14% (2, 014) data samples with an accu-
racy of 95% and a discrimination power of 9.6.

These rules can be understood as follows. In the Pfam
multiple sequence alignments, homologous proteins are
aligned according to their functional units (protein
domains). Hence, amino acids appearing in a certain col-
umn of an alignment would be those that are crucial in
maintaining the protein function. On the contrary, amino
acids rarely appearing in a certain column of an alignment
would very likely be irrelevant to the protein function.
Therefore, in Rule 1 and Rule 2, when an amino acid is
substituted by another amino acid which never or rarely
appears in the multiple sequence alignment, the function
of the protein could hardly be maintained. In Rule 3, the
very abundant appearance of the original amino acid in
the multiple sequence alignment indicates that the amino
acid is crucial in keeping the protein function. Therefore,
when the amino acid is substituted, the protein would
very likely be malfunction.

The second group of three rules uses physicochemical fea-
tures and provides us specific understanding regarding the
intolerant substitutions for individual amino acids, as
illustrated in Figure 6.

Rule 4 in Figure 6 says that if a Cysteine is substituted, no
matter what kind of amino acids it is substituted to, the
substitution is very likely to be intolerant. This rule uses a
single feature (X;), covering 4.2% (596) data samples
with an accuracy of 91% and a discrimination power of
4.7. The Cysteine is the only amino acid capable of form-
ing disulfide bonds, and the disulfide bridges between
Cysteines within a polypeptide support the protein's sec-
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[Rulke8:B=433% ,y=743 ,p=60 ]

-

g (The origmal am o acid appears In a hydrophil-
ic Jocalenvironm entAND the substhited am no
acid appears In the m ulbple sequence alignm ent
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1 <X5<4 and 0200 < X34 < 0500)
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Inmolecularw eight against the origmal one)
o5 = 4)

THEN (The substitution is tolerant)

. J

Figure 7

Three general tolerant rules. In the figure, £ % and p for
each rule are the coverage, the accuracy, and the discrimina-
tion power of the corresponding rule, respectively.

ondary structure. Therefore, when a Cysteines is substi-
tuted, the structure would be destroyed, and the protein
would lose its function.

Rule 5 in Figure 6 says that when a Glycine is substituted,
if the evolutionary profile medium or highly prefers turns
(x,4 = 6,7), the substitution is very likely to be intolerant.
This rule uses 2 features (X; and X,,), covering 6.6% (940)
data samples with an accuracy of 95% and a discrimina-
tion power of 9.0. This rule can be understood from two
aspects. First, the Glycine is the smallest amino acid.
Therefore, when a Glycine is substituted by any other (big-
ger) amino acids, there might not be enough space to hold
that amino acid, and thus the secondary structure of the
polypeptide would be destroyed. As a result, the protein
would lose its function. Second, the Glycine is one of the
amino acids most prefer turns (only second to Proline).
Hence, when the turn structure is important to the protein
function (evolutionary profile medium or highly prefers
turns) and a Glycine is substituted, the function of the
protein would very likely change.

Rule 6 in Figure 6 says that when an amino acid is substi-
tuted by an Arginine, if the evolutionary profile is acidic
(x,0 = 1,2,3), and the substituted amino acid (the
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Arginine) has a medium to strongly negative change in
hydrophobicity versus the evolutionary profile (x5, = 1,2),
the substitution is very likely to be intolerant. This rule
uses 3 features (Xo, X,, and X4), covering 5.7% (805)
data samples with an accuracy of 93% and a discrimina-
tion power of 6.1. This rule can be understood from the
following aspects. First, the Arginine is the most alkalic
(with the highest pI value) and most hydrophilic amino
acid. Second, an acidic evolutionary profile indicates that
amino acids with small pI values are crucial to the pro-
tein's function. Thirdly, the substituted amino acid (the
Arginine) having medium to strongly negative change in
hydrophobicity scale suggests that hydrophilic amino
acids are the majority in the homologous proteins (in
other words, hydrophilic amino acids are crucial to the
protein's function). Therefore, when an Arginine replaces
the original amino acid, the above second and third con-
ditions are violated, and thus the function of the protein
would be destroyed.

The third group of three rules uses both the conservation
scores and the physicochemical features, and provides us
specific understanding regarding the tolerant substitu-
tions, as illustrated in Figure 7.

Rule 7 in Figure 7 says that if the substituted amino acid
appears in the multiple sequence alignment with a rather
high frequency (0.600 <X,, < 1.000), the substitution is
very likely to be tolerant. This rule uses a single feature
(X44), covering 1.2% (171) data samples with an accuracy
of 81% and a discrimination power of 9.2. This rule can
be thought of as the opposite of the previous Rule 1 and
Rule 2. Amino acids appearing in a certain column of a
Pfam multiple sequence alignment would be those that
are crucial in maintaining the protein function. Therefore,
when an amino acid is substituted by another amino acid
which appears in the multiple sequence alignment with a
rather high frequency, the function of the protein could
possibly be maintained, and the substitution is likely to
be tolerant.

Rule 8 in Figure 7 says that if the original amino acid
appears in a hydrophilic local environment (1 < X,5< 4)
and the substituted amino acid appears in the multiple
sequence alignment with a relatively high frequency
(0.200 <X,, < 0.500), the substitution is very likely to be
tolerant. This rule uses 2 features (X5 and X,,), covering
4.3% (610) data samples with an accuracy of 74% and a
discrimination power of 6.0. The understanding of this
rule is similar to the previous Rule 7. Amino acids appear-
ing in a certain column of a Pfam multiple sequence align-
ment would be those that relate to the maintenance of the
protein function. Hence, when an amino acid is substi-
tuted by another amino acid which appears in the multi-
ple sequence alignment with a relatively high frequency,
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Figure 8

Prediction results for unclassified amino acid substitutions
occurring in human proteins and collected in the Swiss-Prot
database.

the function of the protein could possibly be maintained,
and the substitution is likely to be tolerant.

Rule 9 in Figure 7 says that when one of the amino acids
in the set of {W, V, G, L, I} is substituted by one of the
amino acids the set of {V, I} (11<X,<15and 2 <X,,<
3), if the substituted amino acid has a neutral change in
molecular weight against the original one (X,5; = 4), the
substitution is likely to be tolerant. This rule uses 3 fea-
tures (X,, X;,, and X,s), covering 3.5% (493) data samples
with an accuracy of 77% and a discrimination power of
6.9. The principle behind this rule is that when amino
acids are substituted by other amino acids having similar
physicochemical properties, the structure of the protein is
likely to be maintained, and thus the function of the pro-
tein is likely to be kept.

Prediction of the unclassified amino acid substitutions

We further applied the support vector machine and the
random forest with the discrete form of our feature set to
predict potential effects of unclassified amino acid substi-
tutions in human proteins. We first used the 10-fold cross-
validation experiments to determine the decision thresh-
old for each method so that the balanced error rate (BER)
could be minimized in the experiments, and then applied
each method with the corresponding decision threshold
on the unclassified data to make predictions. The results
are shown in Figure 8.

Within the 1,487 unclassified amino acid substitutions,
the support vector machine predicted 924 (412 +
383+118+11) as intolerant and 563 (310+149 + 79 + 25)
as tolerant, while the random forest predicted 1023 (412
+383 + 149 + 79) as intolerant and 464 (310 + 118 + 11
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+ 25) as tolerant. 795 (412 + 383) substitutions were pre-
dicted as intolerant and 335 (310 + 25) were predicted as
tolerant by both methods. These overlapping predictions
were therefore with high confidence.

We also applied the six intolerant rules induced by the
simulated annealing bump hunting strategy in the previ-
ous section to the unclassified data. In total, the six intol-
erant rules covered 527 (412 + 79 + 11 + 25) data samples,
and 412 out of them were also predicted as intolerant by
both the support vector machine and the random forest.
Besides, 90 samples covered by these rules were also pre-
dicted as intolerant by one of the prediction methods.
Only 25 samples were not predicted as intolerant by either
method. These statistics suggested that the induced inter-
pretable rules were general (covering a significant propor-
tion of data samples), and were of very high quality (with
very few exceptions). More importantly, beyond the
highly confident predictions, these rules also revealed the
physicochemical principles behind the covered amino
acid substitutions and explained why these substitutions
would be intolerant.

Discussion and conclusions

Most contemporary studies aiming at predicting potential
effects of amino acid substitutions made use of compli-
cated and not widely available properties of amino acids
and proteins. To overcome these limitations, we proposed
a feature set based on three physicochemical properties of
amino acids, three relative frequencies of amino acids in
the secondary structures of proteins with known second-
ary structure information, and two evolutionary conserva-
tion scores. We applied three machine learning methods
(the decision tree, the support vector machine, and the
random forest) with our feature set to experimental
amino acid substitutions occurring in the E. coli lac repres-
sor and the bacteriophage T4 lysozyme, and showed that
the methods using our feature set could achieve preferred
prediction results in terms of the area under the ROC
curve, the balanced error rate, and the Matthews' correla-
tion coefficient. We further applied the support vector
machine and the random forest with our feature set to a
large number of amino acid substitutions occurring in
highly heterogenous human proteins, and showed that
our feature set could be applied to a much wider range of
human proteins and the prediction methods using our
feature set were superior to those using the existing more
complicated feature sets.

Although existing methods could produce reasonable pre-
dictions, they were not capable of capturing physicochem-
ical principles behind the predictions. In many situations,
however, these hidden principles were of more impor-
tance because they could uncover how amino acid substi-
tutions affect protein functions and why some
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substitutions would result in diseases. In order to explore
these principles, we used a novel designed rule induction
method called the simulated annealing bump hunting
strategy to automatically extract interpretable rules for
amino acid substitutions. The induced rules were either
consistent with current biological knowledge or providing
new insights for the understanding of the physicochemi-
cal principles behind amino acid substitutions.

One limitation of our feature set is that we currently use
the Pfam multiple sequence alignment to extract evolu-
tionary information for the query protein sequence. As a
result, we are limited to deal with amino acid substitu-
tions occurring in known protein domains. This limita-
tion can be overcome by using some other multiple
sequence alignment method such as the PSI-BLAST and
ClustalW instead of the Pfam. Another limitation of our
feature set is that the number of features is large, and some
of them are highly correlated. Although good results have
been achieved, integrating feature selection mechanisms
in prediction methods could further improve the predic-
tion performance. This demand is especially urgent when
using the support vector machine as the prediction
method. A third limitation is regarding how to perform
fair and comprehensive comparisons between feature sets
and prediction methods proposed in different literatures,
especially when the training and test samples are of differ-
ent sizes and from different data sources. Although this
direction is not the focus in this paper, it would be of great
importance and necessity in developing a general bench-
mark system using unified statistical criteria in our future
work.

As for the simulated annealing bump hunting strategy,
there exist two free parameters (4 and /). Although free
parameters incorporate more flexibility into the method,
they make the computational burden heavier (in order to
tune these parameters). How to design an automated
mechanism to guide the determination of these free
parameters remains an ongoing study. Also, although the
nine presented rules could be well explained, there exist
some other rules which are not easy to be interpreted by
current biological knowledge, especially when the rules
contain many features. How to simplify our feature set to
make the rules more interpretable forms another research
focus.

Despite the limitations, we showed that our results were
reasonably good. When using our feature set with the sup-
port vector machine and the random forest, we obtained
better ROC curves and smaller (balanced) prediction error
rates in the cross-validation experiments. When applied to
unclassified data, the six induced intolerant rules could
cover a large portion of data samples, and most of the cov-
ered substitutions were also predicted as intolerant by
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either the support vector machine or the random forest.
More importantly, beyond the highly confident predic-
tions, these rules could also reveal the physicochemical
principles behind the covered samples and explain why
these substitutions would cause diseases.

Methods

The proposed feature set

We propose a set of 44 features which are general enough
for most known proteins and are easy to be obtained by
simple calculations. Our feature set has a continuous
form, in which all the 44 features have continuous values,
and a discrete form, in which 42 features have ordered cat-
egorical values and the other 2 have continuous values.
The features are derived based on 3 physicochemical
properties (molecular weight, pl value, and hydrophobicity
scale) of amino acids, 3 relative frequencies for the occur-
rences of amino acids in the secondary structures (helices,
strands, and turns) of proteins with known secondary
structural information, and two evolutionary conserva-
tion scores. The unit of molecular weight is Dalton. The pI
(Isoelectric Point) is the pH value at which a molecule car-
ries no net electrical charge. The hydrophobicity scale of
Kyte and Doolitle is derived from the physicochemical
properties of amino acid side chains [25]. The three rela-
tive frequencies are calculated by counting the occur-
rences of amino acids in the corresponding secondary
structure of proteins with known secondary structural
information. All these six properties can either be
obtained from the literature [25,26], or be calculated
using only the sequential information of proteins [27].

The continuous form

For a given amino acid substitution pair (Org — Sub) in a
certain query protein, the above 6 properties are calcu-
lated for the original (Org) and the substituted (Sub)
amino acid, as well as in a window-sized situation which
includes the neighbors of the original amino acids in the
query protein sequence, and in a column-weighted cir-
cumstance in which the query protein sequence is aligned
with its homologous proteins. The calculations of the
properties for the original and the substituted amino acids
are straightforward. The window-sized properties (with
window size W) are calculated as the average of the corre-
sponding properties for the original amino acid and its W
- 1 neighbors in the query protein sequence. According to
the known relationship between sequences and secondary
structures of proteins (i.e., « helices are defined by
repeated hydrogen bonds with a period of 4 amino acids,
and have 3.6 amino acids per turn [26]), in this paper, we
set the window size W = 9 so that the sequence informa-
tion of the amino acids at the substitution positions and
the o helices next to the substitution residues can be
included. The column-weighted properties are calculated
as follows. For the query protein, its homologous proteins

Page 12 of 18

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:417

Table 4: Details of the proposed features.
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Physicochemical

Relative frequency in Conservation

Molecular pl value Hydrophobicity = Helices Strands Turns Frequency in
weight MSA
Original X, X, X3 X4 Xs X, X3
Substitution X5 Xg Xy X0 Xy Xy Xya
Window-sized X, X4 Xis X X7 Xg
Column- Xig X2 X Xn X3 X4
weighted
Substitution- Xys X Xy7 Xyg X9 X39
Original
Substitution- X3 X3, X33 X34 X35 X3¢
Window
Substitution- X3z X3g X39 X4 X4 Xp
Column

Each of the 6 amino acid properties is calculated in 7 situations, forming X, ~ X,,, while the conservation scores for the original and the substituted

amino acids become X,3and X, respectively.

are extracted from the Pfam database [22]. Supposing that
the substitution occurs at a position corresponds to a cer-
tain column of the alignment, the column-weighted prop-
erties are then calculated as the weighted average of the
corresponding properties for all the 20 kinds of amino
acids, where the weight of a certain kind of amino acid is
the frequency of its occurrence in the corresponding col-
umn of the alignment.

In addition, for each substitution pair, three combina-
tions of the above four situations are considered. First,
each of the 6 properties of the original amino acid is sub-
tracted from the corresponding property of the substi-
tuted amino acid, forming 6 features measuring the
relative change of the substituted amino acid versus the
original amino acid. Second, each of the 6 window-sized
properties is subtracted from the corresponding property

of the substituted amino acid, forming 6 features measur-
ing the relative change of the substituted amino acid ver-
sus the local environment of the substitution position in
the query protein. Thirdly, each of the 6 column-weighted
properties is subtracted from the corresponding property
of the substituted amino acid, forming 6 features measur-
ing the relative change of the substituted amino acid ver-
sus the evolutionary profile of the substitution position in
the homologous proteins.

Besides the above physicochemical and relative frequency
features, our feature set also include two evolutionary
conservation scores for the original and the substituted
amino acids. The conservation scores are defined as the
frequencies of occurrences of the amino acids (original or
substituted) in the corresponding column of the Pfam
multiple sequence alignment.

Amino acid
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Figure 9

An illustration of ordered categorical values for hydrophobicity scales for the original or substituted amino acids.
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Figure 10
An illustration of ordered categorical values for the window-
sized hydrophobicity.

With the above properties being calculated, we propose
the continuous form of the feature set, including 42 phys-
icochemical or relative frequency properties (each of the 6
amino acid properties being calculated in 7 different situ-
ations) and 2 conservation scores (for the original and the
substituted amino acids). As a summary, Table 4 shows
this feature set, with features labeled by X; fori =1,..., 44.

The discrete form

In order to make the features interpretable in physico-
chemical terms, we further discretize the physicochemical
and relative frequency properties (X, ~ X,, in Table 4). For
each of the properties corresponding to the original or the
substituted amino acids (X; ~ X,,), we first order the pos-
sible values (corresponding to the 20 amino acids) from
the smallest to the largest, and then use the ranks as the
categorical values for the property. By doing this, each cat-
egorical value corresponds to one or more amino acids,
while the categorical values for a certain property have
intrinsic order and clear physicochemical meaning. For
example, Figure 9 illustrates the ordered categorical values
for the hydrophobicity scale (X; or X,). 20 amino acids are
sorted according to their hydrophobicity scale, from the
most hydrophilic (R) to the most hydrophobic (I). The
ranks of the sorting results are then used as the categorical
values for the amino acids. Since amino acids N, D, E, and
Q have identical hydrophobicity in the Kyte and Doolitle
scale, they are assigned the same categorical value (3). The
physicochemical meaning of the ordered categorical value
is straight forward: the smaller the value, the more
hydrophilic the amino acid, and vice versa.

For each of the other properties (X5~ X,,), we first group
all the possible values to 7 bins with each bin having
equal interval, and then use the indices of the bins as the
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categorical values of the property. By doing this, each cat-
egorical value corresponds to several substitution pairs,
while the categorical values for a certain property have
intrinsic order and clear physicochemical meaning. As a
demonstration, Figure 10 illustrates how the window-
sized hydrophobicity scale is discretized. First, all the win-
dow-sized hydrophobicity scale values (X;5) in the data
set are collected, and the minimum value (-4.0) and max-
imum value (+4.0) are determined. And then, 6 threshold
values ({-2.86, -1.71, -0.57, 0.57, 1.71, 2.86}) are calcu-
lated so that the interval ([-4.0, +4.0]) can be cut into 7
equal bins. Finally, the indices of the bins are used as the
categorical values. The physicochemical meaning of the
ordered categorical value is straight forward: the smallest
value corresponds to strongly hydrophilic local environ-
ment, while the largest value corresponds to strongly
hydrophobic local environment.

With each feature having meaningful ordered categorical
values, we propose the discrete form of our feature set,
containing 42 physicochemical or relative frequency
properties (each having ordered categorical values) and
the 2 conservation scores. We would use the same method
as shown in Table 4 to label these features, with X; ~ X,
having ordered categorical values.

Prediction methods and evaluation criteria

When comparing the proposed feature set with other pub-
lished ones using experimental substitution data, we use
the decision tree, the support vector machine, and the ran-
dom forest to predict the potential effects of amino acid
substitutions. Recent studies regarding the random forest
[19] have shown that prediction results can be signifi-
cantly improved by growing a set of decision trees and let-
ting them to vote. Hence, we adopt the support vector
machine (SVM) [18] and the random forest (RF) [19] with
the proposed feature set to predict the potential effects of
human disease related substitutions. For the support vec-
tor machine, two crucial parameters are commonly
referred to as C and g. We use a grid search, as included in
the libsvm software package [18] to determine these
parameters. For the random forest, two important param-
eters are in general referred to as mtry (the number of ran-
domly selected features at each node of the internal
decision trees) and jbt (the number of decision trees in the
forest). We use jbt = 1000, and try different mtry (from 1
to 10) to select the one which can give us the best predic-
tion performance.

The performance of each prediction method is evaluated
using 10-fold cross-validation experiments, and the
results of 10 independent experiments are averaged to get
a fair evaluation. We use three criteria to evaluate the per-
formance of a prediction method. The first criterion is the
area under the receiver operating characteristic (ROC)
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curve (AUC), which provides us comprehensive under-
standing for the prediction power of a given method. The
other two criteria are the balanced error rate (BER) and the
Matthews' correlation coefficient (MCC) [28]. They take
the imbalance of intolerant samples and tolerant samples
into consideration and provide us more detailed under-
standing for the prediction power under certain decision
threshold.

Given the 10-fold cross-validation results and a certain
decision threshold, we can calculate the numbers of true
positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) under the threshold. The bal-
anced error rate (BER) and the Matthews' correlation coef-
ficient (MCC) [28] under the decision threshold are then
defined as

BER=~f P, N )
2{ IN+FP  TP+EN

and

TP X TN - FPxFN

MCC = .
J(TN+EN)(TN +FP)(TP + FN) (TP + FP)

In general, the small the BER and the large the MCC, the
better the prediction method.

Rule induction for amino acid substitutions

With the meaningful features available, we can use rule
induction methods to automatically extract interpretable
rules for amino acid substitutions. A rule has a productive
format

IF (condition)
THEN (prediction).

The condition part should include only a small number of
features so that the rule can be easily interpreted, while the
prediction part gives an assertion about the potential
effects (tolerant or intolerant) of amino acid substitutions
which satisfy the condition.

For a given amino acid substitution data sample, let x =
(x1,---» xp)T be the vector of all the features, where D = 44
is the total number of features. Let y be the indicator of the
substitution type. In the case that we target to extract rules
for intolerant substitutions, y = 1 if a substitution is intol-
erant and 0, otherwise. In the case that we aim at extract-
ing rules for tolerant substitutions, y has the opposite
meaning. Each substitution can be thought of as an obser-
vation of the output (y) produced by a certain unknown
function, given the inputs (x), and observations with sim-
ilar outputs and similar inputs (or a subset of the inputs)

http://www.biomedcentral.com/1471-2105/7/417

define a rule. The similarity of the inputs can be specifi-
cally described by a "box" (sub-region) in the feature
space, and defined by a set of feature intervals. The cover-
age of a rule can be represented by the size of the corre-
sponding box (box-size), and the quality of a rule can be
described by the average value of the output y for data
samples inside the box (box-mean). Let N be the total
number of data samples. The rule induction process is
then mathematically formulated as:

Given repeated observations {(yk,xk)};fz\]zl composed of
the substitutions (the outputs y,), along with simultane-
ous values of the features (the inputs x;,), search in the fea-

ture space optimal boxes such that the box-means are as
large as possible while the box-sizes are not very small.

This problem can be addressed using the patient rule
induction method (PRIM) [21], which is also referred to
as a "bump hunting" method. Each rule is described using
a "box" B in the feature space, defined as

D
B=() B4,
d=1

where interval 8 ;= [b,, b,,] is the boundary for the d-th

dimension of the box. The location of the k-th data point
in the d-th dimension can be described by an indicator

5 <1 b <xf <by,;
0, otherwise.

For the k-th data sample, another indicator is further
introduced as

D d
5. =T8¢
d=1

to describe whether the k-th data point locates inside the
box (8,= 1) or not (J,=0). The size of abox B is quanti-
fied by the (normalized) number of data points falling
into the box as

1N
==Y,
s =5 201

The average value of the output y for data points locating
inside the box 8 is referred to as the box-mean and cal-
culated by
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Ly
Y8 =—=— 2, OkVr-
Nﬁ‘B k=1

These definitions make both the box-size and the box-
mean taking values in the interval of [0, 1].

The PRIM then intends to search in the box space abox 8

which has maximum box-mean yg, with the constraint

Bg > B, (B, is a predefined threshold). This is treated by a

"top-down peeling" algorithm and a "bottom-up pasting"
algorithm. The top-down peeling algorithm starts from
the whole search space (the initial box) and repeatedly
tries to maximize the box-mean by removing some bad
data points (y = 0) from the box. Since each peeling is per-
formed without knowledge of later peels, it is possible
that the final box can be refined by readjusting some of its
boundaries. Hence, the bottom-up pasting algorithm
repeatedly tries to put some good data points (y = 1) back
by growing the box. Smaller boxes often results in larger
box-mean, the PRIM thus seeks for a reasonable tradeoff
between the box size and the box mean. The tradeoff is
typically done manually by looking at a box-size - box-
mean trajectory plot. The final box represents the
extracted rule. Considering that some redundant features
may exist, a tradeoff between the complexity and good-
ness of the rule can be further considered by trying to
remove some features from the rule. This is done after the
final box is obtained by looking at how box-mean
changes while removing some boundaries from the box.

Simulated annealing bump hunting strategy

The PRIM can be thought of as a steepest-ascent searching
method in the box space. The final box is a (local) opti-
mum without guarantee to be the global optimum. Also,
the top-down peeling removes the data points perma-
nently in iterations. Although some of the good data
points can be put back by the bottom-up pasting, the
repair to the box seems to be very limited. Moreover, it is
doubtable that the process of removing some features
from the rule after the final box is obtained could be an
effective way to generate an optimum rule. These consid-
erations motivate us to explore an automated feature
selection methodology which can discard redundant fea-
tures while extracting rules. The basic idea is to use the
simulated annealing strategy instead of the steepest-ascent
searching, while incorporating the automated feature
selection process in the strategy.

The presence of a feature in a rule can be described as the
presence of a boundary in a box and represented by an

http://www.biomedcentral.com/1471-2105/7/417

indicator &;, where &; = 1 if the d-th feature is included in
the box and 0, otherwise. The indicator d,with &;included
S

then becomes §j, = H?Zl(sg) " The formulas for the

box size Bg and box-mean yg remain unchanged. Con-

sidering that the proportion of data samples from differ-
ent categories may be very different, we further introduce
a normalized quantity

_ Z[k\il@e)’k /Zleyk
szzl&e(l - Vk)/z,[jzl(l — Vi)

to measure the discrimination power of a box B, where

1. 7rs
a l-yg

Pg

a =ZkN:1yk/2kN:1(l—yk) is the ratio of the positive

data samples against the negative data samples. We would
take the possible imbalance between the data samples
into consideration and maximize the discrimination

power pg forrule induction. Nevertheless, ¢ris a constant
with fixed number of data samples, maximizing the dis-

crimination power pg is therefore equivalent to maxi-

mizing the box mean yg, and vice versa.

For boxes with comparable box-sizes and box-means, we
prefer boxes have fewer features. This is achieved by
rewarding boxes with less features using the quantity of
Tg = exp(—lE?zléd) where A is a hyper-parameter. A =

0 means that we do not take the number of features into
consideration, while positive A values give preference to

less number of features. In this paper, we in general set 4
=1.0.

The simulated annealing strategy then intends to maxi-
mize the box-mean yg using as simple box as possible
with the constraint that the box-size fg > f,. We write

this maximization problem as

max yg +7g,
S.t. ﬂg > ﬁO'

where £, is a predefined threshold (minimum size of a
box, e.g. £, = 0.05). Define the energy function as E = 1 -
(yg + tg)/2. The simulated annealing strategy repeat-
new boxes

edly generates using meta-operations

described below and seeking for energy decreasing. Let AE
= Enew . Fold [f 3 tentative new box can decrease the energy
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(AE < 0), it is accepted; otherwise (AE > 0), it is accepted
with probability 7z = exp(-xAE/T), where xis a normaliza-
tion constant (e.g., k= 1.0) and T is a pseudo-temperature
(with initial value 1.0). Three meta-operations are used to
generate a new box from the current one.

1. Left side peeling/pasting. Select a d-th dimension at
random, then update the left bound ary. For continuous
values, let b, < b, + N (0,1) x (b, - b;), where N (0,1) is
a real number sampled from a Normal distribution with
mean 0 and standard derivation 1. For ordered categorical
values, let b, < b, + 1.

2. Right side peeling/pasting. Select a d-th dimension at
random, then update the right boundary. For continuous
values, let b;, «— b;,+N(0,1) x (by, - b;.). For ordered cate-
gorical values, let b, < by, + 1.

3. Feature including/excluding. Select a d-th dimension
at random, then update the d-th boundary by adding it to
the box (&; < 1) or removing it from the box (&; < 0).

The simulated annealing bump hunting strategy can then
be described as follows.

1. Initialization. Generate a box containing all the data
samples.

2. Random walk. Execute one of the meta-operations at
random on the current box, calculate

1
AE = E(V%ld +gd -y BV - o).

3. Acceptance. If AE < 0, accept the random walk; other-
wise, accept the walk with probability

Pr(accept) = exp(-kAE/T).

4. Temperature decay. Decrease T by power law: T < T x
AT, where AT is a positive real number close to 1.0 (e.g.,
AT =0.9999).

5. Repeat 2 ~ 4 until convergence.
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