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Abstract
Background: The splicing of RNA transcripts is thought to be partly promoted and regulated by
sequences embedded within exons. Known sequences include binding sites for SR proteins, which
are thought to mediate interactions between splicing factors bound to the 5' and 3' splice sites. It
would be useful to identify further candidate sequences, however identifying them computationally
is hard since exon sequences are also constrained by their functional role in coding for proteins.

Results: This strategy identified a collection of motifs including several previously reported splice
enhancer elements. Although only trained on coding exons, the model discriminates both coding
and non-coding exons from intragenic sequence.

Conclusion: We have trained a computational model able to detect signals in coding exons which
seem to be orthogonal to the sequences' primary function of coding for proteins. We believe that
many of the motifs detected here represent binding sites for both previously unrecognized proteins
which influence RNA splicing as well as other regulatory elements.

Background
In eukaryotes, the majority of transcripts are processed by
splicing to remove intron sequences and form a mature
messenger RNA. There are well established conserved
sequence motifs at the intron/exon and exon/intron
boundaries that are known to be recognised by the splic-
ing machinery. However, even for short intron sequences,
it has been concluded that these signals do not contain
sufficient information to accurately define splice sites [1]
and that other splicing factors, with associated binding
sites, must be involved.

There is evidence that splicing is partly promoted and reg-
ulated by sequences embedded within exons. A number
of sequences have been found embedded in the exons of
both viral and cellular genes which can promote or repress

the utilization of alternative splice sites. These are usually
purine-rich sequence located near an alternative splice
donor, that bind splicing factors such as members of the
SR family. SR proteins are highly conserved serine/
arginine-rich RNA-binding proteins (For review, see [2]).
They are essential splicing factors and have been shown to
regulate the selection and use of alternative splice sites [3-
10]. It is known that they function very early in the spli-
ceosome assembly process, promoting the binding of U1
snRNP to the splice donor and of U2AF to the splice
acceptor, apparently by interacting with U1 70 K and
U2AF respectively. Observations have shown that SR pro-
teins bound to exons recruit splicing factors to the adja-
cent splice sites. Nine human SR proteins are currently
known: SF2/ASF [2,4,6,7], SC35 [4,6-8,11,12], SRp20
[6,8], SRp40 [4], SRp55 [4], SRp75 [2], SRp30c [2], 9G8
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[6,9,11] and the divergent SRp54 [2]. These proteins are
closely related in sequence and structure and share the
ability to activate splicing. Human SR related proteins of
the Tra2 family are similarly known to be splicing regula-
tors and sequence specific activators of pre-mRNA splicing
[8].

Early research concentrated on how SR proteins function
to regulate alternative splicing. However, the binding of
SR proteins to constitutive exons, which are included in
all splice variants of a gene, is also thought to play an
important role in splicing. The exon definition model pro-
poses that interactions between components bound to
splice sites flanking an exon serve to highlight usually
small exons against a background of much larger introns.
It is conjectured that the majority of constitutively spliced
exons are defined by this mechanism. To support the
model, a number of SR protein binding sites have been
identified in constitutive exons, and shown to function as
constitutive splicing enhancers [6,13].

Although these binding sites are believed to be common,
studying their sequences is difficult because they are
embedded in exons, most of which are also functional
protein-coding sequences. When a particular motif is
found to be over- or under-represented in coding exons, it
is generally unclear whether it is a consequence of the
underlying protein sequence, or an unrelated signal, such
as a splice enhancer, embedded in the protein coding
sequence. Here we describe a novel strategy for resolving
this uncertainty. Starting with annotated coding exons, we
generate a 'neutralized' exon set: sequences which are gen-
erated randomly, but which nevertheless preserve both
the amino acid sequence and overall composition features
of the original exons. We then apply machine learning
software to compare the original and neutralized exons.
Since the neutralized set codes for the same proteins, it is
likely that any feature which can be used to discriminate
between the original and neutralized sets is performing
some function which is independent of the exons' pri-
mary, protein-coding, function.

Results and discussion
Neutralized exons
9091 internal coding exons with lengths ranging from 100
to 300 bases were extracted from the Vega database of
annotated human genomic sequence [14]. Testing the
neutralization process (see methods section) on a typical
300 base exon (figure 1) we see that the sequence identity
between the original and neutralised sequence falls stead-
ily for approximately 500 cycles, then stabilizes and only
fluctuates slightly for the remainder of the cycles. Allow-
ing some margin for exceptional sequences, this suggests
that that 1000 cycles of neutralization is adequate to ran-
domize any sequence with a length up to 300 bases. Run-

ning the neutralization algorithm on the complete set of
exons, for 1000 cycles per exon, gave a neutralized set with
an average of 78% sequence identity compared to the ref-
erence set. The average dinucleotide compositions of the
exons before and after neutralization is shown in table 1.
We can see that most dinucleotides show negligible
change in composition during the neutralization proce-
dure, and in the most extreme case (the tt dinucleotide),
the proportion of the sequences composed of tt dinucle-
otides changes by less that 2%. Therefore, the neutraliza-
tion algorithm seems able to preserve overall sequence
composition while substantially changing the sequence
itself.

Motif-based models can effectively distinguish between 
original and neutralized exons
From both the original and neutralized sets, we removed
300 randomly selected sequences for use as test data. The
remainder were used to train a Convolved Eponine Win-
dowed Sequence (C-EWS) model (see methods section
and [15]). These models are based on scaffolds of one of
more sequence motifs (in this case, limited to a maximum
of three per scaffold). The motifs are represented as DNA
weight matrices [16]. When a scaffold includes more than
one motif, probability distributions associated with each
motif indicate the preferred relative positions of those
motifs. Each scaffold has an associated weight, which is

A plot of the time-course vs percentage of sequence identity for neutralizing a typical 300 base sequenceFigure 1
A plot of the time-course vs percentage of sequence 
identity for neutralizing a typical 300 base sequence. 
A plot of the time-course vs percentage of sequence identity 
for neutralizing a typical 300 base sequence. The level of 
sequence identity falls in a steady rate for about 500 cycles 
and then comes to a minimum at about 1000 cycles. From 
1000 cycles onwards, there are only slight fluctuations which 
implies that 1000 cycles of neutralization is the optimum 
value to randomize any sequence with a length up to 300 
bases.
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used to combine scaffold scores in a relevance vector
machine.

Training resulted in a complex model consisting of 216
scaffolds, split evenly between positively-weighted scaf-
folds – signals which are likely to be over-represented in
the original exons – and negatively weighted scaffolds.
The complete set of scaffolds can be seen in figures 2 and
3.

We tested the resulting model's classification ability using
the unseen test data. Specificity (proportion of predictions
that are correct) and sensitivity (proportion of original
exons detected) are shown for a range of classifier score
thresholds in figure 4. From the sensitivity-specificity
curve, we see that the Eponine-Exons model is effective in
distinguishing between original and neutralized exons.

Since the human genome is a mosaic of isochores of high
and low GC content and neutralization generates
sequences with average properties, it was possible that the
classifier's performance was an artifact resulting from dif-
ferences in GC distribution between original and neutral-
ized sequences. To check this was not the case, the original
set of sequences was split into subsets of high and low GC
content. For each subset an associated neutralized set was
generated, based on the average properties of that subset.
Separate models were then trained and tested (see figure
4). We find that for both high and low GC subsets the clas-
sifier is still able to distinguish original and neutralized
sequences.

The Eponine Exons model can also distinguish non-coding 
exons from randomized sequences
Since the negative training set is not composed of natural
sequences, an obvious concern is that the features we have
detected are artifacts of the neutralization procedure, and
are of no use when analysing real sequence data. To vali-
date the Eponine-Exons model, we tested it on additional
sequences from four classes: protein coding exons not in
the original training set, non-coding (UTR) exons,
introns, and intergenic regions, all from annotation of fin-
ished human chromosomes obtained from chromosomes
9 and 10 in the Vega database [14]. For exons, introns and
intergenic regions, we extracted sets of 1000 sequences,
each of 200 bases long (one set each for exons and
introns, four independent sets for intergenic regions). We
were unable to obtain sufficient 200 base non-coding
exonic sequences, so instead we used 100 base sequences.

For each data set, we produced a corresponding set of neg-
ative sequences with matching mono- and di-nucleotide
composition using the randomizing procedure detailed in
the methods section. We then used the Eponine-Exons
model as a classifier, and tested its ability to separate each
of the positive sequence sets from its corresponding nega-
tive sequence set. Sensitivity-specificity curves are shown
in figure 5.

In the case of the intergenic sequences, there is no signifi-
cant discrimination between real and shuffled sequences.
The coding sequences, however, could be discriminated,
as might be expected from a classifier trained on protein-
coding sequences. Moreover, the model was also able to
distinguish many non-coding exons from their shuffled
counterparts. This result is highly significant because it
indicates that at least some of the signals discovered in
coding exons are general to both coding and non-coding
exons. This is consistent with the idea that they are
involved in exon definition and splicing. Finally, there is
a far weaker, but still possibility significant, discrimina-
tion between real and shuffled intron sequences. One
explanation for this is that the introns were contaminated
with a small number of exons which were missed during
the annotation process. However, a second possibility is
that, in addition to an exon-specific signal, the Eponine
Exons model is also detecting some (weak) signal – per-
haps an anti-termination signal – which is found through-
out transcribed regions of the genome. We note that the
discrimination between exons and shuffled sequences is
not as effective as discrimination between exons and neu-
tralized sequences, which implies that some degree of
overfitting may have occurred in the training process.
Nevertheless these results suggest that a significant
amount of relevant information has been captured.

Table 1: Comparison of dinulceotide frequencies in original and 
neutralized exons

Dinucleotide Original exons Neutralized exons

aa 7.71% 7.73%
ac 5.56% 5.55%
ag 8.19% 8.21%
at 5.58% 5.62%
ca 8.06% 8.06%
cc 7.17% 7.18%
cg 2.73% 2.74%
ct 6.96% 6.88%
ga 7.76% 7.76%
gc 6.41% 6.38%
gg 6.61% 6.54%
gt 4.55% 4.58%
ta 3.43% 3.47%
tc 5.72% 5.69%
tg 7.98% 7.96%
tt 5.48% 5.58%

Comparison of dinucleotide frequencies in original and neutralized 
exons. In all cases frequencies before and after neutralization are very 
similar.
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Based on these results, we hoped that the model would be
able to successfully discriminate between exons and other
biologically authentic sequences. However, in initial tests
exons did not generally score higher than intronic or inter-
genic sequences (data not shown). When we inspected the
sequences, we found that the exons had a significantly dif-
ferent composition from other sequences: in particular,
they tended to have a higher GC content. We suspected
that the classifier output was somewhat sensitive to the
GC content of the input sequence. When we compensated
for this effect by randomly sampling a subset of intronic
sequences with GC contents matching that found in the
exonic test sequences (both coding and non-coding), the
eponine-exons model was able to discriminate between
the sets (see figure 6).

Comparing introns with similar GC content to the exons,
the discrimination between non-coding exons and
introns is relatively poor – although still substantially bet-
ter than random. This points to a limitation in the training
approach of exons vs neutralized exons: splicing signals in
a background of non-coding exonic sequence are not cap-
tured well by our classifier. In addition, [17] conclude the
most exons require sequences in the flanks for efficient
splicing, and these will clearly not be learned by our
method, which focusses on the body of the exon.

The neutralization process we use has some similarities to
the dicodon shuffling algorithm proposed by [18], which
swaps pairs of synonymous codons under a constraint
that the dinucleotide composition of the sequence must

Positively weighted scaffolds in the Eponine-Exons modelFigure 2
Positively weighted scaffolds in the Eponine-Exons model. Positively weighted scaffolds in the Eponine-Exons model. 
Motifs that together form a scaffold are linked by lines. Scaffolds are generally composed of 1, 2 or 3 motifs. The black filled 
areas show the relative position distributions (histograms) of the motifs within a scaffold, while the sequences represent the 
most likely base at each position in the weight matrix of the motif.
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be preserved. We implemented this algorithm to compare
its performance and properties with our own neutraliza-
tion strategy. On the same sequences, the dicodon shuf-
fling algorithm gives a set of sequences with an average
sequence identity of 90% to the reference set. This is much
higher than the 78% sequence identity observed after
applying our neutralization procedure. This is unsurpris-
ing because the constraints under dicodon shuffling are
stronger, requiring the dinucleotide composition to be
maintained on a per-sequence basis, whereas neutraliza-

tion only requires this across the complete set of
sequences. To test whether this makes a significant differ-
ence when searching for functional motifs, we carried out
identical training using C-EWS and obtained a model of
similar complexity. However we found it had a much
lower classification ability using unseen test data (c.f. fig-
ure 4) and was unable to distinguish between shuffled
and reference sequences better than random for either
coding, non-coding or intronic sequence (c.f. figure 5,
data not shown). We conclude that our approach of neu-

Negatively weighted scaffolds in the Eponine-Exons modelFigure 3
Negatively weighted scaffolds in the Eponine-Exons model. Negatively weighted scaffolds in the Eponine-Exons model. 
The interpretation of the whole figure is similar to figure.
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tralization destroys information more readily than dico-
don shuffling and that this is necessary to reveal a strong
enough signal for motifs to be recognised.

Comparison of learned motifs with known splice-enhancer 
sites
If the motifs learned in the Eponine Exons model are
meaningful, a subset of them might be expected to match
the set of motifs that have already been show to influence
splicing. We therefore compared the weight matrices in
the positively weighted scaffolds of our exon model with
known splice enhancer sites [2-12].

Direct comparisons of weight matrices with sequence
motifs – with or without ambiguity symbols – is compli-
cated, since different positions in a weight matrix may
convey different amounts of information. Furthermore, it
is not certain that either the learned weight matrices or the
published motifs correspond to the full length of the bio-

logically functional sequence. It is therefore important to
consider a range of possible alignments of motifs to
weight matrices.

We extracted all weight matrices from the Eponine Exons
model which were associated with a positive scaffold and
which were at least four bases long. For each known motif,
we calculated the log-odds score against all weight matri-
ces from scaffolds with weights greater than 1.0, consider-
ing all possible alignments with up to one base of overlap,
and took the maximum score. We summed the maxima to
give an aggregate score for the degree of match between
that motif and the full Eponine model.

We then constructed 1000 random weight matrix sets,
each with matched information profiles to the Eponine
Exons matrix set. Again, we calculated the aggregate score
for each known motif. Finally, we counted the fraction of
random matrix sets which scored higher than the Eponine

Specificity vs sensitivity plot for the Eponine-Exons modelFigure 4
Specificity vs sensitivity plot for the Eponine-Exons model. A plot of specificity vs. sensitivity showing the ability of the 
eponine model to discriminate between unseen original and neutralized exons. Plots are shown for the whole test set and two 
sets split between low and high GC content.
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Exons matrices. This can be considered as an empirical p-
value, with low values providing strong support for the
hypothesis that there is some correspondance between
motifs in the Eponine Exons model and the known motif
being tested. Presumably, in each case there is some sub-
set of Eponine Exons motifs which actually correspond
with the known motifs, but identifying these in a statisti-
cally rigorous manner is harder: since the Eponine Exons
model is relatively large, a corresponding multiple testing
correction would be needed. We therefore limit ourselves
to considering aggregate scores here, even though we
believe it to be a rather conservative strategy.

Tables 2 and 3 list the p-values for known motifs from
exons and introns respectively. We see significant associa-
tions for 4/12 exonic motifs and 2/9 intronic motifs.
Interestingly, one of the two matched intronic motifs is a
substring of the other, and they are believed to be binding

sites for the same protein – Tra2beta – so arguably they
should be merged, in which case 1/8 intronic motifs are
matched. Such a preference for exonic over intronic motifs
may not be surprising, since the model was training only
on exonic sequences. Several other computational meth-
ods for finding splice enhancer signals have been pro-
posed [19-22]. One method, RESCUE-ESE [19] compares
the sequences around weak consensus splice sites with
those around strong consensus sites, with the expectation
that splice enhancer motifs are more likely to be found in
the vicinity of weak splice sites. This strategy relies infor-
mation orthogonal to that used by our method, thus it is
interesting to compare the results. We compared the RES-
CUE-ESE derived motifs with the eponine model using
the same approach as used for the experimentally deter-
mined motifs (see above). The results in table 4 shown
that our model finds one of the motifs detected by the
RESCUE-ESE method. We are not surprised that our

Sensitivity-specificity curves for Eponine-Exons model on independent sets of sequencesFigure 5
Sensitivity-specificity curves for Eponine-Exons model on independent sets of sequences. Specificity vs. sensitivity 
for the Eponine-Exons model on independent sets of intergenic, intron, and UTR exon sequences compared with random 
sequences of matching mono- and di-nucleotide composition. All curves are based on sets of 1000 sequences. In the case of 
intergenic sequences, standard-deviation error bars were calculated based on results from four independent sets of sequences.
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method did not find all the RESCUE-ESE motifs since
RESCUE-ESE is designed to detect both exon and intron
localized motifs.

Finally, we performed an analogous experiment to dis-
cover what proportion of our discovered motifs matched
previously known motifs. In this case, 41% of motifs from
the Eponine-Exons model had a good match to at least
one motif from the exonic splice enhancer and RESCUE-
ESE sets described above (log-odds score at least 0.2 above
the expected score based on a set of 1000 shuffled motifs),
suggesting that around 59% of discovered motifs may be
novel.

Conclusion
We have shown that a motif-based machine learning strat-
egy can extract signals which discriminate effectively
between original and neutralized sets of protein-coding
exons. The resulting model included recognizable consen-

sus sequences for many of the previously reported splice-
enhancer binding sites.

Although the model was trained only on coding exon
sequences, it gives high scores for both coding and non-
coding exons, but not introns or intergenic regions. We
therefore believe that the neutralization strategy is a pow-
erful and effective method for learning functional non-
coding elements embedded in protein coding sequence.

One interesting feature of the model learned here is its
complexity: 216 scaffolds, split evenly between positively
and negatively-weighted scaffolds. This is a large number,
both in absolute terms, and also in comparison with EWS
and C-EWS models trained for other purposes, such as
promoter prediction [23]. This suggests that a large
number of functional elements could play widespread
roles in exon definition. The motifs learned here which
cannot be assigned to any currently known splice-regulat-

Sensitivity-specificity curves for Eponine-Exons model to distinguish non-coding exonic sequences and intronic sequencesFigure 6
Sensitivity-specificity curves for Eponine-Exons model to distinguish non-coding exonic sequences and intronic 
sequences. Specificity vs. sensitivity for the Eponine-Exons model to distinguish exonic sequences (both coding and non-cod-
ing) and intronic sequences with matching GC content.
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ing protein are strong candidates for investigation with a
view to discovering novel splice regulators.

We hope that changes in the machine learning strategy
will improve the classification accuracy of this method.
Possible candidates for investigation include the use of
scaffolds comprising more than 3 motifs, and the replace-
ment of simple weight matrices with more complex mod-
els which serve as better representations of protein
binding sites. We do not, however, necessarily expect that
it will be possible to classify original and neutralized
exons with 100% accuracy: most proteins can accept
many mutations with little or no change to structure and
function, so it is inevitable that some of the information
which the cell uses to define exons will be encoded in the
choice of amino acids, rather that just the choice of nucle-
otides used in redundant positions.

In the future, we hope to apply the results of this tech-
nique to the problem of ab initio prediction of genes. Cur-
rent gene-prediction techniques rely on a combination of
splice-site models and 'coding bias' – the observation that
coding sequence looks very different from intronic and

intergenic sequence when considering properties such as
hexamer frequencies. While such methods work reasona-
bly well for protein-coding genes, they seldom make good
predictions of untranslated regions, and do not detect the
non-coding RNA genes which are now known to be
important in many aspects of cellular function. Scanning
bulk genomic DNA using our model makes many predic-
tions outside known exons (i.e. a high apparent false pos-
itive rate). This suggests that while the motifs discovered
here may be necessary for efficient splicing, they are not
sufficient to fully define exons. We hope that building
knowledge of candidate binding sites into gene prediction
methods, together with other features such as splice junc-
tion consensus sequence, will improve the prediction of
all spliced transcripts, whether coding or non-coding.

Methods
Genome sequence and annotation
Curated annotation of gene structures on chromosomes
6, 13, 14, 20, and 22 were obtained from the Vertebrate
Genome Annotation (Vega) database [14]. We extracted a
total of 27954 internal protein-coding exons of different
intron phases for our positive training set. Based on the

Table 3: Comparison of known ESE motifs which are located at the splice acceptor site of the exon-intron boundaries

Consensus SR Protein or Gene p-value Status Reference

ctcktcy SRp20 0.922 Schaal et al (1999)
rgaccgg SC35 0.054 Schaal et al (1999)
agagcagg ASF/SF2 0.135 Zheng et al (1999)
rgackacgay 9G8 0.352 Tian et al (1999)
aagaagaa Tra2 (beta) 0.015 + Tacke et al (1995)
tcaaca Tra2 0.904 Lynch et al (1996)
gaagaa Tra2 (beta) 0.010 + Tacke et al (1999)
gacgacgag Pu1 0.111 Bourgeois (1999)
gatgaagag Pu2 0.183 Bourgeois (1999)

Comparison between the eponine motif model and known ESE motifs which are located in introns at the splice acceptor site of the exon-intron 
boundaries. A '+' in the status column indicates a significant p-value <= 0.05.

Table 2: Comparison of known ESE motifs which are located inside the internal exons.

Consensus SR Protein or Gene p-value Status Reference

aggacagagc ASF/SF2 0.398 Tacke et al (1995)
aggacgaagc ASF/SF2 0.007 + Tacke et al (1995)
rgaagaac ASF/SF2 0.010 + Tacke et al (1995)
acgcgca ASF/SF2 0.062 Tacke et al (1995)
aggacrragc ASF/SF2 0.117 Tacke et al (1995)
tscgkm SRp55 0.096 Liu et al (1998)
cctcgtcc SRp20 0.948 Tacke et al (1999)
tgttcsagwt SC35 0.707 Tacke et al (1999)
tgcngyy SC35 0.990 Schaal et al (1999)
acgaggay 9G8 0.005 + Cavaloc et al (1999)
tcwwc dsx 1.000 Schaal et al (1999)
aggagat SC35 0.020 + Cavaloc et al (1999)

Comparison between the Eponine Exons model and known ESE motifs which are located within internal exons. A '+' in the status column indicates 
a significant p-value <= 0.05.
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definition [24], an intron contained within CDS is said to
have a phase of zero if the intron demarcates a codon
boundary, a phase of one if it divides the codon between
the first and second nucleotides, and a phase of two if the
intron divides a codon between the second and third
nucleotides. The position of an exon with respect to the
codon positions can be defined by the phases of upstream
and downstream flanking introns and when an exon is
flanked by introns of the same phase, it will be a multiple
of three nucleotides in length. The phase definition is
important for the neutralization scheme described in sec-
tion.

Vega data, which is stored in an Ensembl style database
[25] was extracted directly from the database using the
BioJava toolkit with biojava-ensembl extensions [26].

Constructing a non-redundant set of sequences
To eliminate similar sequences from the datasets, we per-
formed an all-against-all comparison of the sequences
using NCBI blastn [27] using default options (word size
11, match reward +1, mismatch penalty-3) and recorded
all pairs with a bit score ≥ 35. We then performed single-
linkage clustering, and from each cluster we picked one
member at random to represent that cluster in the final
data set.

Neutralization of coding sequences
Exon neutralization is a process which randomizes the
sequence of a set of protein-coding exons while maintain-
ing three key constraints:

• The neutralized exons code for the same protein
sequence as the real exon

• The frequency of a particular codon being used to repre-
sent a particular amino acid is maintained

• The overall dinucleotide composition of the set is main-
tained

Thus, by comparing neutralized exons against the corre-
sponding set of original exons, it should be possible to
detect sequence features which are preferentially over- or
under-represented in the original exon set due to the
amino acid codons used. Features that occur purely as arti-
facts of the underlying protein sequence will occur with
equal frequency in the original and neutralized sets.
Because the differences in codon usage are subtle, a large
data set is required to construct a representative model.
However, the curated human gene set is sufficiently large
for this purpose.

The neutralization process used here is a Monte-Carlo
method, whereby small (single-codon) changes to the
sequence are proposed, then accepted or rejected on the
basis of a probabilistic model which captures the features
listed above. In this case, the model is encapsulated as a
set of conditional codon usage tables. Consider a codon C
which encodes amino acid A, and is flanked by nucle-
otides p and q to form the pentanucleotide pCq. Our
model records the probability of the codon being used in
this context:

P(C|A, p, q)  (1)

The model is initialized for a given set of exons by simply
counting all in-frame codons in the exon set. For each
exon in the set, a number of neutralization cycles are per-
formed. In each cycle, one in-frame codon position within
the exon is chosen at random. Let C equal the current
codon at this position. If it encodes an amino acid which
has only a single codon in the universal genetic code, it is
always left unchanged. Otherwise, a synonymous codon,
C', is proposed by sampling from a uniform random dis-
tribution over all synonyms, Q(C'|C). Next, the appropri-
ate conditional codon usage table is consulted, given the
two bases either side of C. We accept or reject the pro-
posed change on the basis of the Metropolis-Hastings cri-
terion [28]:

When z ≥ 1, the codon substitution is always accepted,
when z < 1 the substitution is accepted with probability z.
In this case, at any given position, the proposal distribu-
tion Q is always uniform, the second term of this expres-
sion can be ignored: it is simply the fit of the proposed
new codon to the model represented by the conditional
codon usage tables which is important.

z
P C

P C

Q C C

Q C C
=

′ ′
′

( )( )

( )

( | )

( | )
2

Table 4: Comparison of known ESE motifs with RESCUE-ESE 
method

Consensus p-value Status

atcttc 0.993
actaca 0.997
ttggat 0.415
gaatca 0.213
gaagaa 0.008 +
ttcaga 0.898
gacaaa 0.239
ctgaag 0.548
aatcca 0.952
aacttc 0.813

Comparison between the eponine motif model and known ESE motifs 
determined using the RESCUE-ESE method in [19]. A '+' in the status 
column indicates a significant p-value <= 0.05.
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Generating random sequences with matching mono- and 
di-nucleotide composition
In order to randomize a set of sequences while maintain-
ing mono- and di-nucleotide compostion, the sequence
set is first analysed and its initial dinucleotide composi-
tion recorded. Then a large number (typically 500) of iter-
ations are performed. For each iteration two points within
the sequence are selected at random, breaking it into three
segments, ABC. A rearrangement to give the sequence BAC
is then proposed. This rearrangement destroys two dinu-
cleotide pairings and creates two new pairings. The prob-
abilities of the sequences ABC and BAC are calculated
from the dinucleotide frequency table, and the rearrange-
ment is accepted or rejected based on the Metropolis-
Hastings criterion described above.

Generating sequences with matching GC content
For a further test in using the eponine-exons model in dis-
tinguishing non-coding exons and introns, we took our
set of non-coding exons (trimmed to 100 bases long) and
calculated the histogram of GC content. Then we shred-
ded a large set of introns into 100 base fragments and ran-
domly sampled fragments with a matched histogram of
GC content like the exons. The Eponine-Exons model can
successfully discriminate between exons and this GC
matched set of intronic sequences. We have also done the
same for the set of coding exons and a corresponding set
of intronic sequences with similar GC content distribu-
tion.

The Convolved Eponine Windowed Sequence model
Sequence classification models were trained using a Rele-
vence Vector Machine (RVM) [29]. The RVM is a method
for learning sparse classification or regression models by
optimizing the weights applied to an arbitrary set of basis
functions. The final model output for some piece of data
is the weighted sum of basis function outputs. The RVM's
sparsity property means that it will generally select only a
subset (often a small subset) of the basis functions pro-
vided for the final model, with all others given zero
weights and thus making no contribution. Sparsity is gen-
erally considered a desirable feature in a machine learning
system [30]. This is consistent with the intuition that a
simple model is more likely to make useful generaliza-
tions which can be applied to unseen data, rather than
solving the problem 'trivially' by memorizing the training
data. Sparse training methods also offer a partial solution
to the question of feature selection. The RVM is named by
analogy to the better-known Support Vector Machine
method, which is also a kind of sparse trainer, and indeed

the RVM was initially presented as an alternative and
direct competitor to the SVM. However, while the SVM
can only build models that can be expressed using a suit-
able kernel function, the RVM can build any model that
can be expressed as a sum of basis function outputs: we
therefore consider it a more flexible method. In this case,
we use the RVM as an engine to drive the construction of
a motif-oriented sequence model.

The Convolved Eponine Windowed Sequence (C-EWS)
model is a classification model for small regions (win-
dows) of sequence data. In this case, each basis function
defines a scaffold consisting of one or more DNA Posi-
tion-Weight Matrices (PWMs), each with an associated
position distribution relative to a scaffold anchor point.
In principle obvious choices for smooth position distribu-
tions, such as the discretized Gaussian, extend to infinity,
but in practice it is reasonable to apply some cut-off: for
instance, only considering the portion of the distribution
which includes 99% of the total probability mass. The
probabilities of all points outside this region are assumed
to be infinitesimal and ignored. Now that the distribu-
tions have finite size, for a given scaffold there is a pair of
integers, n and m, such that when the scaffold anchor is
placed in the interval [n : m], the non-infinitesimal parts
of all the position distributions fall entirely within the
length of a particular target sequence. In this model, we
take motifs into account regardless of where they fall on
the sequence, so we sum scores from along the length of
the sequence. The basis functions for the RVM therefore
take the form:

where  denotes a subsequence from i to j, Pk is the k'th

position distribution and Wk is the k'th weight matrix in

the scaffold. Z is the normalizing constant:

with |W| denoting the length of weight matrix W. For the
special case of scaffolds only containing a single motif,
this formulation is equivalent to the Eponine Windowed
Sequence model described in [15]. However, placing the
motifs in scaffolds opens the possibility of learning some
longer-range structural information. Groups of motifs
that are regularly found together might suggest RNA-bind-
ing factors – each recognising its own short target motif –
binding cooperatively.
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To train C-EWS models, the RVM is first initialized with a
set of single-motif scaffolds, each having a preference for
some randomly picked 5 base motif. The RVM training
process is then started and scaffolds which are not helpful
for the classification problem are discarded. Periodically
during training, the RVM working set is topped up with
additional scaffolds obtained by applying one of the fol-
lowing sampling strategies to a scaffold (or, in some case,
pair of scaffolds) randomly selected from the current
working set:

• Generate a new weight matrix in which each column is
a sample from a Dirichlet distribution with its mode equal
to the weights in the corresponding column of the parent
weight matrix.

• Generate a new weight matrix one column shorter than
the parent by removing either the first of the last column.

• Generate a new weight matrix with an extra column at
either the start or the end, biased in favour of a random
base.

• Combine the sets of motifs from two scaffolds, with ran-
domly chosen offsets between the two (up to some maxi-
mum number of weight matrices per scaffold, in this case
3).

• Take a scaffold with two or more PWMs and return the
scaffold with one of those PWMs (picked at random)
removed

• Alter the position or width of one of the relative position
distributions in a scaffold.

When an operation that acts on one motif is applied to a
multi-motif scaffold, one target motif from the parent
scaffold is picked at random. By applying these operations
repeatedly, the method is able to explore the space of scaf-
folds.
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