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Abstract

Background: Evaluating the importance of the different sources of variations is essential in
microarray data experiments. Complex experimental designs generally include various factors
structuring the data which should be taken into account. The objective of these experiments is the
exploration of some given factors while controlling other factors.

Results: We present here a family of methods, the analyses with respect to instrumental variables,
which can be easily applied to the particular case of microarray data. An illustrative example of
analysis with instrumental variables is given in the case of microarray data investigating the effect of
beverage intake on peripheral blood gene expression. This approach is compared to an ANOVA-
based gene-by-gene statistical method.

Conclusion: Instrumental variables analyses provide a simple way to control several sources of
variation in a multivariate analysis of microarray data. Due to their flexibility, these methods can be
associated with a large range of ordination techniques combined with one or several qualitative
and/or quantitative descriptive variables.

Background ysis [1,2]. In an unsupervised fashion, these techniques

Microarray experiments essentially yield highly multivari-
ate data. The number of variables measured in such data
is generally far greater than the number of samples and
numerous specific statistical approaches have been pro-
posed. In this context, ordination methods proved to be
powerful exploratory tools.

Principal component analysis (PCA) and correspondence
analysis (CA) are two dimensionality reduction tech-
niques commonly applied in this area of microarray anal-

aim to summarize trends present in high-dimensional
datasets.

Besides the variables of direct interest (gene expression
levels), one or several qualitative variables are sometimes
used to describe features of the experimental design. In a
clinical context, variables describing the phenotypic struc-
tures of a population are typically involved (e.g. "healthy
controls" vs. "patients"). Several other variables can also
be taken into account including information about tem-
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poral, treatment, individual effects, etc. Technical infor-
mation can also be described. For example, laboratory
effect and batch effect not rarely represent an important
source of data variation. Overall, the descriptive variables
can be classified into two categories: those which are rele-
vant to the analysis, and those whose influence should be
removed from the analysis.

Basic ordination methods like PCA or CA extract informa-
tion present in a dataset independently of a priori experi-
mental structures. On the other hand, one may wish to
take into consideration the effect of different variables
controlled in the experimental design. Constrained ordi-
nation methods were developed for this purpose. A vari-
ety of methods has been developed mainly in the context
of environmental science but only exceptionally have
been applied to genomics data. These methods include
(partial) canonical correspondence analysis (CCA) [3,4],
redundancy analysis (RDA) [5] and principal component
analysis on instrumental variables (PCAIV) [6]. The objec-
tive of these methods is to link a table of variables of inter-
est with a table of discriminative variables. Kenkel and
colleagues [7] provided an interesting comparative over-
view of some of these techniques. In their review, RDA is
described as the canonical form of PCA and CCA as the
canonical form of CA. RDA and CCA can actually be
described as two particular cases of analysis with respect
instrumental variables. Because these techniques take
explicitly a grouping information into account, they can
be considered as the supervised counterpart of classical
ordination methods.

In this paper, we introduce the analyses with respect to
instrumental variables, and more specifically, two partic-
ular cases: within- and between-group analyses. We will
show how these approaches can be applied to explore
experimental data structures in order to remove some
undesirable effects while focusing on other particular
effects. An example with microarray data measuring the
effect of beverage intake on individuals over time is given.
Results are compared with those obtained with an alterna-
tive gene-by-gene analysis based on the fit of a linear
regression model. Advantages and limitations are dis-
cussed.

Results

Analyses with respect to instrumental variables
Theoretical aspects about instrumental variable tech-
niques are detailed elsewhere [8-12]. In brief, instrumen-
tal variable methods aim to match a statistical triplet (Y,
D,, D,,) with a matrix of descriptive variables X. Y (n x m)
is the table to be analyzed, D, and D,, are respectively the
row and column weight diagonal matrices, and X (n x p)
a matrix including descriptive variables which can be
either qualitative, quantitative or both. In such analyses, X
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and Y play a dissymmetric role. Y contains the variables of
direct interest, whereas X contains structural information
about samples. The information of X is used to constrain
the analysis of Y.

Using a regression terminology, Y contains the dependent
variables and X the independent variables. Each variable
from Y is predicted based on variables from X using mul-
tiple linear regression. Models are in the form of:

Y=a+K+¢

Model estimates are combined in a third table ¥ from
which principal components are calculated. From a geo-
metrical point of view, these p models are obtained by
projecting variables from Y on the sub-space formed by
the descriptive variables in X. Principal components
under constraints maximize the sum of squared correla-
tions with variables from Y.

Two categories of methods on instrumental variables can
be distinguished: the direct and orthogonal methods.
Direct methods take effects of descriptive variables posi-
tively, whereas orthogonal ones take these effects nega-
tively into account. In the latter case, the analysis is
performed on the model's residuals. It is generally used
when one wishes to remove some unexpected effects.
Finally, it is possible to combine positive effects with neg-
ative effects in the same analysis, which makes it possible
to simultaneously analyze a given effect by removing
another effect. In such a case, the effect of the conditional
variables is first removed from the data, then a con-
strained analysis is performed on the residual matrix.

Between-grouplwithin-group analyses

Between-group and within-group analyses are two partic-
ular cases of instrumental variable methods where a single
qualitative variable is accounted for. The use of between-
group and within-group analyses enables to take respec-
tively positive and negative constraints into account in a
very simple and flexible way. Between-group analyses
(BGA) are performed in two steps. The table containing
the variables of interest is transformed according to the
constraint, then a single-table ordination method is
applied. For example, a between-group correspondence
analysis of the triplet (Y, D,, D,,) is obtained by doing a
correspondence analysis on the triplet (Y+, D,, D), where
Y+ is the table of per-class means of Y and D), the diagonal
matrix of class weights. Geometrically, the per-class cent-
ers of gravity are projected on the BGA discriminating axes
and the whole set of samples is projected as supplemen-
tary rows (Figure 1, panel A). This procedure provides the
best linear combination of variables which maximizes the
between-group variance. Culhane and colleagues [13]
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Between/within-group analysis. Schematic representation of BGA and WGA procedures adapted from [| I]. For BGA
(panel A), the analysis of table Y is initially performed on the per-class sample average table Y+ and every sample is projected
on the factorial map (2 first principal axes). For WGA (panel B), samples in Y are scaled by dividing them by the per-class
means, and the analysis is performed on the scaled table Y-. The per-class factorial map of WGA (2 first principal axes) is cen-

tered around 0.

demonstrated the efficiency of BGA in microarray data,
especially when associated with CA.

Within-group analyses (WGA) are complementary to
BGA. Similarly to BGA, WGA can be associated with any
single-table ordination method. In WGA, the analysis is
focused on the table of residuals after scaling the data by
the per-class means (Figure 1, panel B). This procedure

eliminates the effect due to the constraint. It is carried out
when one wishes to explore the structures of a table inde-

pendently of an undesirable effect.

BGA can be used to measure the structural contribution
(in terms of inertia) of different qualitative variables in a
microarray dataset. WGA can be used to get rid of a spe-
cific unexpected effect. As proposed in this manuscript,

Page 3 of 8

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:422

BGA and WGA can also be combined to take both positive
and negative constraints into account.

Example of structure exploration in microarray data

In this example, microarray experiments were performed
in order to analyze the influence of beverage intake over
time in blood gene expression. Six healthy volunteers par-
ticipated in this randomized controlled cross-over experi-
ment. On 4 independent days they had 4 different
beverages (350 mL each: grape juice, red wine, 40 g
diluted ethanol, water). The diluted ethanol, refered
below as "alcohol", was calibrated to reach the same total
amount and concentration of alcohol as red wine. Blood
samples were taken at baseline, 1, 2, 4, 12 h after the drink
together with standardized nutrition. Messenger RNA of
120 peripheral blood lymphocyte samples were hybrid-
ized on Affymetrix microarrays HGU133A including
22283 genes (raw files have been deposited in NCBIs
Gene Expression Omnibus (GEO), and are accessible
through GEO Series accession number GSE3846). The
data quality was checked, and microarrays with poor qual-
ity were removed from the dataset. A total of 108 microar-
rays were finally included in the analysis (supplementary
material is available as an online repository [14]). The
dataset was normalized using RMA [15]. Three sources of
variations were examined: "individual", "time" and "bev-
erage".

The data is structured in two tables:

¢ Y is the table of gene expression intensities (108 samples
x 22283 genes)

e X is the table with 3 descriptive variables giving a struc-
tural information among samples (108 samples x 3 fac-
tors)

The objective of the data analysis is to couple these two
tables, the analysis of Y being constrained by the informa-
tion of X.

In a first step, the effect of the constraints was studied one
by one. The percentage of variability attributed to each of
the three sources of variation was explored using between-
group correspondence analysis (BGA combined with CA)
(Figure 2). This parameter corresponds to the ratio of the
total inertia measured in BGA on the total inertia meas-
ured in CA. Inter-individual variability ("individual") is
the main source of variation since it explains 29% of the
whole variability. Only 5% of the variability is explained
by the temporal variation ("time"), and one may simply
note that the first BGA discriminant axis tends to describe
a circadian variation ("12 h"-ellipsoid is slightly shifted
out compared to the other time points). Finally, no clear
effect was visible as far as the beverage is concerned. It is
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likely that this effect is hidden by some more preponder-
ant effects, including the individual and temporal effects.

When exploring the effect of beverage intake at all time
points except baseline (time points 1, 2, 4 and 12 h), no
significant beverage effect could be found when using reg-
ular BGA (p-val = 0.4). However, the effect of beverage can
be studied independently of the "individual" effect. For
this purpose, correspondence analysis with respect to
instrumental variables (CAIV) was applied, taking the
"individual" effect negatively and the "beverage" effect
positively. Due to the removal of the "individual" effect,
the effect of "beverage" became significant (p-val = 0.04).
In addition, CAIV taking the "individual" effect negatively
and the "time" effect positively, results in a significant
time-course pattern as well (p-val = 0.02).

CALIV is equivalent to a conditional between-group corre-
spondence analysis (Figure 3): the "beverage" effect was
analysed conditionally to the "individual" effect (A/B).
Let define Y the initial table, X1 the negative variable
("individual") and X2 the positive ("beverage"). Two suc-
cessive procedures are needed to perform a CAIV. The first
procedure consists in removing the undesirable effect
using a within-group analysis (one single qualitative vari-
able). The second procedure consists in analysing specifi-
cally the constraint of interest by using a between-group
analysis (one single qualitative variable). Using an R syn-
tax, CAIV is simply obtained by:

library(ade4)

ca <- dudi.coa(Y,scannf=F)

wg <- within(ca,X1,scannf=F)
bgwg <- between(wg,X2,scannf=F)
s.class(bgwg$ls,X2)

In the general case where the number of positive and neg-
ative constraints is higher than one, functions between
and within must be respectively replaced by pcaiv and
pcaivortho.

Genes associated with the different drinks were identified
based on the loadings obtained after CAIV. The orthogo-
nal projection of genes on the vectors of each class centro-
ids is used to determine the association of genes
accoffding to the classes. Discriminating genes are sorted
and up/down-regulated genes are extracted. Although, a
detailed description of the list of genes obtained by this
analysis is out of the scope of this paper, several key genes
known to be associated with the consumption of alcohol

Page 4 of 8

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:422

Beverage effect

Temporal effect

http://www.biomedcentral.com/1471-2105/7/422

Inter-individual effect

d=0.02 d=0.02 d=0.02
Between
a\cohol%l
Group AN
grape.juice
. water
o
8 _
— ° _ =] _
3 _ g
[sV)
8
o | o [$]
- Q % var =3 - 2 % var=5 - M % var = 29
Monte-Carlo & o p-val = 0.44 g pval=018 & g p-val < 0.001
> -~ =] o 3 —
. ags o (s}
Significance g o g « g
[T o - [T [T
Test 3 S
8 . ~—
o - o o - O
I T T T T T 1 I T T T 1 I T T T T 1
0.01 003 005 0.07 0.02 0.04 0.06 0.08 0.10 0.05 0.15 0.25
sim sim sim
Figure 2

Dataset sources of variations. Decomposition of the dataset variability according to three sources of variations: "individ-
ual", "time" and "beverage". Ellipsoids representing the distribution of samples around the per-class centers of gravity are plot-
ted on the factorial map of BGA (2 first discriminating axes). For each BGA, a Monte-Carlo permutation test is performed to
assess the significance of the structures modelled in the analysis. The histograms show the distribution of 999 simulated values
of the randomization test for BGA together with the observed value. Sim: ratio of between-class and total inertia.

but also with mechanisms of action of compounds
present in red wine were identified.

The results indicate a clear toxic effect of "alcohol" in the
early time points. For example, at time "1 h", within the
list of the 100 most up-regulated genes, there was a signif-
icant enrichment of genes associated to the Gene Ontol-
ogy categories "response to stimulus", "response to
stress", "immune  response” and "apoptosis”
(G0O:0009607, GO:0006955: p-val < 0.001; GO:0006954:
p-val = 0.02; GO:0006950: p-val = 0.003; p-val < 0.001;
GO:0006915: p-val < 0.001). This toxic effect, as meas-

ured by the enrichment of genes in these GO categories,
was maximal at time "1 h", and it persisted at time "2 h"
(all above mentionned GO categories were significantly
enriched) and "4 h" (all above mentionned GO categories
except GO:0006954 and GO:0006950 were significantly
enriched). Interestingly, there was no similar gene pattern
related to "red wine" consumption. In Figure 3, the CAIV
factorial map shows the effects of beverages 1 h after
intake. Samples which are grouped by beverage are repre-
sented by an ellipse. It can be seen that individuals drink-
ing "alcohol" and "red wine" do not cluster together.
According to the first discriminating axis they rather are
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Correspondence analysis with respect to instrumental variables. The between-beverage analysis applied to the data
where the "individual" effect has been removed, shows a structure associated with the effect of red wine on the first discrimi-
nating axis. Two factors were successively included in the analysis: "individual" effect (6 modalities) and "beverage" effect (4

modalities). The "beverage" effect was taken positively while the '
the | h-time point.

separated in an opposite direction. It was found that sev-
eral genes involved in "inflammatory response" are up-
regulated after alcohol and down-regulated after red wine
intake. Although, from these findings one can conclude
that red wine might contain anti-inflammatory proper-
ties, it might represent a significant health hazard not
tested in the current experiment (i.e. hepatic or neurologic
toxicity).

Comparison of CAIV with a gene-by-gene methods

Linear mixed-effect models were fitted to the data above.
The factors "time" and "beverage" were defined as fixed
factors, whereas the factor "individual" was defined as
random. A 3-way ANOVA was performed and genes
showing a significant beverage effect were extracted. A
contrast alcohol vs. water and red wine vs. water was
applied to our data in order to detect genes specifically
dysregulated by the action of alcohol and red wine, taking
water as control. Among the 100 most up-regulated genes
after alcohol, we observed an enrichment of genes
involved in "immune response" (GO:0006955, p-val <
0.001) and apoptosis (GO:0006915, p-val < 0.05).

'individual" effect was controlled. The analysis is focused on

Regarding the effect of "red wine", genes identified by the
gene-by-gene approach showed a poorer biological coher-
ence compared to those found by using CAIV. In table 1,
the enrichment of genes obtained by the two methods
within 4 biologically relevant GO categories was com-
pared. Results show that the level of significance of these
enrichments is higher for CAIV in all the 4 categories. This
analysis also indicates that CAIV may achieve a better "res-
olution" than ANOVA. The subcategory "IxB kinase/NFxB
cascade", which is related to immune response and
inflammation, is significantly enriched among genes
extracted by CAIV (p-val = 0.02), whereas no genes of this
category were identified by ANOVA. Overall, results show
that CAIV selects genes with a higher biological coherence
than ANOVA.

Discussion

CAIV compared to other two-tables coupling method
RDA and CCA are two particular cases of analyses with
respect to instrumental variables. Instrumental variables
analyses can be associated with any single-table ordina-
tion techniques although CA is particularly efficient in
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Table I: GO analysis of genes obtained by CAIV compared to ANOVA.

GO categories

CAIlV

ANOVA

"response to stimulus"
"immune response"
"apoptosis”

"I-kB kinase/NF-xB cascade"

24% (p-val = 1.5E-2)
20% (p-val = 9.3E-6)
11% (p-val = 9.2E-4)
4% (p-val = 2.6E-2)

23% (p-val = 4E-2)

13% (p-val = 1.7E-2)

7% (p-val = 7.8E-2)
0% (NS)

The GO analysis is applied to the 100 most discriminating/dysregulated genes specifically associated with the action of "red wine". Results are
presented as the proportion of genes belonging to the GO category (%) and the enrichment significance (p-val).

microarray data analysis. CAIV is equivalent to CCA and
orthogonal CAIV is equivalent to partial CCA.

Coinertia analysis is another method for linking two
tables, and has been successfully applied to microarray
data [16]. However in the case of coinertia analysis, the
two tables are analysed symmetrically. Coinertia analysis
explores the relationship between two statistical triplets,
whereas instrumental variables analysis link one statisti-
cal triplet with a table of descriptive variables. The objec-
tive of coinertia analysis differs from instrumental
variables techniques. Coinertia analysis is preferred when
the number of explicative variables is high and it is less
sensitive to correlated variables. Indeed, in contrast to
instrumental variables analysis which links tables Y and X
using multiple regression models, co-inertia analysis uses
partial least square regression [17]. If the number of
descriptive variables is low, then instrumental variables
analysis is very efficient.

Multivariate approaches vs. univariate approaches

For controlling sources of variations in microarray data,
authors generally use univariate approaches. The signifi-
cance of a gene dysregulation conditionally to one or sev-
eral experimental variables is basically estimated by fitting
linear models gene-by-gene. There are several limitations
in the use of such a strategy. As genes are treated inde-
pendently, one may loose the multi-dimensional infor-
mation contained in the dataset. In addition, many
constraints are associated with the use of ANOVA models.
They include the normality assumption, the problems
related to multiple testing and the cost of the replications
needed when several factors are included in the analysis.

On the other hand, using a multivariate approach pro-
vides a means to take genes' co-variations and gene-gene
interactions into account. Refinements of instrumental
variables analysis and constrained ordinations were
recently proposed. These methods include non-linear
RDA and CCA [18], which extend the theoretical frame-
work of the analyses with respect to instrumental varia-
bles to the non-linear modeling. It is noteworthy that

CAIV as it is implemented in the package vegan (function
cca) allows the modeling of interactions and contrasts.

One limitation of multivariate ordination methods is
their exploratory nature. Like other constrained ordina-
tion methods, CAIV identifies axes that are best explained
by a linear combination of descriptive variables. As such,
CAIV can be used to select genes with high contribution to
the modelled constraints. CAIV as it is presented in the
present manuscript can be used to test the statistical signif-
icance of a constraint, but does not test the significance of
individual gene contributions. The use of resampling
methods including jackknifing and bootstraping for
assessing the reliability and the stability of scores and
loadings in multivariate analysis might provide a way of
inferring the statistical significance of gene contributions
[19,20].

Conclusion

Analyses with respect to instrumental variables can easily
be applied to microarray data for the exploration of com-
plex data structures. They provide a convenient way to
estimate the contribution of several factors. They can be
used both to examine dimensions in the dataset and to
remove confounding factors. In our example, relevant
genes associated with a specific beverage were only
unmasked after using an instrumental variables strategy.
Although these methods are only exploratory, they can be
used to explain trends and associations among samples
and identify genes associated with specific factors.

Correspondence analysis with respect to instrumental var-
iables is particularly appropriate for microarray data
because CA better stresses sample-genes relationships
[2,21], which eases the interpretation. This is also appro-
priate for data where the number of variables far exceeds
the number of samples.

All these analyses have been implemented within the R
package ade4. Many more multivariate techniques are pro-
posed in this package together with some extensive graph-
ical tools. Different other implementations of constrained
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ordination methods are also available in the R library
vegan.

Methods

Statistical packages

All computations were performed using the statistical
software R [22], the multivariate analysis package ade4
[23] and different packages from the Bioconductor project
[24]. Monte-Carlo permutation test implemented both in
the ade4 and vegan libraries were used to test the statistical
significance of the instrumental variables analyses.

Gene ontology

For the sake of biological interpretation, genes of interest
were grouped according to Gene Ontology (GO) annota-
tions [25]. The relevance of GO categories was assessed
using enrichment tests implemented in the web tool
DAVID [26].
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