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Abstract

Background: Feature selection is an approach to overcome the 'curse of dimensionality' in
complex researches like disease classification using microarrays. Statistical methods are utilized
more in this domain. Most of them do not fit for a wide range of datasets. The transform oriented
signal processing domains are not probed much when other fields like image and video processing
utilize them well. Wavelets, one of such techniques, have the potential to be utilized in feature
selection method. The aim of this paper is to assess the capability of Haar wavelet power spectrum
in the problem of clustering and gene selection based on expression data in the context of disease
classification and to propose a method based on Haar wavelet power spectrum.

Results: Haar wavelet power spectra of genes were analysed and it was observed to be different
in different diagnostic categories. This difference in trend and magnitude of the spectrum may be
utilized in gene selection. Most of the genes selected by earlier complex methods were selected by
the very simple present method. Each earlier works proved only few genes are quite enough to
approach the classification problem [1]. Hence the present method may be tried in conjunction
with other classification methods. The technique was applied without removing the noise in data
to validate the robustness of the method against the noise or outliers in the data. No special
softwares or complex implementation is needed. The qualities of the genes selected by the present
method were analysed through their gene expression data. Most of them were observed to be
related to solve the classification issue since they were dominant in the diagnostic category of the
dataset for which they were selected as features.

Conclusion: In the present paper, the problem of feature selection of microarray gene expression
data was considered. We analyzed the wavelet power spectrum of genes and proposed a clustering
and feature selection method useful for classification based on Haar wavelet power spectrum.
Application of this technique in this area is novel, simple, and faster than other methods, fit for a
wide range of data types. The results are encouraging and throw light into the possibility of using
this technique for problem domains like disease classification, gene network identification and
personalized drug design.

Background This study is useful to determine whether these genes are
Modern technologies like microarrays facilitate the study  active, hyperactive or inactive in various tissues. The vast
of expression levels of thousands of genes simultaneously.  amount of microarray data is so important for the appli-
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cations like disease classification and identifying the
genetic networks. Solutions for complex problems like
identification of cancer types and their subtypes need
more accuracy for utilizing them in treating this disease
and in preparing more effective therapeutic solution like
individual drug design. So, it is important and necessary
to select only genes containing the expression data con-
tributing to the problem domain and to filter irrelevant
data to increase the performance of the methods used.
Feature selection is the problem of identifying such genes
or features [2]. That is, this can be used to identify the
important genes with significant information content
when the problem is poorly structured. This improves the
generalization performance and inference of classification
models [3] by overcoming the 'curse of dimensionality'.
One important problem with feature selection methods is
that both problem relevance and biological relevance of
the features selected may not be achieved completely.
Also, most of the feature selection methods do not fit for
the wide range of datasets. They are coupled with a partic-
ular classification method and time consuming. Statistical
methods are in use in this domain for a long time. But,
extensive preprocessing and lesser consensus among them
are major problems with them. Transform oriented signal
processing methods are simpler and may provide an alter-
native platform to the statistical methods. They have been
successfully utilized in many domains like image process-
ing. But, they have not been much utilized in the field of
bioinformatics. The key advantage of these transform ori-
ented methods is their power of capturing some inherent
properties of the data. The aim of this paper is to analyse
the capabilities of Haar wavelet power spectrum in select-
ing informative features in microarray data on the basis of
the inherent properties captured by them. The present
work utilizes some earlier works in feature selection for
illustration and analyses the comparability of wavelet
strategy with those of earlier works.

Feature selection

Feature selection can be approached in three ways. First,
we may handle feature selection method independently
irrespective of the further applications utilizing these fea-
tures. That is, the features selected may be used for any
classifier algorithms. This approach of feature selection is
called a filter method. Second, features may be selected for
a specific classifier algorithm. In this approach called a
'wrapper method' [4], the qualities or accuracies of all
possible subsets are analyzed to select the optimal one to
the specific classification algorithm. Finally, feature selec-
tion and classifier design may be accomplished together.
This strategy is found in embedded methods. Embedded
methods are incorporated into the learning procedure,
and hence are dependent on the classification model.
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Systematizations and surveys on feature selection algo-
rithms have been presented in a variety of review articles
like Blum and Langley [5], Kohavi and John [4] and
Guyon [6]. So far, a number of variable (or gene) selection
methods like the support vector machine method [5], the
genetic algorithm [7], the perceptron method [8], Baye-
sian variable selection [9-12], and the voting technique
[13], mutual information-based gene and feature selec-
tion method [1], entropy based feature selection [14] and
many artificial intelligent techniques like hill climbing,
best first search [15], simulated annealing [16], backward
elimination [17], forward selection and their combina-
tions have been proposed. Specific to filter approach, Kira
and Rendell's Relief algorithm [18] which selects features
based on a threshold of weights assigned to each feature is
a good example but it was tested on small set of features.

In case of high dimensional datasets containing thou-
sands of genes, filters are preferred to wrappers due to
their independency over the models [19,20]. Xiang et al
[14] devised a hybrid of filter and wrapper approaches
and tested it on high dimensional gene expression data
with 72 samples and 7129 features. Another such work on
high dimensional gene expression data was done by
Golub et al [13] on the same dataset using correlation
measures. Califano et al [21] also worked on a high
dimensional dataset of 6817 genes using a supervised
learning algorithm. All these works revealed the fact that
the result was better while using selected features instead
of the whole data set.

Most commonly used filters are based on information-
theoretic or statistical principles. Score based feature selec-
tion methods are popular among filters using statistical
principles. These methods calculate statistical scores on
the gene expression data. They sort genes according the
scores assigned and filter them by applying some thresh-
old. x 2-score, t-test metrics[22], Wilcoxon rank sum
test[22], correlation co efficient [23] and B-scatter score
are some prominent examples. Some other strategies used
in feature selection through ranking are SNR based rank-
ing used in Shipp's approach [24] and sensitivity analysis
based ranking used in Mean square classifier [25]. The
strategy of selecting features using sensitivity analysis is to
rank a feature according to the change in the value of an
objective function caused by the removal of that feature
from the dataset. SNR method is more capable of detect-
ing and ranking a smaller number of significant variables.
Apart from ranking methods, several other approaches
like Relief [18,26], gini-index [27], relevance, average
absolute weight of evidence [28] and bi-normal separa-
tion [29] are also in use.

Most of the methods of feature selection are complex and

consume more time to converge. Many of them do not fit
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for all data types in addition that they require more sam-
ples. No consensus among various statistical methods is
achieved to use them. The selection of a statistical method
for a dataset is a hit and run approach. So, a more generic
method which can cope up with a variety of data is in dire
need. Further, a very few model independent approaches
for feature selection are available since most of the meth-
ods of feature selection are coupled with classification. In
this paper, we analyse the capability of wavelet power
spectrum in feature selection and we propose a method of
feature selection based on Haar wavelet power spectrum.
This method is found fit for a wide range of data sets and
also works with smaller number of samples. It can be used
in conjunction with other classification methods. The
algorithm is very simple and requires comparatively less
time to be executed. The method is a model independent
approach, a filter feature selection method, based on the
Haar wavelet power spectrum of the microarray data.
Unlike most of the other methods, it is relatively a very
simple algorithm. We observed that the features selected
by our method can be used in conjunction with more clas-
sification algorithms.

Wavelet and its power spectrum

Wavelets are a family of basis functions that can be used
to approximate other functions by expansion in orthonor-
mal series. They combine such powerful properties as
orthonormality, compact support, varying degrees of
smoothness, localization both in time or space and scale
(frequency), and fast implementation. One of the key
advantages of wavelets is their ability to spatially adapt to
features of a function such as discontinuities and varying
frequency behaviour. A wavelet transform is a lossless lin-
ear transformation of a signal or data into coefficients on
a basis of wavelet functions [30]. Performing the discrete
wavelet transform (DWT) of a signal x is done by passing
it through low pass filters (scaling functions) and high
pass filters simultaneously. Down-sampling or decima-
tion by a factor 2 is performed after each pass through fil-
ters. Decimation by 2 means removing every alternative
coefficient in the function is performed after each pass
through filters. Figure 1 depicts a two level wavelet trans-
form.

Mathematically, the wavelet transform of a function x [K]
can be represented by the following formula:

oo

Vhigh(m) =, x{k]-g[2-n—K]
f=—oo

=

Viw(n)= Y, x{k]-h[2-n—Fk|
fe=—oo
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A two level DWT for N data. The number of data is halved
after every filtering and down sampling operation. A wavelet
transform is applied on output of low pass filter (h [n])
(approximation coefficients) recursively keeping the output
coefficients of each high pass filtering operation (g [n])
(detailed coefficients) at each stage. The wavelet transform of
a data at any level i of decomposition consists of approxima-
tion coefficients only at ith level and all detailed coefficients
up to ith level.

where y,,, (n) and yy,,, (n) are responses from low and
high pass filters respectively. In matrix form, wt = [WXT|T
where W = [L;H] where L and H are impulse responses of
low pass and high pass filters and wt is wavelet transform
of the one dimensional input signal X. The two filters used
at each stage of decomposition must be related to each
other by g [I-1-n] = (-1)"-h[n] where g and h are the
impulse responses of the two filters, [ is the filter length in
number of points, 7 is the order of the data points and [ is
such that 0 < n <I. For example, there are two data points
for each filter of Haar wavelet with n = 0, 1. These filters
are known as quadrature mirror filters. A wavelet trans-
form of a data after i level of decompositions contains the
approximation coefficients at ith level and all detailed
coefficients up to ith level. The detailed coefficients at dif-
ferent levels incorporate the variations in information at
those levels. Level of decomposition is also termed as
band.

A number of wavelet families like symlet, coiflet, daub-
echies and biorthogonal wavelets are already in use. They
vary in various basic properties of wavelets like compact-
ness. Among them, Haar wavelets belonging to daub-
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echies wavelet family are most commonly used wavelets
in database literature because they are easy to compre-
hend and fast to compute [3]. Haar transform can be
viewed as a series of averaging and differentiating opera-
tions on a discrete function. The impulse response for

high pass filter is given by [1/+/2, -1/+/2 ] and for low

pass filter, the impulse response is [1/+/2 ,1/~/2 ]. That s,
the minimum number of elements in input data should
be 2. The input data should always contain the number of
elements 2" where n is an integer. In matrix form, the Haar
wavelet filter can be expressed as

1 1
NG
1 1
NEG)

It can be easily examined that both the low pass and high
pass filters of Haar wavelet are quadratic in nature using
the discussion presented in the previous paragraph. For a
data having more than two elements, the Haar wavelet
matrix of can be constructed by diagonally repeating these
basic filters to form a matrix of the size of input data.
Upper part of the matrix is created by repeating impulse
responses of low pass filter diagonally and lower part of
the matrix is created by repeating impulse responses of
high pass filter diagonally. From Figure 1, it is evident that
the size of the data points to be used for wavelet transform
in a level is equal to half of the data points used in the pre-
vious level. Accordingly, the size of the Haar wavelet
matrix also reduced. For example, if we use a signal of four
data points, the size of the Haar wavelet matrix will be 4 x
4 in the first step of wavelet transform. From Figure 1, it is
evident that the number of data points to be used for the
second step of wavelet transform is 2. These are the output
of low pass filtering operation as shown in Figure 1. So,
the Haar wavelet matrix to be used is of the size 2 x 2.
More details of wavelets may be referred at [31-33].

The minimum number of data points in an input signal
should be 2 in the case of Haar wavelet and the number of
data points needed for n times decomposition is 2. If the
number of input data points is less than this required
number, 27, zeros may be padded (appended) at the right
end of the input data to compensate the required number.
In the present work, the number of data points refers to
the number of samples which is equal to the number of
columns present in the microarray data matrix. That is, the
expression of a gene in a sample is considered as a data
point of a one dimensional signal X. Accordingly, the col-
umns of the microarray data matrix were prepared so as to
be amenable for satisfying the required number criterion.
In some experiments, a reduced number of the columns
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of the microarray data matrix equal to the nearest power
of 2 were randomly selected and used. Since we use the
strategy of finding the average value of wavelet power
spectrum for each gene per sample, in the present work,
the choice of columns selected for replication or reduction
is immaterial. We used a random selection of the columns
for the purpose of reduction and replication for data input
preparation. It was observed that such a random selection
of columns did not affect much the robustness and the
accuracy of the present method used. In the present work,
expression data of each gene across various tissue samples
or various experiments is modeled to a one dimensional
signal. Therefore, the entire microarray data is modeled to
a group of M number of one-dimensional signals where M
is the total number of genes present in the gene microar-
ray data. More mathematical details of wavelets may be
referred at [31-33].

Local wavelet power spectrum at a particular decomposi-
tion level is calculated by summing up the squares of
wavelet coefficients at that level [11]. For a set of wavelet
coefficients C; ,, where j is level of decomposition and k is
the order of the coefficient, the wavelet power spectrum is
given below.

21
spectrum(j] = Z C]-Z,k

k=0
If there are N elements in an array, there will be log,(N)
coefficient bands or levels of decomposition for Haar
wavelet. That is, the power spectrum can be referred as a
graphical representation of cumulative information varia-
tion at each scale of decomposition. Global wavelet power
spectrum [34] is the average of such local power spectra.

Results and discussion

Our proposed algorithm for feature selection has been
applied on various datasets and top genes are reported
here. In all these experiments, we have used Haar wavelets
since the number of minimum features for wavelet trans-
formation at lowest level is smaller than that required by
the other wavelets. We applied our method on three data-
sets namely Golub dataset, Hedenfalk breast cancer data-
set and Khan SRBCT dataset. All experiments were carried
out without filtering any data to validate the robustness of
the method against the noise or outliers in the data.

SRBCT dataset

First, we focus on feature selection for the small, round
blue cell tumors (SRBCT) of childhood. The dataset of
SRBCT used for experimentation here is available at [35].
This dataset is composed of 2308 genes and 63 samples
from four cancers which includes Neuroblastoma (NB)
(12 samples), Rhabdomyosacoma (RMS) (23 samples),
Burkitt Lymphomas (BL) (8 samples) and Ewing's family
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of tumors (EWS) (20 samples). Originally, Khan et al [35]
classified this dataset using artificial neural networks on
gene expression profiles. The feature selection and classi-
fication using this dataset has also been performed by
Zhou et al using Gibb's sampler and SMC [36]. Khan et al
[35] selected a list of 96 discriminating genes pertaining to
classification. This list included some genes being identi-
fied important to two classes out of four classes and some
genes which were not categorized for any class. Our
method has identified some of them important for one of
the four classes. It has selected almost all these features
with comparatively simpler calculations. Also, we used
only 32 samples out of 63 sample set. First four samples
from each diagnostic category have been selected to form
this group of 32 samples. It exhibits the possibility of
using our methods for datasets with a lesser number of
samples. Most of the top ranked genes listed in the present
work have been used in classification of the dataset in ear-
lier works [36,35].

A list of top genes selected by our method has been listed
in Table 1. Genes with index IDs 1319, 1645, 1954, 1831,
2303, 1980, 373 and 1626 were also reported to be differ-
entially expressed in EWS in Khan et al's work [35]. Gene
851 was not allocated to any class in [35]. Most of the
other genes like gene 951 reported to be discriminating
EWS have been selected as important genes for EWS but
with a lower ranking. The rank of Gene 951 was 59 in our
work and its RPV was 59.36. Gene 1200 was not selected
in Khan's [35] work but it was ranked fourth in our work.
Of all genes selected for EWS, neural-specific genes
[37,38] like TUBB5 (Gene 373), ANXA1 (Gene 1831),
and NOE1 (Gene 1645) lend more credence to the pro-
posed neural histogenesis of EWS [39]. Most of the top
ranked genes are dominant in EWS category in compari-
son with their expression in other classes. This implies
that most of the top ranked genes in Table 1 are highly

Table I: Differentially expressed genes selected for classifying
EWS diagnostic category of SRBCT data (RPV - Relative
percentage variation).
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related to the classification of EWS from other categories.
When tested with Golub's algorithm [13], first 23 samples
of SRBCT dataset except sample number 12 were catego-
rized as EWS and remaining 43 samples were categorized
as non EWS samples.

A list of strongest genes selected for classifying BL versus
others using our method has been reported in Table 2. In
the SRBCT dataset, the samples of BL category spans from
sample number 24 to sample number 31. Among them,
Genes 836 and 1158 were reported to be differentially
expressed in BL in Khan's original work [35]. Genes with
indices 1916, 783, 846, 1735,335,1884,2230,1915, 85
and 276 were also selected in [35] but not assigned to a
particular class. Of six differentially expressed genes in BL
and some other classes, remaining four genes except genes
836 and 1158 were selected for other classes. So, our
method selects proper genes effectively with simple algo-
rithm and calculations. Most of the top ranked genes are
dominant in BL category in comparison with their expres-
sion in other classes (See additional file1l). This implies
that most of the top ranked genes in Table 2 are highly
related to the classification of BL from other categories.
Expression levels of these genes show that they can be
classified using Golub's classification algorithm [13] since
they are highly correlated to the "idealized expression pat-
tern" [13].

In the case of NB (Neuroblastoma) class, there were no
exclusively discriminating genes reported in [35]. They
were reported to be differentially expressed either with
EWS or RMS. Among them, Genes 951, 1980, 2303 and
1626 have been identified as stronger genes pertaining to
EWS by our method. Genes with index numbers 1764,
742, 236, 255, 417, 1601, 2199, 153, 1066, 2144, 2050
and 1662 were listed among 96 discriminating genes not

Table 2: A list of top ranked genes selected by using relative
percentage variation of gene expression profiles between BL
versus others of SRBCT dataset

Rank Index no. Clone ID RPV (%)
Rank Index no. Clone ID RPV (%)
| 1916 80109 98.61
| 1319 866702 99.52 2 836 241412 98.24
2 1645 52076 97.92 3 783 767183 98.04
3 1954 814260 9791 4 846 183337 98.02
4 1200 838856 96.45 5 1735 200814 97.81
5 696 753587 95.63 6 1387 740604 97.40
6 1140 824922 92.71 7 335 1469292 96.35
7 1070 1475730 91.06 8 1884 609663 96.16
8 851 563673 89.27 9 1725 813630 95.69
9 404 1422723 88.28 10 1295 344134 95.48
10 1831 208718 87.64 14 2230 417226 94.45
16 1980 841641 83.46 17 1915 840942 94.22
19 373 291756 81.31 19 1158 814526 93.24
20 1626 811000 81.22 25 85 700792 91.70
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pertaining to any class. Our method has allocated them to
be in favour of NB class. A list of such genes selected for
classifying NB versus others by original work as well as our
method have been listed in Table 3.

The fourth class in SRBCT is RMS. Originally, 92 genes
were listed in discriminating genes in [35]. All 92 genes
have been selected in the list of strong genes by our
method. But most of them reserve their slots in rank from
25 to 50. The genes with index 714, 2146, 1055, 554
and169 have come under the top 25 strongest genes list.
Among them IGF2 (index 714) and MYL4 are specific for
muscle tissues which have also been reported in RMS in
[39,40]. Most of the top ranked genes in Table 3 are dom-
inant in NB category in comparison with their expression
in other classes (See additional_file 2). This implies that
most of the top ranked genes in Table 3 are highly related
to the classification of NB from other categories. Expres-
sion levels of these genes show that they can be classified
using Golub's classification algorithm [13] since they
appear to be highly correlated to the "idealized expression
pattern” [13].

Acute leukemia data

The experimental setup used for getting Acute leukemia
data and other details can be found at [10]. The data set is
publicly available at [42]. The microarray data consists of
7129 human genes and consists of 72 samples. The data is
split into a training set and a test set. Training set consists
of 38 samples comprising 27 AML samples and 11 AML
samples. Test dataset of 34 samples comprising 20 ALL
and 14 AML samples. As a test case, important genes to
classify AML versus ALL are selected on the basis of their
relative percentage variations of expression levels between
two classes. Many genes reported in [10] are listed in Table
4 but in different order. Index number refers clone 1D
here. Among these selected genes, Genes with index num-
bers 2288, 1882, 6200 and 2043 have been reported as

Table 3: A list of features selected by using relative percentage
variation of gene expression profiles between NB versus others
of SRBCT dataset

Rank Index no. Clone ID RPV (%)
| 1764 44563 96.29
2 742 812105 95.93
3 236 878280 95.38
4 255 325182 89.34
5 2202 110503 88.23
6 417 395708 85.49
7 909 785933 84.32
8 1601 629896 82

9 2199 135688 81.02
10 695 376516 80.50
18 2144 308231 69.75
25 2050 295985 60.40
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Table 4: A list of features selected by earlier methods and using
relative percentage variation of gene expression profiles of Golub
within top 20 slots.

Rank Index No. RPV %
| 5599 99.99
5 1882 99.95
Il 5376 99.91
12 6218 99.89
17 2288 99.81
19 2043 99.76
20 6200 99.75

important genes in discovering AML class in the original
work at [10]. Also, Genes with index numbers 5599, 2288,
5376 and 1882 have been reported to be important genes
at [14] where genes were selected using mutual informa-
tion.

Genes with index numbers 1882, 6218, 2288 and 6200
have been reported to be important genes selected using
T-scores [14]. Gene 2242 has been reported as one of the
important genes at [36]. Also, most of the other important
genes reported to be important are found to occupy
almost the first 50 genes in this method. This clearly
shows that this method of feature selection is worthy one
and may be used in conjunction with different methods of
classification.

But, when a dataset with only two classes like the Golub
data, selecting distinct genes do not workout since this
method clearly bisects the genes into two distinct clusters
one for each type. So, the number of important genes
selected is relatively high in comparison with that for
other datasets where the number of classes is more than
two. For the datasets having more than two classes the fea-
ture selection method proposed here is found to be more
useful.

Breast cancer dataset

Next, we examined our proposed method of feature selec-
tion on hereditary breast cancer data from [29]. This data-
set consists of twenty two breast tumor sample from 21
patients. Classification of each tumor sample into one of
the classes based gene expression data was performed
using a compound covariate predictor in [29]. In [36], the
same classification was performed using SMC method
and the genes were selected using a Gibb's sampler. The
genes selected using our method to classify BRCA1 versus
others is very close to those selected by Gibb's sampler in
[36]. The genes with indices 10, 955, 2428, 2734,585,
1288 and 1620 have been selected among top 25 genes
using our method (Table 5) but with little difference in
order. Some other genes presented in [36] are found
within top 50 genes selected in our method. Among all
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Table 5: A list of features selected by the original work within top
25 slots and using relative percentage variation of gene
expression profiles between BRCAI versus others.

Rank no Index No. RPV %
4 955 91.99
8 1288 90.30
15 585 88.22
16 2248 88.12
23 10 86.66
24 1620 86.41
25 2734 85.48

these genes gene with index number 10 is reported as very
important for all the methods in [10,43]. It is observed in
[36] that only with five or ten genes selected the classifica-
tion was successful. This suggests that the genes selected
by our method are worthwhile to use for classification of
BRCA1 versus others since more of them are also found in
the list mentioned in [36]. Gene 2272 has been identified
as one of the top 20 strongest genes selected by mutual
information [14]. Genes with index numbers
2734,2670,2893,1999 and 3009 which are also selected
as the strongest genes in [14] are ranked between 26 and
45 by our method.

Conclusion

In the present paper, we have treated the problem of fea-
ture selection of microarray gene expression data. We ana-
lyzed capability of the wavelet power spectrum using Haar
wavelet in the domain of feature selection problem. We
found that the power spectrum technique has the poten-
tial to identify the informative features. We proposed a
clustering and feature selection method useful for classifi-
cation based on Haar wavelet power spectrum. The top
genes have been selected and have been compared with
the results obtained in earlier works. In earlier works, pre-
processing methods to remove noise or outliers before
applying their methods were used. In the present work, to
test the robustness of the dataset, no such preliminary
measures were adopted. The method is quite simple in
comparison to other feature selection methods and for
implementation it needs no special software since the
accessibility of wavelets is made quite easier in already
available software. Each earlier works select different set of
genes for classification purpose and proved only few
genes are quite enough to approach the classification
problem [14]. So, the present method can be used in con-
junction with many established classification methods
with lesser number of samples than that required for other
methods. Many of the genes selected by our method have
been used in the classification of earlier works which
proves these genes are informative. The initial results of
the idea of using Haar wavelet power spectrum in feature
selection using microarray data are encouraging and due
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to its simplicity, speed and effectiveness and fitness for a
wide range of datasets, it may be further researched for
devising simpler tools with more optimization. A possi-
bility of developing simpler but effective tools in this
domain using wavelet power spectrum has been explored.
Future research may be executed to utilize the power spec-
trum technique in the area of genomic signal processing
using microarrays and its application.

Method

In our approach of gene selection, we use the wavelet
transforms of genes and the global spectral average of
wavelet power spectrum over genes to select the genes use-
ful for classification. The use of wavelet transforms pro-
vides economical and informative mathematical
representations of many objects of interest [44]. Surveys
of wavelet applications in biological data and in data min-
ing are presented at [45-47]. The accessibility of wavelets
has been made easier through many easily available soft-
ware packages. Wavelet analysis is capable of providing
analysis in a global fashion which is necessary in case of
microarray data analysis.

The nature of genes, either being active, hyperactive or
inactive, in different diagnostic categories is different and
in varying amount. So, it may be observed while analyzing
the wavelet power spectrum that it may not be same in all
diagnostic categories. Based on this observation, a
method to select important features relevant to each cate-
gory against others can be devised. We analysed the power
spectrum of various genes of different cancer datasets. It is
observed that the power spectrum of a gene is not the
same in all diagnostic categories. It is also observed that a
gene is dominant in a particular diagnostic category
against the group of the remaining categories. On the
basis of these observations, we can device a method to
pinpoint the important genes. These are illustrated in Fig-
ure 2, Figure 3 and Figure 4. Figure 2 depicts the power
spectra of genel of SRBCT dataset [35] in various diagnos-
tic categories. It is obvious from Figure 2 that the power
spectrum of genel is not the same in all the diagnostic cat-
egories of SRBCT data. Power spectra found in Figure 3
depicts the spectra of the data of gene 2 in EWS diagnostic
category and that of the data comprised of the remaining
categories. It is obvious from Figure 3 that gene 2 is not
dominant in EWS category. Instead it is dominant in the
group of data comprised of the remaining categories. Fig-
ure 4 depicts the similar power spectra of another gene
1319. It also contains two spectra: one created using the
data of gene 1319 in EWS category and the other created
using the data of gene 1319 comprised of the remaining
categories. A comparison of power spectra of gene 2 and
gene 1319 reflects alternative trend present in genes.
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Figure 2

Haar wavelet power spectrum of gene | of SRBCT data in different diagnostic categories. It is obvious that the power spec-
trum of gene | is different in different diagnostic categories. Raw gene expression data of gene | is used in calculating the wave-
let power spectrum.
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Figure 3

Haar wavelet power spectrum of gene 2 in EWS category data and that in the data containing all other categories of SRBCT
data. It shows that gene2 is not dominant in EWS diagnostic category against the group of all other diagnostic categories. Raw
gene expression data of gene 2 is used in calculating the wavelet power spectrum.
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Figure 4

Haar wavelet power spectrum of gene 1319 in EWS category data and that in the data containing all the remaining categories
of SRBCT data. Unlike gene2, gene 1319 is dominant in EWS against all other diagnostic categories. Raw gene expression data

of gene 1319 is used in calculating the wavelet power spectrum.

On the basis of the trends observed, we defined a merit
called relative percentage variation (RPV) to select the
genes useful for distinguishing a diagnostic category from
others. The dataset was divided into two subsets before
performing further computation. One subset contained
only the samples of a particular diagnostic category for
which features are to be selected. The other subset was
comprised of the samples of the remaining all other cate-
gories. Global averages of the wavelet power spectra over
genes in these two subsets of a data were calculated.

The relative percentage variation (RPV) of the global aver-
age spectra of the genes against that of the other subset is

calculated using the formula RPV=(XI—_Yl)><lOO%
X1

where x; and y, are the global averages of genes in a par-
ticular diagnostic category and in the second subset. This
clearly divided the data into two clusters. One cluster con-
tained the genes with positive RPV. The other cluster con-
tained the genes with negative RPV. Cluster with genes
with positive RPV was selected as favourable for classifica-
tion. If a gene has an average expression higher in the par-
ticular diagnostic category than that in the second subset,
it will have a positive RPV. The genes in the selected clus-
ter were ranked according to their RPVs. The same proce-
dure was followed to select the dominant genes for other
diagnostic categories.

Standard datasets used in already established works
[13,1,36,35] were used to check the validity of the pro-
posed method. The genes selected for these standard data-
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sets were observed to be in tune with those reported in
earlier works [13,1,36,35]. Also, the present method is
simpler than the methods used in the earlier works
[13,1,36,35]. Thus, the results obtained by our method
are encouraging in both clustering genes and feature selec-
tion in the context of classification and hence found use-
ful. A possible indication to the use of wavelet power
spectrum in the feature selection domain to develop more
simple methods is imminent from our work and further
research may be continued to find more strategies in this
domain using wavelet power spectrum.
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Expression levels of the top 10 genes selected as informative for classifying
BL category against the other classes. Most of the genes selected as inform-
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axis). It shows that most of the selected genes are highly related for classi-
fication of BL category.
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Expression levels of the top 10 genes selected as informative for classifying
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fication of NB category.
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