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Abstract
Background: Horizontal gene transfer (HGT) has allowed bacteria to evolve many new
capabilities. Because transferred genes perform many medically important functions, such as
conferring antibiotic resistance, improved detection of horizontally transferred genes from
sequence data would be an important advance. Existing sequence-based methods for detecting
HGT focus on changes in nucleotide composition or on differences between gene and genome
phylogenies; these methods have high error rates.

Results: First, we introduce a new class of methods for detecting HGT based on the changes in
nucleotide substitution rates that occur when a gene is transferred to a new organism. Our new
methods discriminate simulated HGT events with an error rate up to 10 times lower than does
GC content. Use of models that are not time-reversible is crucial for detecting HGT. Second, we
show that using combinations of multiple predictors of HGT offers substantial improvements over
using any single predictor, yielding as much as a factor of 18 improvement in performance (a
maximum reduction in error rate from 38% to about 3%). Multiple predictors were combined by
using the random forests machine learning algorithm to identify optimal classifiers that separate
HGT from non-HGT trees.

Conclusion: The new class of HGT-detection methods introduced here combines advantages of
phylogenetic and compositional HGT-detection techniques. These new techniques offer order-of-
magnitude improvements over compositional methods because they are better able to discriminate
HGT from non-HGT trees under a wide range of simulated conditions. We also found that
combining multiple measures of HGT is essential for detecting a wide range of HGT events. These
novel indicators of horizontal transfer will be widely useful in detecting HGT events linked to the
evolution of important bacterial traits, such as antibiotic resistance and pathogenicity.

Background
Horizontal gene transfer (HGT) has distributed genes that
are required for pathogenicity among many bacterial lin-
eages [1-4]. HGT, also known as lateral gene transfer,
occurs when genes move between different genomes.

Transfers can occur both between closely and distantly
related species or strains, and are thought to be frequent
events. For example, marine bacteriophages alone have
been estimated to cause 2 × 1016 horizontal transfer events
per second [5]. Most of these horizontally transferred
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genes are lost from the population through drift or selec-
tion. However, under extreme selective pressure, such as
exposure to antibiotics, some HGT genes can be stably
incorporated into the genome [6-8]. In addition to genes
that confer drug resistance, genes that are directly involved
in pathogenicity, such as Type III secretion systems [9],
have repeatedly undergone HGT [10-12]. Thus, detecting
HGT has enormous practical significance for identifying
new drug targets and for providing a better understanding
of many bacterial pathogens.

Although HGT is thought to be an important process, the
agreement between existing sequence-based HGT detec-
tion methods is surprisingly poor [13]. Estimates of the
fraction of genes in modern bacterial genomes that show
evidence of horizontal transfer (as opposed to vertical
descent) average 5–10% across species[14-17], but can
reach much higher levels. For example, initial estimates
based on GC content suggested that as many as 24% of
the genes in the thermophile Thermotoga maritima had
been horizontally transferred [18]. However, more recent
estimates that use different methods on the same genome
place this number at 7.8%[16] and 2.0%[17]. The sensi-
tivity of different methods for detecting HGT may corre-
late with the time since the transfer event [19]. These large
discrepancies between methods suggest that a combina-
tion of approaches may be needed to accurately detect the
full range of observable HGT events [20].

The two most popular strategies for detecting HGT from
sequence data ("sequence-based methods") are phyloge-
netic methods and compositional methods. Both strate-
gies have been successfully used to detect HGT events that
have later been well-supported by many independent
lines of evidence [21]. However, both strategies also have
substantial drawbacks.

Phylogenetic methods typically compare the evolutionary
history of each gene to the best estimate of the evolution-
ary history of the genome. For example, genes that cluster
specifically with other genes from a more distantly related
species, rather than with genes from a closely related spe-
cies, are often inferred to have been horizontally trans-
ferred. This method has been used to identify the transfer
of many genes in high-and low-temperature [18,22-24]
and hospital environments [25-27]. However, many phe-
nomena other than HGT can cause the phylogenetic tree
for a gene to differ from that for the species. Thus, except
in certain well-established cases of transfer of highly con-
served genes such as aminoacyl-tRNA synthetases [28],
phylogenetic disagreement by itself is often inconclusive
[29-31]. Moreover, phylogenetic methods are also subject
to false negative results, for example when there are too
few closely related sequences from which to build a tree.

This is particularly a problem when sequences were trans-
ferred from species that were not included in the analysis.

Compositional methods test genes for nucleotide, codon,
oligonucleotide or amino acid usage that is atypical for
the genome in which they are found; less typical genes
may have been horizontally transferred. These methods
work because genomes vary widely in GC content [32],
dinucleotide frequency [33,34], and frequencies of longer
oligonucleotides [35]. Therefore, genes transferred from
one genome to another often differ in these properties.
Compositional methods have been successful in both
Gram-negative and Gram-positive bacteria. For example,
compositional methods were used to identify genomic
regions known as the pathogenicity islands SPI1 and SPI2
in Salmonella enterica [36,10], and genomic islands in
Bacillus cereus and B. anthracis [37]. That compositional
methods work at all is strong evidence that many HGT
genes do not have the same composition as their new
genomes. However, the main drawback of compositional
methods is that they likely detect only recent transfer
events from genomes of very different composition. This
limitation arises because the composition of transferred
genes changes to match the composition of the new
genome [38,39].

The limitations of these methods suggest that sequence-
based HGT detection has both high false-positive and
false-negative rates: many HGT events likely remain
undiscovered, and many vertically inherited genes may
have been misidentified as horizontally transferred. Here
we present a new class of methods that detect HGT by
looking for genes that evolve according to a different
nucleotide substitution rate matrix than does the genome
as a whole. The rate matrix consists of model parameters
in the theory of neutral sequence evolution [40,41] (Fig-
ure 1) and is explained in more detail below.

Our hypothesis is that HGT changes nucleotide substitu-
tion dynamics because mutational processes differ
between the old and new organisms. Thus, methods that
detect changes in the rate matrix should be able to detect
HGT events. We extend previous methods to detect
changes in the micleotide substitution rate matrix [42,43]
by (i) comparing three genes instead of two genes and (ii)
studying multiple statistics derived from a set of nucle-
otide substitution rate matrices. To test whether this
method can detect horizontally transferred genes, we sim-
ulated sequence evolution and HGT events under a wide
range of conditions. We show that the new techniques we
introduce here can significantly decrease the error rate
when detecting simulated HGT events: a combination of
four of our new statistics decreases the error rate in classi-
fying HGT and non-HGT phylogenies up to 10-fold com-
pared to examining variations in GC content. Our results
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suggest that sequence-based HGT-detection methods can
be made significantly more accurate by using our new
methods.

Theory
Using changes in the nucleotide substitution rate matrix to detect 
HGT
Different species have characteristic nucleotide composi-
tions [44], which means that they must have different rate
matrices. Many mechanisms are known to affect the rate
matrix. These mechanisms include loss, gain, or alteration
of enzymes that affect DNA repair and/or replication, as
well as production or deactivation of free radicals or other
mutagens [45,46]. For example, mutations of mutT in E.
coli, which encodes a DNA repair enzyme, were experi-
mentally shown to induce directional mutation from AT
to CG pairs [47], a signature of change in the rate matrix.
Change in composition, and hence in the rate matrix, can
be rapid on an evolutionary time scale, and large differ-
ences in composition can be observed even within a
genus. For example, completely sequenced Mycoplasma
genomes range from 24% GC in M. mycoides to 41% GC
in M. pneumonae (data from CUTG [48]).

A horizontally transferred gene would typically experience
an abrupt change in its rate matrix when it moves from
one species to another. In contrast, all genes in a genome
that have not undergone HGT should share approxi-
mately the same rate matrix. Thus, we can identify puta-

tive HGT genes as those with rate matrices that differ from
the rate matrices of other genes in the same species. Dif-
ferent genes within a species can show small deviations in
their rate matrices due to differences in transcription and
replication [45]. For example, deamination proceeds
much more rapidly in single-stranded DNA, so genes
coded on the leading and lagging strands can experience
different rate matrices [46]. In addition, differences in the
rate matrix inferred from sequence data can occur due to
sampling errors. However, these deviations are small
compared to the differences between species.

The Markov model of neutral sequence evolution
The Markov model of neutral sequence evolution is a use-
ful approximation that underlies many standard bioinfor-
matics algorithms. These algorithms range from sequence
search [49] to alignment [50] to phylogeny [51]. The
model, when applied to DNA, represents the four possible
nucleotides at a given position in the DNA sequence as
four states T, C, A, and G. Each nucleotide has a rate of
change to each other nucleotide. For example, we denote
the rate of change from G to C as rG→C. These rates of
change are grouped into rows and columns in the nucleo-
tide substitution rate matrix, conventionally called Q (Fig-
ure 1). The rows of Q must sum to zero because the rate of
change away from each state must balance the rate of
change towards it. Thus, Q has negative diagonal elements
and non-negative off-diagonal elements. We denote the
probability of finding a G as pG (and similarly denote the

The nucleotide substitution rate matrix summarizes the instantaneous rate of change from each of the four nucleotides to each of the other four nucleotidesFigure 1
The nucleotide substitution rate matrix summarizes the instantaneous rate of change from each of the four nucleotides to each 
of the other four nucleotides. Each row of the rate matrix must sum to zero, and only the diagonal elements can be negative; 
and therefore each diagonal element is equal in magnitude but opposite in sign to the sum of the other three elements in its 
row. Presentation of the rates in this way is due to N. Sueoka (pers. comm.) [52, 53]. As is the convention, we estimate the 
rate matrix is using only the bases at the third codon position, which approximate neutral evolution. Thus, A3 refers to A at the 
third codon position, and so forth.
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probability of finding an A, C, and T as pA, pC, and pT). The
model assumes pG changes in time according to the fol-
lowing equation [52,53]:

 = -(rG→A + rG→C + rG→T)pG + rA→G pA + rC→G pC + rT→G pT.  (1)

If the probabilities of change from each single nucleotide
to each other single nucleotide (e.g. T to C, T to A, T to G,
and the probability that T remains in the same state) are
grouped into a row vector u, we can write the model as

 = uQ. These differential equations allow us to calcu-

late the probability of change between each pair of bases
after a specified amount of time t, because they have a for-

mal solution for t ≥ 0:

u(t) = u(0)eQt = u(0)P.  (2)

The probability matrices Pi generated from a single Q form

a Markov semigroup with generator Q [54], which pro-
vides a structure that we can use to test whether a set of Pi

could have come from the same Q. Given a valid rate
matrix Q, in which there are no negative off-diagonal ele-
ments, P = eQt is guaranteed to be a probability matrix in
which each row sums to 1 [54]. The probability matrix can
be estimated from sequences arranged in a phylogenetic
tree. Thus, Qt can be estimated by taking the logarithm of

an empirically derived . If  is a probability matrix,

then ln  =  is guaranteed to be a pseudo-rate matrix

with row sums equal to zero and diagonal elements each

less than or equal to zero [55]. However,  may also have

negative off-diagonal elements, making it an invalid rate
matrix.

Any sequence that mutates according to this model under
a specified Q will eventually reach a steady-state composi-
tion, a process called equilibration or amelioration [38].
The equilibirum composition is given by the eigenvector
of Q corresponding to the zero eigenvalue. Thus, the
model can be used to predict the extent of equilibration of
a transferred sequence to its new genome composition
after a specified time. Because each Q has a characteristic
steady-state composition, sequences with different com-
positions must either be under selection or differ in Q.

Although widely used and generally useful, the Markov
model requires some assumptions that are not always bio-
logically justified. For example, this model assumes all
sites are identical and that sites are uncorrelated with each

other. However, sites are often correlated in DNA
sequences, especially those that encode RNA [56]. Most
previous work also assumes that the mutational process is
constant in time and time-reversible [57,58], but these
assumptions are frequently violated by biological
sequences [59]. In particular, methods for phylogenetic
inference typically constrain Q to reduce the number of
free parameters [60]. However, these constraints limit our
ability to infer the true form of the matrix [61,62].
Although some of these problems, such as correlations
between sites, affect all methods that use Markov models,
we were able to decrease the error rate by not assuming a
time-reversible Markov process. Comparisons between
pairs of modern sequences force a time-reversible model
because the ancestral state is not known. Consequently, it
is impossible to determine whether the change was from
the state in the first sequence to the state in the second
sequence, or vice versa. Our use of rooted triples (rather
than pairs) of sequences both allows more accurate infer-
ence of Q and allows the direction of each change to be
inferred, which is useful when Q is not time-reversible.

We also limit the influence of selection on our results by
using only nucleotides at the third codon position, at
which changes are typically not under selection [63].

Mathematics of detecting changes in Q

We hypothesize that HGT causes abrupt changes in the
rate matrix experienced by a gene. We therefore scan the
sequences of genes within an individual genome, looking
for abrupt changes in Q. If changes in Q occur during the
process of evolution of a set of homologous genes (e.g.
because of an HGT event), a model that assumes a single
Q should fit the data poorly. For example, suppose that
we compare each triple of homologous genes in a phylo-
genetic tree, and use the differences to infer a set of prob-

ability matrices i for the homologous group. We then

infer the rate matrices using ti = ln i. Suppose all the

genes in the homologous group evolved under a single Q.
Other than noise, the only differences between the differ-

ent ti will be that they come from probability matrices

representing different amounts of time since divergence.

In this case, all the inferred ti are scalar multiples of one

another. Therefore a singular-value decomposition (SVD)
of the set of rate matrices should show that the largest sin-
gular value is sufficient to describe the set of rate matrices
[42]. When many singular values are required to describe

the set ti the different inferred rate matrices for different

groups of genes from the same phylogenetic tree are not

dpG

dt

d

dt

u
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scalar multiples of each other and the single-Q model fails
to explain the data.

We are especially interested in detecting HGT in cases
where genes in different parts of a phylogenetic tree have
evolved under precisely two different Q, because this sug-
gests a single transfer between different species. To detect
this situation, we compare the uncentered and centered
SVD of the set of inferred rate matrices from homologous
genes within a single phylogenetic tree. In uncentered

SVD (USVD), we perform the SVD on the raw ti. This

requires that the zero matrix is the origin of the space, and
all basis vectors found in the SVD must pass through this
origin. This coordinate system works well when all the

ti are related by scalar multiplication, because the zero

matrix is then a part of the set. In centered SVD (CSVD),
we perform the SVD on either the covariance matrix or the

correlation matrix of the set of ti. This technique is also

called principal components analysis (PCA). CSVD has an

effect similar to subtracting the mean of the ti from each

ti, thus centering the coordinate space on the mean of

the ti. Using the correlation matrix instead of the covar-

iance matrix has the additional effect of scaling each axis
to the same coordinate system, controlling for different
amounts of variation in different variables [64]. In CSVD,
the origin of the coordinate system corresponds to the
average Q, not the zero matrix. Therefore the axes corre-
sponding to large singular values need not correspond to
directions in which the original rate matrices are related
by scalar multiplication. This coordinate system is partic-
ularly suited to detecting changes in Q (due to HGT, for
example).

For a set of homologous sequences related by a single Q,
USVD and CSVD should both find a good fit, because
most of the variance in the rate matrices is due to variation
in time, which corresponds to scalar multiplication (Fig-
ure 2). Both USVD and CSVD should also find the same
axis, which accounts for most of the variation in the set of
rate matrices obtained from different combinations of
genes in the tree. For a set of homologous sequences
evolved under two different rate matrices, USVD should
fit the single-Q model poorly, because the variation in the

inferred rate matrices, ti, is influenced both by variation

in t and by variation in Q. On the other hand, CSVD
should find a good fit because it subtracts out the time var-
iation: most of the variance will be explained by a single

axis that links the two clusters from the two distinct Q
(Figure 2).

We propose that comparison of USVD and CSVD fits can
reveal when a single change in Q occurred. We expect that
this method will work better for larger differences in Q,
and where the differences are not solely due to scalar mul-
tiplication. Below, we address precisely how large a differ-
ence this method can detect using simulated sequence
evolution.

Results
Inferring the rate matrix

We first checked that we can recover the rate matrix accu-
rately enough for inferred differences in Q to be valid. This
is a critical first step in demonstrating that the method
works. The main sources of error are sampling error from
the finite amount of sequence data, and numerical error
introduced by the matrix logarithm and exponentiation.
Both numerical error and sampling error can lead to the
inference of a pseudo-rate matrix with negative off-diago-
nal elements when taking the logarithm of P. To estimate

the effects of sampling, we compared each  determined
from the sequence to the expected P using P = eQ, and
found a sampling error of 0.0075 to 0.025 (data not
shown). Thus our method gives errors comparable to the
intrinsic sampling error. We found that the sampling error
was relatively small when the sequence length exceeded
1000 nucleotides (Figure 3), a reasonable estimate for a
single gene.

Variation in the rate matrix within and between genomes
We used both simulated sequence evolution and repre-
sentative bacterial genome sequences to (i) test how many
genes are required for accurate inference of the rate matrix
and (ii) confirm that the rate matrices estimated from
genes in a single species are more similar to each other
than to rate matrices estimated from genes in different
genomes. We expected that when we increased the
number of genes n used to determine the rate matrix, the
estimated rate matrices would become more accurate. For
large n the estimated rate matrix should converge to the
average rate matrix for the genome. For the rate matrix
estimates from bacterial sequence data, we chose sets of
three genomes (triples) at approximately the same level of
divergence as the sequences used in the simulations (see
Methods for details and a list of bacterial genomes used in
the analysis).

Figure 4 shows these comparisons (a) for randomly gen-
erated rate matrices at different specified levels of diver-
gence (Figure 4a), (b) for rate matrices generated from
different samples of genes in one representative genome,

Q̂

Q̂

Q̂

Q̂

Q̂

Q̂

Q̂

P̂

Page 5 of 21
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:476 http://www.biomedcentral.com/1471-2105/7/476
PFO (Pseudomonas fluorescens Pf0-1), which we use as an
example (Figure 4b), and (c) for comparisons within and
between genomes for all species triples in the comparison,
where we varied the number of genes n used to estimate
the rate matrix from n = 1 to n = 50 (Figure 4c–h). When
the rate matrix is estimated based on samples of ten or
more genes, the mean distance in the rate matrix between
pairs of samples taken from the same genome was always
substantially less than the mean distance between pairs taken
from different genomes (assessed by two-sample t test: t =
28.6, P < 10-173). We note that when the rate matrix esti-
mate is based on single genes, the estimated rate matrices
are overdispersed (more different than would be expected
for randomly chosen rate matrices). This effect occurs
because small sample sizes lead to counts of zero for some
changes, which can cause the rate matrices to appear rad-
ically different.

To infer how different the rate matrix is between different
genomes, we used the rate matrix estimates based on sam-
ples of 50 genes (Figure 4g; see Methods for details). For
samples of genes taken from the same genome, the aver-
age distance between rate matrices is only 0.09. When we
compare estimated rate matrices of sister genomes, the
average distance between rate matrices is 0.20, while for
distantly related genomes the average distance between
rate matrices is 0.25. We note that rate matrices of sister
genomes look nearly as different from each other, on aver-
age, as do the rate matrices of distantly related species.

The average distances between rate matrices which we esti-
mate from biological sequence data correspond to per-ele-
ment perturbations of 0.55–0.65. This within the range of
matrix divergences we used in our simulations. The
genomes used for the comparison were all relatively GC-

Relationship between (a) uncentered SVD and (b) centered SVDFigure 2
Relationship between (a) uncentered SVD and (b) centered SVD. A set of related sequences is used to determine a set of rate 
matrices, Qi. If the sequences were generated by mutation with the same rate matrix for all species throughout time, then the 
rate matrices are all scalar multiples of each other. In this case, the singular-value decomposition (SVD) of the set of Qi will 
show that a single vector (corresponing to the time axis) explains most of the variation in the set of rate matrices. Both USVD 
(the SVD is performed on the Qi directly) and CSVD (the SVD is performed on the covariance matrix of the Qi) will find the 
same dominant axis. If the rate matrix is different for different species or time-varying, no single vector will explain most of the 
variation in the set of rate matrices. In other words, USVD will not find a single best axis. However, for the case of precisely 
two rate matrices, CSVD, but not USVD, will still find a single, non-time axis that explains much of the variation in the rate 
matrices (in the example shown, r2 = 0.46 for the best-fit line through the mixed points on the right panel). This occurs because 
a single vector explains much of the variance in the set of rate matrices, but this vector does not correspond to a time axis, and 
hence cannot be found in USVD. Data shown are for a simplified model of rate matrices with a two-character alphabet a and b 
instead of the four-character alphabet used in DNA. In this simplified alphabet, Q has only two non-negative elements repre-
senting ra→b and rb→a. These two elements are plotted on the x and y axes of each graph. Data shown are for 16-taxon trees 
evolving according to the single rate matrix ra→b = 0.9, rb→a = 0.1 (blue points), ra→b = 0.2, rb→a = 0.8 (green points), or an equal 
mixture of both (red points).
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rich. Therefore we expect the rate matrices to differ sub-
stantially more for genomes with greater compositional
differences. These results demonstrate that our conclu-
sions based on simulated sequence data are likely to be
relevant to biological sequences.

Discriminating among phylogenies generated with one, 
two, or many rate matrices
We found that we can determine whether a phylogeny was
generated by one, two, or many rate matrices with greater
accuracy than allowed by previous methods. We used a
total of 45 different statistics based on properties of the set

of Qti inferred from homologous sequences within each
simulated phylogenetic tree (Table 1) to test whether we
could distinguish among single-Q, double-Q, and multi-
Q phylogenies. We found that many of the statistics
offered substantial improvement over previously pub-
lished statistics for detecting changes in the rate matrix.

We tested classification of three types of simulated phylo-
genetic trees, generated by one, two, or many rate matrices
(Figure 5), according to the model shown in Figure 6. For
the data shown in figures 7–8, we simulated balanced
trees with 16 sequences (taxa). In the double-Q phyloge-

Average root mean square (RMS) error per matrix element when estimating the rate matrix Q from simulated sequence dataFigure 3
Average root mean square (RMS) error per matrix element when estimating the rate matrix Q from simulated sequence data. 
Curves are shown for three different sequence lengths, N = 100, 1000, and 10000. Note that the increase in the error for 

higher percent sequence identity is a sampling effect: more similar sequences have fewer sites of change, and therefore the  
determined from the data have higher sampling error.

P̂
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Average difference between two Qi obtained from samples of genes within a genome ('within'), between sister genomes ('sis-ter'), or between more distantly related genomes ('between')Figure 4
Average difference between two Qi obtained from samples of genes within a genome ('within'), between sister genomes ('sis-
ter'), or between more distantly related genomes ('between'). Panel (a) shows results for simulated sequence evolution. Panels 
(b)-(h) show results from fully sequenced bacterial genomes; see Methods for details and a list of species included, (a) Dis-
tances for pairs randomly-generated matrices, using either the unrestricted model ('unrestricted') or by perturbing a starting 
matrix by a specified amount (100%, 50%, or 25% per element). (b) Results from one representative genome, PFO (see Meth-
ods). Series represent number of genes n used to estimate the rate matrix. By the time n increases to 10 genes (yellow series), 
the within-genome distance is a factor of 2–4 smaller than any between-genome distance, (c-h) Results for comparisons aver-
aged over all genomes. As the sample size n increases from 1 to 50, the separation between the within-species and between-
species distribution increases. This separation is highly significant within each species by n = 10 (for example, for PFO, the dif-
ference is about a factor of 2; P < 10-300).
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Table 1: Statistics used to detect changes in the rate matrix.

# Type Sequences Normalized Centered SV measure Centered SVD method Rank %

1 SVD 2 No Yes a Correlation 44 0.4
2 SVD 2 No Yes b Correlation 40 0.5
3 SVD 2 No Yes c Correlation 12 2.5
4 SVD 2 No Yes a Covariance 41 0.5
5 SVD 2 No Yes b Covariance 42 0.5
6 SVD 2 No Yes c Covariance 37 0.6
7 SVD 2 No No a _ 36 0.6
8 SVD 2 No No b _ 39 0.5
9 SVD 2 No No c _ 35 0.8
10 Mean(d) 2 No - - - 34 0.9
11 Var(d) 2 No - - - 22 1.8
12 SVD 2 Yes Yes a Correlation 23 1.8
13 SVD 2 Yes Yes b Correlation 43 0.5
14 SVD 2 Yes Yes c Correlation 32 1.2
15 SVD 2 Yes Yes a Covariance 14 2.2
16 SVD 2 Yes Yes b Covariance 45 0.3
17 SVD 2 Yes Yes c Covariance 18 2.0
18 SVD 2 Yes No a _ 28 1.5
19 SVD 2 Yes No b _ 21 1.9
20 SVD 2 Yes No c _ 31 1.4
21 Mean(d) 2 Yes - - - 24 1.7
22 Var(d) 2 Yes - - - 33 1.2
23 SVD 3 No Yes a Correlation 7 3.9
24 SVD 3 No Yes b Correlation 26 1.6
25 SVD 3 No Yes c Correlation 20 1.9
26 SVD 3 No Yes a Covariance 6 3.9
27 SVD 3 No Yes b Covariance 19 1.9
28 SVD 3 No Yes c Covariance 2 6.9
29 SVD 3 No No a _ 8 3.8
30 SVD 3 No No b _ 30 1.5
31 SVD 3 No No c _ 13 2.3
32 Mean(d) 3 No - - - 3 6.8
33 Var(d) 3 No - - - 10 3.3
34 SVD 3 Yes Yes a Correlation 5 5.1
35 SVD 3 Yes Yes b Correlation 15 2.2
36 SVD 3 Yes Yes c Correlation 4 5.7
37 SVD 3 Yes Yes a Covariance 1 7.7
38 SVD 3 Yes Yes b Covariance 29 1.5
39 SVD 3 Yes Yes c Covariance 16 2.1
40 SVD 3 Yes No a - 9 3.5
41 SVD 3 Yes No b - 27 1.6
42 SVD 3 Yes No c - 38 0.6
43 Mean(d) 3 Yes - - - 17 2.1
44 Var(d) 3 Yes - - - 25 1.7
45 Var(GC) - - - - - 11 3.2

Table of 45 statistics derived from collections of rate matrices. Columns are: #: number of each method, used in the text for reference. Type: type 
of statistic, either SVD, mean distance of each Qi from the average of all Qi (Mean(d)), variance of the distances of the Qi from the average of all Qi 
(Var(d)), or variance in GC content (Var(GC)). Sequences: either 2, for pairwise sequence comparisons that assume a time-reversible substitution 
model, or 3, for three-way sequence comparisons that do not assume a time-reversible model. Normalized: either No, for unnormalized Qi, Yes, 
for Qi normalized to a trace of 1 (eliminating the contribution of time to the inferred matrix), or N/A, where normalization was not applicable. 
Centered: Yes, for CSVD, No, for USVD, or N/A, where SVD was not used. SV measure: statistic for characterizing singular values, either a, for 
ratio of the two largest singular values, or b, for ratio of the largest singular value to the sum of all singular values, or c, for ∑i ln(1 + σi), where the 
σi are the singular values (this is the SVD version of the statistic introduced by Weiss et al. [43]), or N/A, where not applicable. CSVD method: 
Covariance if the covariance matrix was used for CSVD, Correlation if the correlation matrix was used, N/A if not applicable (i.e., if the technique 
was not centered SVD). Rank: rank of the statistic in contributing to overall classification accuracy using random forests [75]. %: percentage 
contribution of the statistic to overall classification accuracy using random forests. The statistic used by Devauchelle et al. [42] corresponds to 
statistic 7; that used by Weiss et al. [43] corresponds to statistic 9.
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nies, 12 of the sequences evolved according to one ran-
dom Q, and the remaining 4 sequences evolved according
to another random Q. In the multi-Q phylogenies, a new,
random rate matrix was generated for each branch. Results
shown are for trees with an average divergence of 10%
between the most closely related sequence pairs, but
results were similar for divergences ranging from 5% to
50% in steps of 5% (data not shown). Neither of the pre-
viously published statistics we tested, statistic 7 and statis-
tic 9 [43,42], nor their use in combination, could reliably
separate the three types of trees (Figure 7a). However, the
combination of two of our best-performing statistics, sta-
tistic 25 and statistic 41, efficiently separated all three
classes of phylogenetic trees (Figure 7b).

Detecting simulated HGT events
Our simulation of HGT events was designed to model
orthologous gene displacement. In this type of transfer
event, the gene in one species is replaced by or supple-
mented with an ortholog from another species.
(Orthologs are genes that have diverged only through spe-
ciation, as opposed to paralogs, which are genes that have

diverged after duplication within a single species.) Orthol-
ogous gene displacement has been documented for sev-
eral functional categories of genes, including enzymes in
the citric acid cycle [65], antibiotic resistance genes such as
variant dihydrofolate reductases [66], and even the genes
comprising the entire type III secretion system apparatus
[11]. However, these orthologous displacements are diffi-
cult to detect with existing techniques [67]. Therefore, we
hypothesized a more-powerful HGT-detection method
based on changes in Q to be especially useful for detecting
orthologous gene displacement.

To design simulations of orthologous gene displacement,
we assumed that genes diverge from a common ancestor.
Initially, both daughter species have the same rate matrix.
One of the two daughter species then undergoes a muta-
tion that changes its rate matrix, changing the evolution-
ary pattern of the gene in that lineage. Finally, the gene
transfers back to the other lineage (which is evolving
under the original rate matrix), and undergoes a period of
evolution under that original matrix. This simulated trans-
fer event is a challenge for HGT detection methods,

Procedure for simulating sequencesFigure 5
Procedure for simulating sequences. From a random ancestral sequence and one or more random rate matrices, we evolve a 
tree of 8 or 16 sequences. We then choose all combinations of three sequences (shown), or, for pairwise comparisons, two 

sequences (not shown), from the tree. For each sequence pair or triple, we infer  by counting the directed changes in each 

of the two sister sequences (relative to the outgroup), and infer  by taking the log of  (after normalization to make the 

rows sum to 1). The inferred rate matrix  may contain negative off-diagonal elements (shown in red); note the error in the 

corresponding elements of Q and  (e.g. the first element highlighted in blue). Finally, we combine the Q from each triple and 
derive summary statistics.
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Model parameters varied during simulated evolution of phylogeniesFigure 6
Model parameters varied during simulated evolution of phylogenies. The total number of nodes n corresponds to the number 
of sequences (taxa) at the end of the simulation. The sequences are evolved so that sister taxa have an average percent diver-
gence d; the length of time from each terminal taxon to its most recent common ancestor is d/2. The rate matrix Q1 is fixed 
over the whole tree, except where the simulated horizontal transfer event occurs. The modeled HGT event occurs between 
the second and third internal branch points and is represented by evolving one of the four taxa according to a different rate 
matrix Q2. (Note that if no HGT event is modeled, Q2 = Q1). To vary how far back in time the simulated HGT event occurred, 
we varied the ratio r betweeen the first branch and all other branches. Larger r corresponds to a more recent HGT event. The 
parameters were: n = 8 or 16, d was between 0.05 and 0.5 in steps of 0.05, and r was 1, 2, 5, 10, or 20. The first rate matrix Q1 
was chosen randomly. In the "unconstrained" case, Q2was chosen randomly, independent of Q1. In the "constrained" case, we 
required that each random element of Q2 be within a certain percentage of the corresponding element of Q1; percentages of 
20%, 50%, and 90% were considered.
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Improved detection of simulated HGT events using our new statisticsFigure 8
Improved detection of simulated HGT events using our new statistics. The histograms show the discrimination using GC con-
tent, statistic 45 (left), and ratio of first two singular values in three-way comparisons, statistic 41 (right). The new statistic is 
considerably better at classifying the HGT (red) and non-HGT (blue) phylogenies, as shown by the greater separation between 
the two histograms. Statistic 41 gives an optimal classifier with 1.5% false positives and 5% false negatives, a threefold improve-
ment in discrimination over statistic 45. Data shown are from 1000 balanced 16-sequence trees of each type, with an average 
divergence of 10% between sister taxa.

Improved discrimination between phylogenetic trees generated by one (blue), two (green) and many (red) rate matrices, (a) Previously published statistics 7 [42] and 9 [43] fail to separate single-Q trees from double- and multi-Q phylogeniesFigure 7
Improved discrimination between phylogenetic trees generated by one (blue), two (green) and many (red) rate matrices. (a) 
Previously published statistics 7 [42] and 9 [43] fail to separate single-Q trees from double- and multi-Q phylogenies. (b) Two of 
our new statistics, statistics 25 and 41, which distinguish single-Q trees efficiently. Due to sample variance, no single statistic 
provides adequate discrimination (i.e., the groups overlap substantially if only a single dimension is considered). However, com-
bining two of our new statistics (see text) easily separates the single-Q trees from the other two groups. Data shown are from 
1000 balanced 16-sequence phylogenies of each type, with average divergence of 10% between sister sequences and sequence 
length of 1000. These results show that we can detect changes in the rate matrix much more sensitively with our new methods 
than with previous methods. In these simulations, but not the other simulations shown, the same random Q was used for dif-
ferent runs of a given type of simulation.
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because orthologous gene displacement can be difficult to
distinguish from loss of alternate paralogs. Furthermore,
orthologous gene displacement is a challenge for methods
of HGT detection that rely on nucleotide composition
because of rapid equilibration to the new genome in the
final period of evolution (Figure 6).

To determine which statistics could most accurately iden-
tify HGT by orthologous gene replacement, we simulated
samples of balanced eight-taxon phylogenetic trees with
10% divergence between sister taxa. These trees either
evolved according to a single random Q, or contained a
horizontal transfer event (Figure 6). In the simulated HGT
phylogenies, four of the sequences initially evolve under a
different, random Q, and then transfer to taxa with the
same Q as the remaining species. We compared the ability
of our new methods, and of the standard compositional
method based on variation in GC content (statistic 45), to
discriminate between HGT and non-HGT phylogenies.

We focus on GC content rather than other compositional
measures for two reasons. First, GC content is much more
consistent within bacterial genomes than between
genomes [32]. This means that variation in GC content is
widely used in practice to detect genomic islands (e.g. in
[11]). Second, almost all of the variation in composition
in biological sequences is in GC content rather than along
the other two possible axes of composition; this is true
both for coding sequences [68-70] and for non-coding
sequences such as rRNA [68,71,72]. The rare exceptions
are in genomes that exhibit extreme bias between the lead-
ing and lagging strand [46], although these effects are
small in most microbial genomes [73]. (A comprehensive
comparison of compositional metrics is beyond the scope
of this analysis, but we direct readers interested in these
issues to recent literature on this topic [38,39,34,13,21].)

We found that our methods could detect HGT much more
sensitively and specifically than by using GC content. In
our simulations, the variance in GC content was not
highly discriminatory (Figure 8, left). Although the differ-
ence in variance in GC content between HGT and non-
HGT trees was highly significant (P = 7 × 10-25 by unpaired
2-tailed t-test, n = 100 per sample), the optimal single-var-
iable classifier [74] gave 21% false positives and 0.5%
false negatives. In contrast, the best of our statistics, statis-
tic 41, resulted in only 1.5% false positives and 5% false
negatives, a three-fold improvement in overall error rate
despite the increase in false negatives (Figure 8, right). The
difference in this statistic was highly significant (P = 8 ×
10-63 by unpaired 2-tailed t-test, n = 100 per sample). In
simulated phylogenies we can detect HGT with much
higher precision than existing methods.

Limits of accuracy
We expected that our method for HGT detection will work
best when the original and new host species have very dif-
ferent rate matrices. To determine what changes in the rate
matrix are required for accurate detection, we repeated the
HGT-detection analysis with restrictions on the average
variation in Q. This analysis indicates how recently a
transfer must have occurred, and how different Q must
have been in the organism that the gene came from, to be
detectable. We tested the minimum difference in Q we
could detect by constraining the extent to which the two
Qs could vary from one another on 8- and 16-taxon dou-
ble-Q phylogenies (Figure 6).

Some of our new statistics outperformed GC-content sub-
stantially when used as single-variable classifiers. For
example, using 16-taxon trees with divergence = 0.1 and a
branch ratio of 1 or 2, statistic 41 gave a 10-fold decrease
in error rate relative to GC content. The improvement was
largest when the changes in the rate matrix were unre-
stricted (i.e. the two rate matrices were chosen at random,
rather than being constrained to be within some percent-
age of each other), and when the branch ratio of internal
to external branches was low (set at 1 or 2). This result was
expected because long internal branches lead to very dif-
ferent sequence compositions, which are easily identifia-
ble by GC content changes alone. Several of our new
statistics consistently outperformed GC content when
both the overall divergence and the ratio of divergence in
the inner and outer branches were relatively low (Figure
9). These conditions model cases under which HGT might
be mistaken for differential loss of members of a gene
family. Our ability to detect HGT more sensitively under
these conditions is thus encouraging.

Combinations of statistics reduce the error rate by an 
order of magnitude
To assess the performance of different statistics, both
alone and in combination, over the entire data set, we
used the random forests algorithm [75]. Random forests
allow us to determine classifiers that combine multiple
statistics and to identify the combinations of statistics that
gave most weight to the optimal classifiers (see Table 1 for
a description of each statistic). We found that no single
statistic performed well under all circumstances. The best
performer overall, statistic 33, accounted for only 7.7% of
the variable importance across all classifiers, and was
closely followed by statistic 28 (6.9%) and statistic 32
(6.8%).

These three statistics with highest variable importance are
mathematically different and uncorrelated. Although all
use three-sequence comparisons rather than pairwise
comparisons, 33 and 28 use SVD on the scaled and
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Performance of our new statistics compared to the performance of GC contentFigure 9
Performance of our new statistics compared to the performance of GC content. Each data point corresponds to a sample of 
independent simulations. We determine the error rate (as shown in Figure 8) both for GC content and for our statistic 36. 
Here we show the error rate for statistic 36 divided by the error rate for GC-content alone. When the ratio of error rates is 
less than 1, our new statistic outperforms GC content in detecting simulated HGT events. The different panels show different 
simulation conditions: (a) 8-taxon trees, no restriction on Q2, (b) 8-taxon trees, each random element of Q2 constrained to be 
within 90% of the corresponding element of Q1, (c) 16-taxon trees, no restriction on Q2, and (d) 16-taxon trees, each random 
element of Q2 constrained to be within 90% of the corresponding element of Q1. Different curves correspond to different 
branch ratios. Error bars represent the standard error of the mean for 10 independent simulations. This statistic outperforms 
GC content substantially when the branch ratio is low (corresponding to a more ancient split of the host species from the orig-
inal common ancestor) and the divergence is low to intermediate (gene sequences have intermediate to high sequence iden-
tity). In some cases we find that use of this statistic gives a lower error rate than does GC content by a factor of 10.
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unsealed ti respectively, and 32 uses the mean distance

of each ti from the mean. The three best statistics were

all based on USVD, although both USVD and CSVD-
based statistics contributed to the best ten and together
provide highly sensitive discrimination. In general, the
best statistics were not highly correlated with one another.
Pairwise correlation coefficients among the best 10 statis-
tics averaged r = -0.001, ranging from -0.38 to 0.68.

Of the 45 statistics we tested, GC content (statistic 45)
placed llth. This relatively poor showing underscores the
importance of using the full rate matrix, rather than sim-
ply examining the composition. However, GC content
does work well when the sequences have diverged mark-
edly in composition, especially when the internal
branches are very long (i.e., the ratio between internal and
terminal branches is high).

We also found that using three-sequence estimates of the
rate matrix (which allows non-time-reversible changes to
be estimated) provided far more power to detect changes
in Q than did pairwise estimates (which can only detect
time-reversible changes). Of the top 10 statistics in the
combined classifier, all were based on three-sequence
comparisons (average variable importance 5.1%),
whereas 9 of the 10 worst statistics were based on pairwise
comparisons (average variable importance 0.51%). This
difference indicates that three-sequence estimates of Q
perform significantly better than pairwise estimates. Thus,
eliminating the assumption of time-reversibility is impor-
tant for detecting HGT.

We started with the single best statistic and added back
each additional statistic (Figure 10) to test how using
combinations of statistics improves the accuracy of classi-
fication. We found that adding statistics dramatically
decreases the error rate for a wide range of parameter set-
tings. This effect is most dramatic when changes in the rate
matrix are unrestricted: going from the single best statistic
to the combination of the four best statistics reduces the
error rate more than 10-fold, from 38% to 2.7%. The cor-
responding error rate for GC content alone with the same
data was 39% (i.e. GC content performed almost as well
as the best single classifier on this data set, but performed
much more poorly on the combined classifier). These fig-
ures reflect the performance of a trained classifier on new
data, so are unlikely to be vulnerable to overfitting.

Discussion and conclusions
In this paper, we developed new measures which use
sequence data to predict whether or not a gene has been
horizontally transferred. These measures are based on
apparent changes in the micleotide substitution dynamics

that occur when a gene is transferred to a new organism;
these changes can be described by changes in the micle-
otide substitution rate matrix Q. We used simulated
sequence evolution to assess our ability to infer the rate
matrix and use changes in the rate matrix to assess hori-
zontal transfer. Our results show that we are able to accu-
rately infer the rate matrix from simulated sequence data.
Using a combination of statistics derived from SVD of a
set of rate matrices inferred from different pairs or triples
of genes within a single phylogenetic tree, simulated HGT
events can be detected with an error rate as low as 2.7%.
Our new measures of horizontal transfer demonstrate
greatly improved accuracy and sensitivity in the detection
of simulated horizontal transfer: using a four of our new
statistics gives a factor of 19 decrease in the error rate of
simulated HGT detection, relative to the error rate of HGT
detection solely by changes in GC content. Thus, we have
demonstrated a powerful new class of methods for detect-
ing HGT that combine some of the best features of exist-
ing phylogenetic and compositional methods.

Our results demonstrate that taking the micleotide substi-
tution rate matrix into account provides substantial
advances over simply examining the composition of the
sequences. In addition, we show that the combination of
different SVD-based statistics is an efficient way of making
use of these data. As we expected, no single statistic per-
forms well for all simulation conditions. This result, espe-
cially the different performance between methods at
different levels of sequence divergence (Figure 9), is con-
sistent with previous observations that different composi-
tion-based statistics may be most effective for changes that
occurred at different times during evolutionary history
[19].

Many changes in the rate matrix would be expected to
leave GC content unchanged. The micleotide substitution
rate matrix can thus be thought of as generalizing the con-
cept of GC content to take into account the dynamics of
compositional change as well as the composition of mod-
ern genes. Therefore, as our results show, examination of
changes in the rate matrix can be more powerful than
examination of composition alone.

We were particularly interested in understanding whether
the assumption of a time-reversible Markov process affects
the ability to detect HGT from sequence data. We found
that using methods that do not assume time reversibility
is critical to detecting HGT in our simulated phylogenies.

In many ways, our simulations were more restrictive than
the conditions that exist in real sequences. For example,
our phylogenies simulate temporary changes in Q in the
past, rather than trees in which Q changes and in which
the new Q persists to the present. The temporary change
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in the rate matrix leaves a weaker signature in the
sequence than does a persistent change. We require that
genes share a common ancestor that has evolved for part,
but not all, of its history under a different Q from the
modern species in which it is found. Detecting these tran-
sient changes in Q is more difficult than simply testing
whether Q has changed anywhere in the phylogenetic tree
[43]. Sequences that currently share a genome experience
mutational processes that reflect the same Q, blurring dis-
tinctions that may have accumulated in the past when the
sequences were found in different genomes.

Our results on both simulated and real sequences show
that our method is likely to identify short blocks of ten or
more transferred genes, including difficult-to-detect cases
in which genes replace orthologs already present in the
genome. Large errors in the inference of Q from single
genes, largely due to sampling error, limit our ability to
observe the transfer of short fragments of DNA. However,
many HGT events involve multiple genes: a recent study
of genomic islands showed that a sample of 89 transferred
blocks reported in the literature contained 41 genes on
average [76]. We thus expect the new methods to be useful

Classification results when multiple statistics are combinedFigure 10
Classification results when multiple statistics are combined. The error rate decreases as more variables are used for classifica-
tion. Results are averaged across branch length, number of taxa, and ratio of terminal to internal branches. Each simulation was 
weighted equally. Different curves correspond to different restrictions on the rate matrices used in the simulation (see Figure 
6). In the "unconstrained" case, the second rate matrix Q2 was chosen randomly, independent of the original Q1. In the "con-
strained" case, each random element of Q2 must be within 20%, 50%, or 90% of the corresponding element of Q1. Adding vari-
ables decreased the error rate in all cases, decreasing the error rate from 50% to 27% when the rate matrix change is 20% per 
element and from 38% to 2.7% when the change in Q is unrestricted. The statistics added were, in order of use, statistics 37, 
32, 36, and 34.
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for uncovering a wide range of transfer events, especially
those mediated by plasmids or phages [5].

The analysis of bacterial sequence data demonstrates that
we can detect changes in the rate matrix even between
closely related genomes with similar GC content, includ-
ing different strains of the same species. This further con-
firms our hypothesis that the use of the full rate matrix can
detect differences in sequence divergence with greater
power than compositional statistics. We thus expect that
this technique will be useful (i) for detecting recent trans-
fers across large taxonomic groups (e.g. across divisions)
when both donor and recipient genomes have similar
overall composition, and (ii) for detecting transfers of
blocks of genes between closely related genomes. This lat-
ter case of orthologous gene displacement is thought to be
important in the transfer of antibiotic resistance (e.g.
[27]).

Our improved ability to detect ancient changes in Q will
be especially important for detecting subtle changes in
biological sequences that compositional and phyloge-
netic methods alone cannot resolve. Our ability to reliably
detect per-element changes in Q as small as a factor of two
will be especially important for resolving transfers
between species with similar Q. This may assist in the
detection of transfers between closely related lineages,
which often have similar Q. To our knowledge, this work
is the first time that sensitivity of any method, including
GC-content, to variations in the rate matrix has been
measured. We expect that our new methods will greatly
enhance our ability to detect horizontal gene transfer and
a wide range of other alternative phylogenetic events
throughout the tree of life.

Methods
Sequence simulations
Sequences were simulated by a Monte Carlo procedure
(Figure 5). First, we define a phylogenetic tree topology
and branch lengths, where branch lengths represent time
and branch points represent species divergence events.
Then we specify the nucleotide substitution rate matrix as
a function of time, either by applying a single Q to the
whole phylogeny or specifying Q at each node. (When a
rate matrix is specified at a given node, it applies to the
downstream branch of the tree, until the next node.) We
then calculate P at each node by exponentiating the prod-
uct of Q and the upstream branch length. Finally, we set a
random sequence at the root and use the P at each node
to mutate the sequence of its parent. Simulations shown
here were for phylogenies of 8 or 16 sequences (taxa),
starting with an input sequence of equal nucleotide fre-
quencies, with sequence lengths of 1000 nucleotides
evolving on the DNA alphabet (T, C, A, G). For sensitivity
analysis, we set all branch lengths equal except for the

branch length from the root to the first internal nodes.
The lengths of these branches that started at the root were
scaled by the same constant factor, which we called the
branch ratio. This difference in branch length for the inter-
nal nodes allowed us to test the effect of the relative
importance of changes in Q in different parts of the phyl-
ogenetic tree.

HGT phylogenies were generated by changing Q along
one internal branch of the tree. This procedure simulates
a period of evolution in a lineage with a different rate
matrix, followed by transfer back to a lineage with the
original rate matrix. See Figure 6 for a detailed explanation
of each parameter varied in these simulations.

Inference of nucleotide substitution rate matrices

Each nucleotide substitution rate matrix Q was inferred by

empirically deriving  from a pair or rooted triple of
sequences (using the most divergent sequence as the out-

group), and obtaining t by taking the matrix logarithm

of . Each Q was initially estimated as  = ln . As

shown in Figure 3, the error in  is comparable to the

intrinsic sampling error that is inevitable with sequences
of finite length.

Figure 5 contains results of a typical run: we show the
ancestral sequence and rate matrix, the evolved sequences,
and the inferred rate matrix. Our results, which we
obtained without using model parameters such as Q and
the ancestral sequences, demonstrate that we will be able
to recover accurate rate matrices from modern biological
sequences if they evolve under the model that we assume.

Inferring change within a set of rate matrices
We used several strategies for combining a set of rate
matrices from a single phylogenetic tree into a single sta-
tistic indicative of HGT (Table 1). These methods used
both two- and three-sequence comparisons to test
whether the assumption of a time-reversible model
affected our ability to detect HGT. (Note that a model
inferred from two-sequence comparisons must be time
reversible, because one cannot determine which character
is older from the fact that a change occurs. In three-
sequence comparisons, a direction of change can be
inferred.) Although most of the statistics were based on
centered or uncentered SVD (see Theory), some were
based on the mean or variance of the distance between
each individual rate matrix and the mean of all inferred
rate matrices. We also used three different strategies for
combining the eigenvalues of the set of Qi: the ratio of the
first and second eigenvalues, the ratio of the first eigen-
value to the sum of all eigenvalues, and the statistic intro-
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duced by Weiss et al. [43]. This last statistic is ∑i ln (1 + σi),
where σi is the ith eigenvalue.

Measuring variation in the rate matrices within and 
between species
We selected fully sequenced bacterial genomes (i) to test
whether rate matrices vary more between species than
within them, and (ii) to determine how many genes are
required in practice for reliable inference of the rate
matrix. We selected sets of three species ('triples') for com-
parison. Our selection criteria were (a) the third codon
position divergence (for genes that are present in all three
species) between the two sister species was between 5%
and 15% on average, (b) the third codon position diver-
gence between each of the two sister species and the out-
group was between 10% and 25% on average, and (c) the
mode of the distribution of divergences for individual
genes was within 30% of the mean. The third criterion was
important because of the mosaic structure of certain
genomes, which may have been subject to the integration
of large plasmids (e.g. the Locus for Enterocyte Effacement
(LEE) plasmid required for virulence in enter opathogenic
E. coli has apparently integrated into the Citrobacter roden-
tium genome [77]) or which may have extreme composi-
tional bias between the two strands (e.g. Borrelia
burgdorferi [46]).

After choosing appropriate sets of species, we applied
additional selection criteria for individual genes. We con-
sidered only genes (a) that were present in the KEGG
Orthology (KO) [78] in all three species within a given tri-
ple, (b) that were not identical between any pair of spe-
cies, (c) that aligned over a span of at least 100 amino
acids, and (c) in which the rank order of the divergences
at each codon position was third > first > second, reflect-
ing known constraints on coding sequences [68,69]. We
also excluded genes that were (d) less than 5% divergent
or (e) more than 20% divergent at the third codon posi-
tion between the sister groups. These constraints elimi-
nated from consideration misaligned sequences and
sequences that were likely to have been horizontally trans-
ferred, and sequences with too few changes to allow accu-
rate inference of the rate matrix.

Using these selection criteria, we identified ten represent-
ative genomes for rate matrix analysis. The genome codes
from KEGG for these triples were BUR (Burkholderia sp.
383) and BPM (Burkholderia pseudomallei 1710b), using
BPA (Bordetella parapertussis) as an outgroup; BTE (Bur-
kholderia thai-landensis and BPS (Burkholderia pseudomallei
K96243), using TBD (Thiobacillus denitrificans) as an out-
group; PSP (Pseudomonas syringae pv. phaseolicola 1448A)
and PSB (Pseudomonas syringae pv. syringae B728a), using
PFL (Pseudomonas fluorescens Pf-5) as an outgroup; SMA
(Streptomyces avermitilis) and SCO (Streptomyces coelicolor),

using NFA (Nocardia farcinica)as an outgroup, and PFO
(Pseudomonas fluorescens PfO-1) and PFL (using PSB as an
outgroup). These species spanned three bacterial divisions
(beta proteobacteria, gamma proteobacteria, and actino-
bacteria). They were also relatively consistent in GC con-
tent, ranging from 59.0% for PFO to 71.4% for SCO. All
pairs of sister taxa were within 1% GC content overall: for
comparison, the standard deviation of GC content for
genes within a species ranged from 2.6% for PFO to 4.0%
for BPS.

We aligned the protein sequences for the genes that met
our selection criteria using MUSCLE [79], because amino
acid alignments are more reliable than nucleotide align-
ments for divergent sequences [80]. We then threaded the
nucleotide sequences back through the amino acid align-
ment, extracted the parts of the aligned sequences corre-
sponding to third codon positions, and chose 100
samples of genes at random from each triple. In each of
the 100 samples, we varied the number of genes n from 1
to 50. We inferred the rate matrix for each sample using
the methods described above for simulated sequences
(summing the counts within each sample, converting
these counts to probabilities, taking the log of the proba-
bility matrix, and normalizing the trace to 1). We then
measured the Euclidean distance between the rate matri-
ces of pairs of samples. We expected that within-genome
comparisons, in which both samples of genes came from
the same genome, would yield pairs of rate matrices with
smaller mean distances than would between-genome
comparisons, in which the two samples came from differ-
ent genomes.

Development of optimal classifiers
We identified optimal classifiers empirically using the
standard procedure for dividing a set of observations into
two classes in a way that minimizes the error rate [74].
First, we pooled the values of each statistic for both HGT
and non-HGT phylogenies into a list sorted by the value
of the statistic. Second, for each value of the statistic, we
counted the number of errors as the minimum of (a) the
sum of non-HGT values greater than that value and HGT
values less than that value, or (b) the sum of HGT values
greater than that value and non-HGT values less than that
value. The optimal classifier is the boundary that gives the
minimum error rate. For example, suppose 5 of 100 HGT
phylogenies had a value of a statistic of less than 12, and
10 of 100 non-HGT phylogenies had a value of the same
statistic of greater than 12. A dividing line drawn at 12
would result in two categories: one with 5 HGT trees and
90 non-HGT trees, and the other with 95 HGT trees and
10 non-HGT trees. The number of errors would thus be
either (10 + 5) and (90 + 95), depending on whether we
call the trees above or below the boundary the HGT trees.
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Taking the minimum of these two values, we have an error
rate of 15 out of 200, or 7.5%.

To test which of these statistics had the greatest effect on
our ability to discriminate HGT phylogenetic trees from
non-HGT phylogenetic trees, and to minimize issues with
overfitting in the procedure above, we also used the ran-
dom forests classification method (Salford Systems, Uni-
versity of California, Berkeley) [75]. Random forests is a
supervised learning algorithm that extends methods
based on classification trees. A classification tree defines a
hierarchy of decisions based on features of the data, at the
end of which an observation is assigned to one of a
defined number of categories [81] (in this case, HGT or
non-HGT). Instead of building a single classification tree,
the random forests algorithm builds a set of random clas-
sification trees (a forest) that classifies objects based on an
input vector of properties. In our case, the two classes are
phylogenies either containing or not containing an HGT
event, and the vector consists of the 45 statistics we meas-
ured for each phylogeny (Table 1). Each classification tree
classifies the phylogenies using a random subset of the
data. The classification trees that are most successful at
voting for the correct classifications on a training set (i.e.
inclusion decreases the error rate at which HGT phyloge-
nies are classified as non-HGT, or vice versa) are kept
while the unsuccessful classification trees are discarded.
After many iterations, the forest becomes highly successful
at classifying the different phylogenies. The advantages of
random forests over other classifiers are that it provides a
consistently lower error rate and is less prone to overfit-
ting than techniques such as neural networks, SVMs, or
Bayesian belief networks [75], and it directly estimates
which statistics are important for the classifications.

We built 500 trees per forest with 14 predictors per node.
The number of predictors was approximately twice the
square root of the number of classifiers, as recommended
for optimal results [75] (we used 45 classifiers in the anal-
ysis). A technique called out-of-bag error estimate was
used for protection from overfitting [75].

Random forests provides information about the impor-
tance of each variable (statistic) in the classifier. The
importance of each variable is expressed as a percentage of
that statistic's contribution to the overall optimal classifier
(Table 1). Thus, a statistic with high variable importance
accounts for more of the accuracy in assigning trees to the
HGT or non-HGT categories.
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