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Abstract

Background: A large number of studies on genome sequences have revealed the major role
played by repeated sequences in the structure, function, dynamics and evolution of genomes. In-
depth repeat analysis requires specialized methods, including visualization techniques, to achieve
optimum exploratory power.

Results: This article presents Pygram, a new visualization application for investigating the
organization of repeated sequences in complete genome sequences. The application projects data
from a repeat index file on the analysed sequences, and by combining this principle with a query
system, is capable of locating repeated sequences with specific properties. In short, Pygram
provides an efficient, graphical browser for studying repeats. Implementation of the complete
configuration is illustrated in an analysis of CRISPR structures in Archaea genomes and the detection
of horizontal transfer between Archaea and Viruses.

Conclusion: By proposing a new visualization environment to analyse repeated sequences, this
application aims to increase the efficiency of laboratories involved in investigating repeat
organization in single genomes or across several genomes.

Background

Some years ago, genomes were considered as static objects
containing an informative part, the coding sequences, rep-
resenting only a small percentage of the total genome, and
a part referred to as "junk DNA" that was generally free of
any annotation. It is now widely acknowledged that
genomes must be considered from a more dynamic point
of view, involving the study of the many " copy" events
that occur during evolution, while covering not only cod-
ing genes, but non-coding sequences as well. A large
number of in silico studies have revealed that repetitive
sequences play an important role in the structure, func-

tion, dynamics and evolution of genomes in Archaea
[1,2], Bacteria [3,4] and Eukarya [5-7]. It is well known, for
instance, that proteins are combinations in a finite set of
domains that represent basic structural units whose
arrangements determine a wide variety of functions.
Other classes of repeats, such as transposable elements,
allow mobile elements to move around a genome, and
have a major impact on the evolution of sequences [8].
DNA palindromes, a particular form of repeat, are wide-
spread in human cancers. Other repeats in centromeric or
telomeric regions of chromosomes seem to endow a cer-
tain robustness to the sequences during replication.
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Repeats may be strictly conserved through evolution, as
revealed by comparisons of human, mouse, rat, chicken
and dog genomes [9,10]. Complex mechanisms such as
chromosome segment duplications, or even whole
genome duplications, are thought to occur, explaining
genome evolution [11,12]. Converging studies of human
and other genomes have also revealed that variations in
the number of occurrences of particular repeats may be an
important factor responsible for diseases such as diabetes,
epilepsy, fragile-X mental retardation and myotonic dys-
trophy diabetes [13,14]. From a technical point of view,
repeats are the source of many difficulties encountered in
assembling or comparing sequences, requiring their
extraction from these sequences. For these and other rea-
sons, the analysis of repetitive sequences is an essential
step in genome assembly, annotation and analysis.

At the core of life information, there exists an outstanding
opportunity to analyse the genomic structure by decipher-
ing its content in repeated sequences. The exhaustive anal-
ysis of 360 published complete sequences from Archaea,
Bacteria and Eukarya genomes (data from Genome
OnLine Database [15]) has revealed that most of them,
especially in Eukarya, have a genomic content consisting
of large proportions of repeats. Revealing the structure of
sequences as an assembly of elementary repeated
sequences is thus a task of utmost importance.

An important goal in computational molecular biology is
therefore finding repeats of biological interest, i.e. repeats
that have a role in genome structure and function. Practi-
cal libraries of repeats have been established in an attempt
to collect prototypical sequences and group them into
families, either for a large set of genomes or for a particu-
lar species [16-19]. To achieve this goal using computa-
tional methods, the problem consists in giving a precise
definition of a "repeat”. In the biological literature, three
main classes of repeats are proposed: tandem repeats (con-
secutive copies of patterns), duplicated segments (which
include genes and chromosome segment duplications)
and interspersed repeats (which include transposons). Tan-
dem repeats are thought to have originated by slippage of
a replicated chromosome against its template. The pat-
terns in tandem repeats are k-mers, k being generally less
than 5 (micro-satellites), but sometimes far greater (up to
several thousand base pairs long, with a total size that can
represent several uninterrupted megabases). The number
of repeats for a given satellite may differ between individ-
uals. Therefore, they can be used for DNA fingerprinting
or to provide information about paternity.

Microsatellites, also known as short tandem repeats
(STR), have a repeat unit that is 2 to 10 bp long, with the
entire repetitive region spanning less than 200 bp. Minis-
atellites are generally GC-rich repeats that range in length
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from 10 to over 100 bp with total length ranging from 1
kb to 20 kb. Duplicated segments are large intra- or inter-
chromosomally DNA segments, ranging from 41 to 655
kb in size and likely to result from replication accidents.
These events result in the duplication of gene clusters.
Interspersed repeats or mobile elements are DNA
sequences located in dispersed regions in a genome, pro-
duced by mechanisms such as DNA recombination. The
gene pool of a species consists of DNA sequences in a net-
work linked by gene conversion events. This type of repet-
itive sequence plays the role of uncoupling the network,
thereby allowing new genes to evolve. In mammals, the
most common mobile elements are LINEs for interchro-
mosomal uncoupling (length = 6-7 kb) and SINE for
intrachromosomal uncoupling (total length = 300
bases). The first mobile elements were discovered by Bar-
bara McClintock in the 1940s in studies on corn. Subse-
quently, they were found in all kinds of organisms.
Classifications such as these provide a better understand-
ing of the biological processes at hand during genome
evolution. But since they are based on current limited bio-
logical knowledge, these definitions introduce some bias
in the type of repeats targeted by the analysis, and also
introduce complexity in the algorithms used to locate
them, especially when considering error-prone repeats.
PILER, [20] represents the current state of the art in this
respect, where four classes of biological repeats are
defined. Classes TA (tandem array) and DF (dispersed
family) correspond to the previously cited tandem repeats
and interspersed repeats, respectively. The other two
classes are pseudosatellites (PS), which are clustered ele-
ments in the genome that are not tandem repeats, and ter-
minal repeats (TR), which are copies of the same element
located at the termini of a duplicated element.

A number of formal definitions have been proposed to
capture the essence of observable repeats. A vast amount
of literature covers this problem, and essentially three cat-
egories of formal repeats have been proposed: words, con-
tiguous repeats and structured repeats. The first category
tries to distinguish among repeated words those that
include all other ones and are thus representative of the
whole set of repeats. It mainly uses a maximization crite-
rion, such as the longest repeats [21,22] and maximal
repeats [23,24]. The second category introduces a basic
model to achieve a closer approximation of observed
repeats, since natural repeats in genomic sequences usu-
ally present many variations of close basic repeat units.
Certain authors propose to look for trains of contiguous
repeats such as tandem arrays (e.g., [25-27]), or pairs of
repeats at a fixed distance (e.g, longest repeats with a block
of don't cares [28], maximal pairs with bounded gap
[29]), or to introduce an edit distance or a similarity score
to take into account local variations (e.g k-mismatch
repeats [30] and approximate tandem repeats [31]).
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Finally, the third category contains sophisticated repeat
models that include all the previous notions and are
designed to discover the complex word arrangements that
occur with a minimum frequency. A structured motif con-
sists of an ordered collection of p > 1 parts separated from
one another by spacers, the length and distance between
parts being bounded with given Min and Max values [32-
34]. This kind of repeat seems of particular interest in
studying non-coding sequences in gene expression and
regulation.

Among these formal definitions, the notion of exact max-
imal repeat is quite attractive, since it is at the core of all
others. It only focuses on sequences present in the two
largest common blocks, with no possible extension to the
right or left, and with no biological a priori. Maximal
repeats have nice properties: they can be computed in lin-
ear time using a suffix-tree-based algorithm, their number
is linear (at most n kinds of exact maximal repeats in a
sequence of size n), and they can be used as basic blocks
to compute error-prone repeats [30].

Associated visualization techniques play a fundamental
role in analysing these numerous repeats, and various
kinds of tools displaying repeats at genome level have
been proposed in the past few years. Among them are dot-
plots [35], landscapes [36], chaos games [37], percent
identity plots [38], repeat graphs [30] and BARD [39].
Interpreting the views created using these tools is quite
difficult, however, especially for large genomes, since
most of them rely on displaying repeat pairs. They do not
usually provide convenient zooming features to analyse
regions of particular interest. Tools like dotplot, chaos
game and BARD still can only be used on pairwise
genome sequence alignments, and, because they only
work at sequence level, become difficult to use as the
sequence size and/or number of repeats increases. Moreo-
ver, they are not capable of summarizing the hierarchical
organization of repetitive structures in a convenient way
so that they can be interpreted by the end users.

This paper introduces the pyramid diagram, or pygram,
designed to provide an abstract representation of the
organization of repeated structures in genomic sequences.
The theoretical foundation of pygrams is similar to
sequence landscapes, which display all exact maximal
repeats in a picture. But the pygram improves the original
sequence landscape visualization in several ways. Aside
from various practical improvements (two-strand display,
zoom lenses), pygram offers several new features, includ-
ing frequency visualization and multigenome repeat anal-
ysis. Most important, pygram visualization is closely
associated with a query system designed to locate repeats
that share specific properties. When combined, the query
system and visual interface provide an efficient repeat
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browser that is useful for discovering unexpected struc-
tures in genomes.

Results and Discussion

Pyramid Diagram (Pygram) description

A pygram for a genome sequence S of length n is a bi-
dimensional plot where S and all its exact maximal
repeats (eMR) are mapped along the x-axis. Given an x-
axis magnifying factor k and a y-axis magnifying factor I,
mapping is defined as follows: the i*» nucleotide of S is
located at position (i/k,0), and the eMR of size m located
at position i within S corresponds to the interval [i/
k,(i+m)/k] on the x-axis. The size m eMR located at posi-
tion a within S is symbolized in the diagram by an isosce-
les triangle (a pyramid) of height 6 m/I. §is either '+1' for
an eMR located on the normal (N) strand of S, or '-1' for
an eMR located on the reverse complement (RC) strand of
S.

Since focus will be placed on eMRs in the rest of this
paper, and most of the presentation does not depend on
the kind of repeat used, the simpler term "repeat" will be
used instead of "exact maximal repeat". It is first impor-
tant to emphasize three basic facts about managing two
DNA strands to avoid confusion in the interpretation of
results.

¢ A single coordinate system is used for both strands, i.e.
all repeat coordinates, whether they are located on N or
RC strands, are computed relative to the N strand.

e The word on the reverse complement strand must be
read as usual in the reverse direction. On the pygram each
pyramid has an associated colour computed from the cor-
responding eMR sequence, ensuring that each repeat has
its own specific colour. Consequently, all occurrences of
the same repeat will have the same colour on both
strands.

¢ The definition of an eMR is symmetrical with regards to

N and RC strands: if a word w is an eMR, then word ',
the reverse complement of w, is also an eMR. The display
of an eMR along one strand is always mirrored with an
eMR of the same size on the other strand.

Figure 1 presents the pygram for the short DNA sequence
5''TTCGTCACGTCACGTCATT-3'. According to Gusfield's
eMR, definition, the sequence TTCGTCACGTCACGT-
CATT contains 13 different eMRs, namely: A, C, G, T, AT,
CG, TC, TT, ACG, CGT, ACGT, CGTCA, CGTCACGTCA.
Note that some eMRs may overlap or even include other
eMRs, revealing the structural organization of these
repeats. To ensure that all repeats in this sequence are vis-
ible, those that are included in other ones are displayed
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on top. As mentioned in the third remark above, the entire
diagram is symmetrical. For instance, eMR, 5'-CGT-
CACGTCA-3' (in Figure 1A this eMR, starts at positions 3
and 8) is represented by a blue triangle that is always
above a green triangle corresponding to the complemen-
tary eMR, 3'-TGACGTGACG-5' (this eMR, ends at posi-
tions 3 and 8). In Figure 1A, CGT is a repeat represented
by a dark blue pyramid with three occurrences on the
direct strand 5'-CGT-3' at positions 3, 8 and 13, and two
occurrences on the reverse strand 3'-CGT-5' at positions 9
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and 14. Therefore, if a word is a biological palindrom, it
immediately appears in the diagram as a pyramid mir-
rored in the other strand using a pyramid of the same col-
our. For instance, CG is displayed using a mirrored orange
triangle, since 5'-CG-3' matches 3'-CG-5' and ACGT
appears at positions 7 and 12, represented by the same
dark green colour on both sides. Finally, the repeat fre-
quency is represented using boxes proportional in size to
the frequency in question, these boxes being displayed in
the middle of the pygram at each occurrence of the repeat.

10
A T T
A A
N T oEaae - e M e
10 .
A%
10
B T T C GG T C A CG T C A CGT C AT T
A A GC A GCGT GC A GTGCAG T A A

Figure |

Construction of a Pygram. A. Linear pygram of the DNA sequence TTCGTCACGTCACGTCATT. The direct strand repre-
sentation is above the horizontal black line, while the reverse complementary strand is below this line. The x-axis corresponds
to the N strand coordinate system and the y-axis to eMR size. Blue boxes located in front of the sequence indicate the eMR
frequency. B. Logarithmic Pygram of the same DNA sequence where the y-axis scale is logarithmic.

Page 4 of 17

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:477

Pygrams can be drawn using either a linear or a log10 y-
axis coordinate system. The latter is more apt at revealing
the structure of small repeats contained in larger ones. But
if a logarithmic y-axis were to be used while keeping the
triangles displayed, small repeats would no longer be
completely included within any repeats containing them,
and the display of eMR hierarchical structures would be
lost. To restore this visualization feature, log-pygrams no
longer display triangles, but show trapezoids instead (Fig-
ure 1B).

Since the basic idea behind the pygram is to display all
exact maximal repeats, pygrams may be considered as a
rational reconstruction of landscapes [36], fully character-
izing the structure that is displayed without requiring the
computation of intermediate repeats. Landscapes do
indeed display maximal repeats, where the scope of the
right triangles is such that increasing the corresponding
subword to the left or right removes at least one occur-
rence of the repeat in the extended subword. This provides
a precise definition of maximal repeats.

Producing pygrams and browsing repeats

The first step in creating a pygram consists in producing the
complete set of repeats. Since the repeat structures are to
be analysed either within a single sequence or across sev-
eral sequences, Gusfield's eMR detection algorithm [23]
was implemented on a generalized suffix tree (see Meth-
ods).

The second step in constructing a pygram consists in creat-
ing an indexed representation of the complete set of eMR
occurrences. Indexing aims to order repeats along the
sequences, so that pygrams can be created efficiently.
Indexing also improves browsing speed when checking
specific repeat properties, such as frequency, size, location
(normal vs. reverse complement strand), and conserva-
tion between two or more sequences. This close associa-
tion between repeat visualization and querying provides
an efficient browsing function for in-depth analysis of
repeat organization at various levels, from the highest
level (i.e. the complete sequence) to the lowest level (a
single nucleotide).

The following discussion illustrates the browser capabili-
ties through two case studies. The first shows how to
detect and analyse Clustered Regularly Interspaced Short Pal-
indromic Repeats (CRISPR; [40]). The second presents an
analysis of the horizontal transfer of DNA sequences
between two genomes.

Visual analysis of repeat organization

Figure 2 displays a pygram representing 92,424 occur-
rences of 16,118 different repeats containing at least 20
nucleotides located on both strands of the 2.83 Mb

http://www.biomedcentral.com/1471-2105/7/477

genome sequence of Sulfolobus solfataricus P2 (RefSeq
entry NC_002754). Due to the high density of informa-
tion, repeats do not appear as pyramids, but as vertical
bars (Figure 2A). Several large repeats featuring more than
1000 nucleotides can be detected. Among them, the larg-
est one (6521 nucleotides) clearly appears on the pygram
as the highest bar, one occurrence being on the N strand,
the other being on the RC strand. This genome also con-
tains a large number of repeated sequences, but this fea-
ture does not appear very well in Figure 2A. The log-
pygram of the genome (Figure 2B) more accurately reveals
the overall organization of the repeated sequences, dis-
persed along the entire genome. Among these numerous
repeats, S. solfataricus contains five short regions with high
repeat frequency, as highlighted by the frequency bars.
Since these bars are displayed at each position on the
eMR, their nearness demonstrates that the corresponding
eMR occurrences are located close together.

To further investigate these frequently repeated regions, a
pygram with two zoom lenses is presented in Figure 2C
(the Methods section gives a detailed description of the
implementation and graphical features of the pygram
viewer). The lenses magnify two frequently repeated
regions previously identified on the complete genome
pygram, where numerous repeats appear to be organized
in arrays of spaced tandems. Zooming in further (Figure
2D) reveals that the two regions share a similar structure.
The tandem repeat in the first lens is preceded by two large
repeats, symbolized by pink and red triangles on the N
strand. Identical large repeats can be observed on the
opposite strand, downstream of the tandem repeat dis-
played in the second lens. Instances of a 25-nucleotide-
long repeat appear regularly spaced, consecutive occur-
rences being separated by non-repetitive sequences. This
type of structure has already been observed in this genome
[41] and is known as CRISPR.

CRISPRs are a very peculiar family of repeated sequences
found in Archaea and Bacteria genomes [40]. Their
remarkably constant structure consists of short sequences
from 21 to 37 nucleotides long, repeated almost exactly,
and referred to as 'units', separated by similarly sized non-
repetitive sequences, called 'spacers' (Figure 2D). In most
species with two or more CRISPR loci, these loci are
flanked on one side by a common leader sequence of
300-500 nucleotides. In Figure 2D, the leader sequence is
delineated by the previously mentioned pink and red
large repeat.

Each CRISPR unit appears as a group of co-occurring
repeats that differ by only a few nucleotides. This is the
result observed when a sequence, here the CRISPR unit, is
repeated several times with point mutations. If a maximal
repeat occurrence mutates at some point, it results in two
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Figure 2

Visual investigation of CRISPRs in the Sulfolobus solfataricus P2 genome (RefSeq entry NC_002754). From A to
D, please note that the x-axis scale varies, depending on the degree of magnification. A. Linear pygram of the complete genome
sequence. The normal (N) strand view is above the black horizontal line, and the reverse complement (RC) strand view is
below this line. The x-axis corresponds to the sequence coordinate system. The y-axis corresponds to eMR size, and horizon-
tal grey lines representing eMRs containing 100 and 1000 nucleotides are displayed on both N and RC views. The small blue
boxes located between the black line and the N and RC views indicate eMR frequency. B. Logarithmic Pygram of the same
genome. The small red boxes located between the black line and the two-strand views highlight the most frequent repeat in
the genome. C. Pygram with two zoom lenses. The first yellow box represents a lens that magnifies the x-axis of the sequence
region 300 times, between coordinates 1,233,000 and 1,240,500. The second lens magnifies the x-axis of the sequence region
500 times, between coordinates 1,257,000 and 1,261,500. Since the y-axis scale is linear, the y-axis was magnified 20 times in
the lens regions for a better view of small repeat organization (note the shift of the y-axis grey lines; inside the lens, the two
remaining grey lines are for repeats containing 10 and 100 nucleotides). The small red boxes located between the black line
and the two-strand views highlight the most frequent repeat in the genome. D. Details of two CRISPRs. The pygram displays
the first 1500 nucleotides of the first CRISPR presented in Figure C, followed by the last 700 nucleotides of the second CRISPR
from Figure C; for the sake of clarity, the black vertical arrow has been added to mark the 26.5 kb gap separating the two
CRISPRs. The grey horizontal line inside the lens marks repeats containing 10 nucleotides, whereas the grey lines outside the
lens designate repeats containing 10 and 100 nucleotides. In the centre of the pygram, the red rectangle highlights the most
repetitive eMR identified in the genome. The main constituents of CRISPR are annotated just above the x-axis numbers: the
leader sequence and CRISPR units are underlined with blue and grey rectangles, respectively.
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included maximal repeats overlapping at the point of
mutation: if aubvc is an eMR, 4, b and ¢ being letters and u
and v two words, then a mutation from b to d leads to
eMRs aud and dvc. Visualizing all eMRs detected on both
strands of a complete genome can therefore be used to
identify error-prone repeated sequences.

Querying the eMR index to locate exceptional repeats
Another way to target the presence of specific repeated
structures consists in querying the eMR index file, then
interpreting query results on a pygram. Such queries can be
simple, consisting of searching for the most frequent
repeats, or complex, as in the case of searching for specific
repeat patterns. In the case of S. solfataricus, querying the
index to answer the first question returns a 25-nucleotide
eMR repeated 151 times in the complete genome, 103
occurrences being located on the N strand and 48 on the
RC strand. This information can be drawn directly from
pygrams (Figures 2B to 2D), where the specific eMR is
highlighted in red on the centre frequency line. These
pygrams immediately show that the most repeated eMR is
located exclusively within two different CRISPRs, forming
the most conserved element of the repeated units (Figure
2D).

Searching for more CRISPRs in the S. solfataricus genome
can be performed by querying the eMR, index file using a
CRISPR model defined on the basis of eMR properties.
More precisely, the index file can be queryied to select
repeats based on their size, number of occurrences and
location in the sequence. In Figure 3, the index file was
queried to locate repeats ranging from 20 to 40 nucleo-
tides, repeated at least 4 times, with consecutive repeat
occurrences being separated by no more than 70 nucleo-
tides. The eMR occurrences reported by the query are dis-
tributed among seven different regions in the genome.
Visualization of the corresponding pygrams (Figure 3) led
to the identification of the six well-known CRISPRs pub-
lished previously [41]; pygrams from Figures 3A and 3B
display the CRISPRs presented in the previous section (see
Figure 2).

The pygrams presented in Figure 3 show that some
CRISPRs have a similar leader sequence. The left side of
Figure 3A has two large repeats (pink and red) that corre-
spond to the right side of Figure 3B, but on the opposite
strand. Likewise, repeats at the end of Figure 3C (orange
and green) match those at the beginning of Figure 3D.
Considering the visual properties of these pictures, it is
worth noting that pygrams using a logarithmic y-axis (Fig-
ure 3) render the CRISPR, structure better than linear-
pygrams magnified using the zoom lens (Figure 2).

Among the various CRISPRs displayed in Figure 3, two are
questionable (Figures 3F and 3G), since they do not fit the

http://www.biomedcentral.com/1471-2105/7/477

repetitive structure observed in Figures 3A to 3E. The
CRISPR in Figure 3F is quite short, with its seven repeated
units, and there is no detectable leader sequence. How-
ever, querying the index file to retrieve all eMR occur-
rences forming the units in this CRISPR reveals that these
repeats are also located within the CRISPR units from Fig-
ure 3E, and nowhere else on the genome. Therefore, the
CRISPR in Figure 3F should be a real one, even if it is quite
short. The relationship between CRISPRs from Figures 3E
and 3F remains unclear.

The structure presented in Figure 3G is an example of what
could be a false positive reported when querying the index
file using the above-mentioned CRISPR model. Even if
some repeats are organized like CRISPR units, the overall
structure is repeated, as revealed by the large brown trap-
ezoid on the N strand, and the eMR forming that structure
cannot be found anywhere else in the genome. This exam-
ple illustrates the advantages of using pygrams to visually
interpret the results of a computational method that pre-
dicts the presence of specific patterns of repeated struc-
tures.

The conventional CRISPR model is based on repeated
units separated by non-repeated sequences, known as
spacers [40]. Figure 3B, however, shows a short duplica-
tion on the left side of the structure, depicted by the
orange trapezoid containing roughly 100 nucleotides.
Duplication involves two units and one spacer that are
exact repeats. Other exceptional internal duplications in
CRISPRs can be observed in Archaea genomes. For
instance, the large 8 kb CRISPR from Methanothermobacter
thermautotrophicus str. Delta H (RefSeq entry NC_000916)
contains five duplications (Figure 4). Two of them look
like tandem duplications, but closer examination shows
that they overlap by one CRISPR unit. The other three
duplications show partial overlaps, as pointed out in Fig-
ure 4. These examples illustrate the ability of a pygram to
reveal the complex hierarchical organization of repeated
sequences where large repeats contain smaller but highly
organized repeated sequences. Another example of these
hierarchical structures is shown in Figure 3G.

Analysing repeats across two genome sequences

It was recently reported that S. solfataricus CRISPRs con-
tained foreign genetic elements from the SIRV1 virus [2].
The authors have suggested that these particular CRISPRs,
which contain SIRV1 foreign DNA, could be involved in
the known immunity of S. solfataricus against SIRV
viruses.

This type of DNA transfer can be detected using the pygram
application. It consists in looking for repeats for which
one copy is located on the archaeal genome, the other
copy being located on the virus genome. Using this
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Figure 3

Pygrams resulting from running a query on the eMR index file using a CRISPR model. From A to G, the different
parts of the figure are the pygrams displaying the seven regions detected by querying the eMR index file using a CRISPR model.
Note that the x-axis scale is different for each part of the figure, depending on CRISPR size. Each picture is a log-pygram display-
ing all repeats containing 20 nucleotides or more, identified on both strands of the genome. Each pygram displays the location
of the entire CRISPR (yellow rectangle) and its repeated units (grey rectangles) just above the x-axis.
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Figure 4

Pygram of the 8 kb CRISPR from Methanothermobacter thermautotrophicus str. Delta H (RefSeq entry
NC_000916). The picture shows a log-pygram representing all repeats with 20 nucleotides or more, identified on both strands
of the genome. Arrows point out the corresponding parts of the 5 internal duplications, while the horizontal curly parenthesis
highlights the overlap of three out of five internal duplications. The bottom line of the pygram displays the location of the full

CRISPR (yellow rectangle) and its repeated units (grey rectangles).

method, five SIRV1 sub-sequences were detected within
the S. solfataricus genome (on the complementary strand).
Figure 5 shows three of them, and it is interesting to note
that these sequences are located within the spacers of a
CRISPR on the archaeal genome sequence. None of the
three SIRV1 short sequences were detected anywhere else
in the archaeal genome.

These observations are consistent with data reported by
Mojica et al. [2], although the present study failed to
locate one out of the six known SIRV1 sub-sequences inte-
grated in S. solfataricus as reported by these authors. This
can be explained by the fact that the study only covered
recognition of repeats containing 20 nucleotides or more,
whereas Mojica et al. used BLAST, which is capable of rec-
ognizing shorter sequences. The pygram method may still
be used to locate this particular sub-sequence, however,
by lowering the repeat recognition size to 10 nucleotides.

Comparison with existing visualization methods

We generated a dotplot, percent identity plot (PIP), repeat
graph and pygram from the same sequence to compare
these visualization techniques in studying repeated sub-
sequence organization within genome sequences. The
sequence analysed here is the 2.83 Mb genome of S. solfa-
taricus.

The dotplot was produced using dottup from the EMBOSS
package [42]. It displays the location of all exact hits of
sub-sequences measuring 20 bp or more (Figure 6a). The
dotplot provides a general overview of the genome
sequence compared with itself, where it appears that a
large number of repeated sub-sequences exist. The inter-
pretation of a dotplot, however, is limited to the general

location of repeated segments, and two figures are actually
required: one to compare the N strand with itself and
another to compare the N strand against the RC strand.
The result does not provide any information regarding the
size and organization of these repeats, even when zoom-
ing in on regions of interest such as CRISPRs (Figure 6b).
Pygrams reveal this kind of information more precisely,
from a general view down to more detailed images (Figure
2). In the general view, repeat frequencies underline
regions of particular interest, and the magnified views of
these regions clearly depict how they are organized.

A PIP is useful in determining the degree of conservation
between two or more sequences. The PIP is a 2D diagram
where the x-axis displays a sequence, while the y-axis
shows the percentage of identity, in the 50-100% range,
of gap-free segments of Blast Z-computed sequence align-
ments. The PIP presented in Figure 7 was created using
PTPMaker [38] to compare the S. solfataricus genome
sequence with itself. Unlike the dotplot, the PIP diagram
does not sketch an overall view of the sequence: Figure 7
is a small snapshot of a 30-page document. Like dotplots,
a PIP remains useful in locating repeated segments, but
still conveys no information regarding the size and struc-
tural organization of these repeats: Figure 7 spans a
CRISPR (region with high densities of conserved
sequences), but it remains difficult to understand its struc-
ture.

Repeat graphs were produced using REPuter [30] (Figure
8). Like the dotplot and PIP, repeat graphs highlight the
strong repetitive organization of the S. solfataricus genome
sequence, but it remains quite difficult to depict the
nature of this organization. For instance, when targeting

Page 9 of 17

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:477

http://www.biomedcentral.com/1471-2105/7/477

----- -| Uit ISpecer | Unit | ----- —| Unit | Spacer | Unit } ------------------------------------------ -I Uit | Spacer | Unit |-+

- I

Hhhlihﬂ
e

M I
LR LRLR PR L LR RSN AR LR ) "

100
1000
AR 75 250 TS T T 0% T 00 S T eY T 50 50 50 TNV K
5\00 _&%&05 15‘&0‘&\3\03,\_5&0%.\5&0? ,‘ﬂo g\ ﬁ,\.‘x \q,‘fl Xs‘!} xgﬂ—“ .Lg‘@o ,‘_5‘\.3‘0 15":’0 x‘ﬂ'.&gﬁ%@x‘ﬁ.\aﬁ% At
1000
100
10 i i l | ‘ | E— | [
] | ey mN |
i T T kI
I o | | 1 | | [H — U |
100 .
1000
1 5000 4000 1500 15920, o 20000 2500 100 a0 | geA® gel g0t e
Figure 5

Detection of SIRVI viral DNA in S. solfataricus CRISPR spacers. A. Log-pygram of S. solfataricus CRISPR ranging from
coordinates 1,809,680 to 1,815,570. Each lens shows a single spacer surrounded by the peculiar S. solfataricus conserved
repeats forming the CRISPR units. For the sake of clarity, the main CRISPR constituents (leader, unit and spacer) and orienta-
tion (thick black arrow) have been sketched above the pygram. B. Log-pygram of the SIRV| genome sequence. Each lens displays
the repeats, containing from 21 to 31 nucleotides, located in the CRISPR spacers of S. solfataricus.

CRISPR analysis, a repeat graph does not conveniently
depict a structure of this type (Figure 8b). Unlike a pygram,
at least two pictures must be produced when using a
repeat graph: the first is used to compare the N strand with
itself, while the second is used to compare the N strand
with the RC strand.

Conclusion

The pyramid diagram (or pygram) is a new visualization
method that aims to summarize the complex hierarchical
organization of repetitive sequence structures for either a
single genomic sequence or across several sequences.

In contrast to similar existing tools, the pygram is not
based on repeat pair display, and provides convenient
graphical functions such as two-strand visualization,
repeat frequency display, a zoom feature, repeat selection
and annotation display. It therefore produces a better
view of repeated sequences at all levels, from the complete
genome sequence down to the nucleotide. Moreover,

closely associating a viewer and a querying tool results in
an efficient repeat browser, as illustrated in the examples
on CRISPR investigation and DNA transfers in Archaea
genomes.

The prototype developed uses a generalized suffix tree to
produce eMRs. It achieves good linear performance (see
Methods) with respect to the sequence size and the
number of eMR occurrences to be handled, but the cur-
rent application is limited to genome sequences contain-
ing no more than 50 million nucleotides on a computer
with 4 Gb of RAM. During development, however, in the
pygram browser implementation phase, the system that
identifies the repeated sequences (in the present case,
eMRs), was separated from the browser engine. This fea-
ture opens the pygram browsing infrastructure to other
repeat models, in particular error-prone ones. In this way,
Pygram could be used to perform the difficult job of ana-
lysing divergent sequences, a particularly crucial task in
comparative genomics.
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Dotplot. A. Dotplot of the 2.83 Mb sequence from S. solfataricus. B. Dotplot of the S. solfataricus sequence region from

1,233,000 to 1,240,000, containing a CRISPR.

Methods

Implementation and performance of the Pygram
application

The Pygram environment consists of a suite of four com-
plementary tools: Maxgen, Pyramidlndexator, Pyramidlm-
age and PyramidBrowser (Figure 9). The software suite was
benchmarked on a Dell Precision 370 computer running
Red Hat Linux (Fedora Core 4). The computer features a
Pentium IV, 3 GHz processor and has 4 Gb of RAM. GCC
3.2.2 was used to compile C source codes, and the J2SE
1.4.2-06 Software Development Kit from Sun Microsys-
tems to compile and execute Java software.

Maxgen is an ANSI C software package that implements
Gusfield's eMR detection algorithm on a generalized suf-
fix tree (GST). This algorithm is capable of locating all
eMRs in linear time and space, with respect to the
sequence size, and presents the advantage of inserting the
normal and reverse-complement sequences of each
genome in a unique suffix tree. Maxgen proceeds in two
steps. First, it analyses all real internal nodes of the GST,
detecting all words that are eMRs. It then collects all occur-
rences of each eMR. The overall process runs at a rate of
~46 kbases/s, and the program uses an average of 17 bytes
per sequence letter, which is slightly more than the highly
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T T T
1220k 1222k 1230k

T
1232k

1234k 1238k 1238k 1240k
' - = - s ::‘1
T T T T T T T T T T T T T
1240k 1242k 1248k 1248k 1250k 1252k 1254k 1258k 1258k 1260k
Figure 7

Percent Identity Plot (PIP). Percent Identity Plot of the 2.83 Mb sequence from S. solfataricus. Only the sub-sequence rang-
ing from coordinates .22 Mb to 1.28 Mb is shown, since the complete PIP spans 30 pages.
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mal strand with itself.

space-efficient standard suffix tree application created by
Kurtz [43]. Additional byte capacity is required to handle
several sequences in a single suffix tree and detect eMRs.
After running this software on a set of FASTA-format
sequences, a text file is created containing all lexicograph-
ically ordered eMRs. Each line of this file represents a sin-
gle eMR, along with all its positions in the analysed
sequence(s).

PyramidIndexator is a Java program that converts the text
file generated by Maxgen into two binary index files. The
first index file stores an object representation of each
eMR,, all eMRs being ordered lexicographically. The data
file uses 36 bytes per eMR, (these bytes are used to store
primary key and repeat size, type and colour), in addition
to one byte per character to store the repeat sequence, and
four bytes per occurrence to store the positions. The sec-

ond index file stores an object representation of each eMR,
for visualization purposes, all repeats being ordered by
sequence position. The visualization file uses 17 bytes per
repeat occurrence (to store primary key and repeat size
and colour). Each of these binary files is associated with
an index file to speed up data access. Pyramidlndexator cre-
ates both index files in linear time and space with respect
to the number of occurrences at a rate of ~310 k eMR,
occurrences/s. Once the indexes have been created,
pygrams can be created and index files queried on line. The
current version of the index files requires a significant
amount of memory to store each eMR,, since the data (pri-
mary key, repeat type, colour, position, etc.) are all
encoded using the standard Java integer and colour
classes. A future version of PyramidIndexator will optimize
capacity requirements, an important issue for Eukarya
genome visualization.
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The colour scheme is computed using the sequence of
each eMR: from each individual sequence, a hashcode is
computed (using the standard Java API) which is in turn
converted to RGB values.

Pyramidlmage is a Java application capable of creating
pygram pictures. This program provides the visualization
infrastructure necessary to explore repeated structures at
various levels of magnification, from the highest level (i.e.

the complete sequence) to the lowest level (a single
nucleotide). This is achieved using a contextual zoom tool
associated with a global viewer.

Pyramidlmage creates a pygram using the visualization
index file generated by Pyramidlndexator: the index file is
scanned so that the larger repeats are displayed before the
smaller ones. In this way, the larger pyramids do not hide
the smaller ones. To display each repeat, pyramids are
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produced in increasing sequence position order. Pyra-
midlmage runs in linear time and space at a rate of ~165 k
eMR occurrences/s.

Pyramidlmage receives input from two files. The first is the
visualization binary file created by PyramidIndexator. The
second is an optional text file, referred to as a pygram
descriptor, that contains drawing and filtering parameters.
If no pygram descriptor is provided, Pyramidlmage creates
a pygram for the entire genome sequence, displaying all
eMRs reported in the index file. On the other hand, if a
descriptor is provided, these parameters can be controlled
to produce pygrams with various layouts (see examples in
Figure 2). The drawing parameters include:

® image size,

¢ region of the sequence to display,
e standard or logarithmic pygram,

e number of lenses to produce,

¢ eMR to highlight.

For each lens, the descriptor can be used to specify the
location of the lens within the sequence, x- and y-axis
magnifying factors, the sequence coordinate ruler, and
whether or not to display sequence letters. The filtering
parameters for eMRs include:

e size range,
® occurrence range,
e sequence location.

Pyramidlmage can also display annotations on the pygram.
This feature can be used to display either known genome
annotations or user-defined ones. Figure 2D presents a
full-featured example of pygram visualization functional-
ity: two different regions of the same sequence are pre-
sented side-by-side, along with a zoom lens, several
features underlying a genomic structure of interest and a
selected eMR. The DNA sequence is also displayed inside
the lens, and a y-axis magnifying factor is applied to
achieve better structure magnification.

PyramidBrowser is Java software designed to query the
binary files created by PyramidIndexator. This tool can be
used to select specific eMRs according to their size,
number of occurrences and location on the sequence. The
information from PyramidBrowser can be entered as filter-
ing parameters in the pygram descriptor.

http://www.biomedcentral.com/1471-2105/7/477

Size of the eMR occurrence index file

Creating an index file for all observed instances of an eMR
in a genome sequence can be difficult to compute, since
the number of occurrences (number of locations) is not
linear with respect to the number of eMR types (number
of different words) observed in a sequence. For instance,
the sequence CA"GA"T contains exactly n maximal repeats
(different words), namely A% (k = 1, n), and the number of

occurrences of all these repeats is 2?:1 2i=n(n+1).

Since the task covers millions of different words, quad-
ratic behaviour such as this is computationally intracta-
ble. Experiments were therefore conducted on several
genomes to study the practical impact of the relationship
between the number of eMR occurrences and the number
of eMR types. Two scenarios were tested empirically: a lin-
ear relationship and a quadratic relationship. The ratio for
each case was computed as:

e the ratio between eMR occurrences and the number of
eMR types (a) and,

e the ratio between +/eMR occurrences and the number of
eMR types (b).

These values were compared for Archaea and Bacteria
genomes and for random sequences extracted from shuf-
fled versions of these genomes. Figure 10 displays an over-
view of the results for three genomes (one thermophilic
Archaea, one Gram* Bacteria and one Gram- Bacteria). It
presents cumulative curves for eMR of increasing size. In
other words, for each threshold x representing the mini-
mum size of the observed maximal repeats, the curves dis-
play the ratios for all repeats whose size is greater than or
equal to x.

The ratio trends are remarkably similar in all cases.

First of all, the left side of the [a] curves and [b] curves is
the same for the normal and shuffled versions of the
genomes. This tends to show that short maximal repeats
occur at a frequency that depends only on the sequence
structure. In contrast, long maximal repeats occur more
often in normal genomes than in their shuffled counter-
part. Furthermore, they continue to occur at an almost
constant rate for quite large word sizes, whereas the max-
imum size of maximal repeats remains less than 25
nucleotides in random sequences of the same length.
Note that the final behaviour of [b] curves simply follows
sqrt(2/NbMR) since Nbocc is proportional to NbMR: [c]
curves clearly show this fact. The last value is sqrt(2), cor-
responding to one MR with two occurrences.
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Figure 10

Sulfolobus Solfataricus P2
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The second important observation is that the overall trend
for the number of occurrences is quadratic, as expected for
very short words (the left side of the [b] curves is flat),
then decreases rapidly and becomes almost linear for long
words (the right side of the [a] curves is almost flat). The
number of occurrences of significant maximal repeats
(those that can be distinguished from randomly occurring
ones) therefore remains comparable with the number of
maximal repeat types, which means that a systematic anal-
ysis of these eMRs may reasonably be attempted along a
genome.

Awvailability and Requirements

Pygram tools (precompiled binaries, documented source
code and user manuals) are distributed under the CeCILL
(CRA-CNRS-INRIA Logiciel Libre) free software license
and are available at http://www.irisa.fr/symbiose/projets/

Modulome/.
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