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Abstract

Background: Signal recognition and information processing is a fundamental cellular function,
which in part involves comprehensive transcriptional regulatory (TR) mechanisms carried out in
response to complex environmental signals in the context of the cell's own internal state. However,
the network topological basis of developing such integrated responses remains poorly understood.

Results: By studying the TR network of the yeast Saccharomyces cerevisiae we show that an
intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these
topological units transcription factors are densely interlinked in a largely hierarchical manner and
respond to external signals by utilizing a fraction of these subnets.

Conclusion: As transcriptional regulation represents the 'slow' component of overall information
processing, the identified topology suggests a model in which successive waves of transcriptional
regulation originating from distinct fractions of the TR network control robust integrated

responses to complex stimuli.

Background

Living cells continuously process information about their
environment, and based on this information and their
own internal state mount appropriate responses to these
signals. This information processing is carried out by var-
ious regulatory networks functioning in a highly crowded,
viscous cellular interior, with characteristic times span-
ning several orders of magnitude. The fastest among these
are signal transduction networks: they range from simple
two-component pathways in prokaryotes to the highly
complex signal transduction networks of mammalian

cells. Fast signaling, however, is frequently followed by
slower transcriptional regulatory (TR) events, during
which regulatory gene products, such as transcription fac-
tors (TFs) and regulatory RNAs, alter the rate of transcrip-
tion of other genes, reorganizing gene expression to
achieve new metabolic states, or initiate cellular pro-
grams, such as the cell cycle, sporulation, or differentia-
tion [1-3].

Understanding the system-level properties of these net-
works requires both experimental and computational
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efforts that start with mapping out potential regulatory
interactions that exist in a given cell type. In the yeast Sac-
charomyces cerevisiae and in the bacterium Escherichia coli,
the static 'wiring diagrams' of potential TF-mediated inter-
actions have been mapped out to such a degree [4-7] that
their system-level characteristics and function can be
investigated. Subsequent computational analyses have
shown that in both TR networks the regulatory interac-
tions between TFs and the regulated genes are often organ-
ized into basic information processing subgraphs, called
motifs [8] that can form even larger potential information
processing units, such as motif clusters [9], themes and
thematic maps [10], and transcriptional modules [11]. It
is also evident that the TR network is utilized in a condi-
tion-specific manner [12], perhaps through the activation
of distinct, signal-specific subnetworks [13]. In spite of
these advances the principles along which regulatory net-
works process signals, encode the relevant signals at differ-
ent layers of the network, and integrate them with other
signals remain poorly understood.

Here we show that regulatory interactions among an inter-
mediate layer of transcription factors is a key determinant
of information transfer within the S. cerevisiae TR network,
and that this layer naturally segregates into distinct,
sparsely communicating subnets in which TFs are densely
interlinked in a hierarchical manner. We also show that
TFs and the genes regulated by them respond to external
signals by utilizing various fractions of these subnetworks.
The identified features suggest a model in which succes-
sive waves of transcriptional regulation of gene expression
via multiple interferences at various levels of TF interac-
tion hierarchy constitute a key feature of developing
robust integrated responses to complex stimuli.

Results

Hierarchies and signal-specific subnets in the S. cerevisiae
TR network

With the exception of a few mutually regulating pairs, the
links of the S. cerevisiae TR network are unidirectional, and
its nodes can be arranged into three main layers based on
their position, regulation, and function. The layers reflect
the flow of information from the input nodes (TFs not
regulated transcriptionally by other TFs), through interme-
diate TFs to the output nodes (non-TF proteins) (Fig. 1A);
a path from an input to an output node contains usually
1 to 3 steps, and the maximum length is 8 steps.

In the S. cerevisiae TR network each TF regulates a limited
number of target genes (intermediate layer TFs and/or
output proteins), with an average number of 34.3. As
described recently for the TR network of E. coli [13], the
genes directly or indirectly regulated by a given input TF
form a signal-specific subnet, or origon, and the nodes at
the intermediate and output layers of the origons are often

http://www.biomedcentral.com/1471-2105/7/478

shared by two or more origons. Figure 1A illustrates two
overlapping origons, originating from the input TFs Yap1
and Skn7. Since the network contains 54 input TFs, there
is a total of 54 origons in the S. cerevisiae TR network, of
which only two are isolated from the rest of the network
(the origons of Pdr3 and Zap1) (Fig. 1B).

Classification of the yeast TR network based on its global
topological properties

To gain insight into the overall yeast TR network organiza-
tion we first assessed the connectivity distribution of all
nodes (each representing a gene and its product), and sep-
arately those of input TFs, intermediate TFs, and output
genes, using cumulated distributions that are equivalent
to rank-degree (or Zipf-) plots. Due to the inherent direc-
tionality of the links, we separately analyzed the number
of regulating TFs per regulated gene (incoming links, k;,)
and the number of regulated genes per TF (outgoing links,
ko), to determine if their distributions are best approxi-
mated by exponential-like [14] or power-law [15] models.
(Hubs, i.e., TFs with large numbers of links, are absent
from exponential-like models, while they are present and
rather significant in the power-law model.) We find that
the distribution of the number of incoming links per
node, k;,, displays an exponential decay (see inset of Fig.
1C), as previously described [16], while that of outgoing
links shows an intermediate behavior between exponen-
tial-like- and power-law decay models (Fig. 1C).

Interestingly, the outgoing links for input TFs closely
approximate an exponentially decaying degree distribu-
tion, (i.e., hub sizes are limited), while a few of the inter-
mediate TFs are unexpectedly large hubs resembling more
closely the power-law models. Also, the outdegrees of
intermediate TFs tend to be larger than those of input
nodes (Supplementary Fig. S1). Taken together, the cumu-
lative in- and outdegree distributions suggest that the
yeast TR network belongs to a mixed class of networks
(between exponential and power-law [17]), where the
number of connections per node is likely to be con-
strained both by the limited size of a target gene's pro-
moter region [16], and perhaps by the biosynthetic costs
of maintaining regulatory interactions [17].

Distribution of graph motifs in the yeast TR network

The effects of many external and internal signals are man-
ifested by altered TF activity, followed by the propagation
of the perturbation to nodes of lower layers. Small circuits
(or subgraphs) play a key role in this propagation; they
often connect nodes of different regulatory layers to each
other. Of these, overrepresented subgraphs (motifs) are
likely to enhance the versatility of information processing
in a TR network [8,18], and may have become abundant
due to the overall functional robustness they provide dur-
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Global organization of the yeast transcriptional-regulatory network. (A) The hierarchical arrangement of the TR
network into input, intermediate and output layers (rectangles, ellipses, and small circles, separated by dashed lines, respec-
tively) is illustrated for two partially overlapping origons, Yap| and Skn7. The boxes illustrate 3-node subgraphs, CNV, CMR,
and FFL distinguished by their high frequency of occurrence in the yeast TR network (Table I). (B) The network of origons
[13] in the S. cerevisiae TR network. Each circle represents an origon labeled by its input TF. The size of each circle is propor-
tional to the number of genes in that origon. Two origons are connected if they share at least one gene and the width of a link
is proportional to the number of genes that the two connected origons share. Three different types of subgraphs, indicated by
the colored labels are distinguished in the origons (see Table |). The fractional area of each color on the origon circle is pro-
portional to the number of occurrences of the corresponding subgraph among the members of the origon. If an origon con-
tains none of the listed subgraphs, it is shown in grey color. (C) Main panel: the distribution of outdegrees (number of outgoing
connections of a node, k,,,) shows that this network falls between models with an exponential or faster degree distribution
cutoff [14,17] and the scale-free model [I5] (with some difference for input and intermediate TF nodes), though neither of the
two types of models is significantly closer than the other.
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ing evolutionary adaptation to changing environmental
conditions (see, e.g., Refs. [19-21]).

To elucidate the type and information processing role of
such overrepresented subgraphs, we examined the abun-
dance of three-node subgraphs in the S. cerevisiae TR net-
work. Using a standard link-randomization algorithm
(see Methods) we found that the feed-forward loop (FFL),
the single regulatory interaction with mutual regulation
(SMR) and the convergence with mutual regulation (CMR)
are overrepresented, i.e., they are motifs (Fig. 1A), while
the divergence (DIV), cascade (CAS) and convergence (CNV)
subgraphs are underrepresented, i.e., they are anti-motifs
[18] (Table 1). We also examined the position of these 3-
node subgraphs with respect to individual origons, and
found that (i) similarly to the E. coli TR network [13], only
a subset of origons contains FFL, SMR, and CMR motifs
(Fig. 1B), and (ii) the majority (83%) of CNV subgraphs
perform signal integration: they receive regulatory signals
(directly or indirectly) from two different sources (input
TFs) and transmit the joint signal to a single node (Fig.
1A).

Functional cartography of the yeast TR network

External signals, conveyed by various signaling mecha-
nisms, may be perceived by signal-specific TFs or relatively
non-specific TFs. To understand how the responses to
these signals are encoded into the topology of the TR net-
work we first examined the degree of overlap among the
genes regulated by input- and intermediate TFs. As shown
in Figure 2A — where the width of a link between two TFs
is proportional to the number of outputs (targets) they
both regulate - the targets of different TFs extensively
overlap (only 3 TFs share no targets with other TFs), sug-
gesting that most genes are combinatorially regulated by
several TFs. In contrast, direct regulatory interactions
among TFs are more limited (Fig. 2B): the largest con-
nected component of the network of direct regulatory
interactions among TFs (containing 62 nodes) is sparse,
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and 30 of the remaining 37 TFs have no regulatory inter-
actions with other TFs at all, i.e., they act in isolation.

To characterize the type of combinatorial regulation per-
formed by each TF, we color coded each of the 99 TFs
according to the function(s) of the genes they regulate. To
this end, we resorted to the 33 GO Slim biological process
terms [22], which we grouped into eight GO Slim catego-
ries described in the Methods. It is evident, that all TFs reg-
ulate genes with various functions (Fig. 2B). For example,
genes within two overlapping origons - defined by the
input TFs Ino4 and Stb1 - display a multitude of func-
tions (Fig. 2C). Stb1 takes part in the regulation of tran-
scription at the G1/S transition [23], while Ino4 is a
positive regulator of phospholipid biosynthesis [24].

Similarly to Stb1l, the two intermediate TFs, Swi5 and
Ndd1, regulate temporal expression patterns: Ndd1 is
essential for the activation of many late S-phase specific
genes [25], while Swi5 activates genes in the G1 phase and
at the M/G1 boundary [26]. Notably, in the overlap of the
origons Ino4 and Stb1 two major regulatory tasks are inte-
grated (Fig. 2C). Among the genes contained exclusively
by the Ino4 origon participation in metabolism is very
common, while only one gene is known to perform a cell-
cycle related function. For genes contained exclusively by
origon Stb1 this relation is reversed, while in the overlap
of the two origons both functions are common. Thus, the
overlap of these two origons illustrates the coordination
of a temporally regulated event (cell cycle) with another
general task (phospholipid metabolism).

For a concise analysis of regulatory task integration by
overlapping origons, in each of the 418 overlapping
origon pairs (A, B), we listed the GO Slim biological proc-
ess terms for the regions AMB (overlap), A\B and B\A
(genes contained exclusively by origon A or B). We found
that the distribution of GO Slim biological processes in
the set A7B is in general significantly similar (average Z

Table I: Number distributions and statistical significance of 3-node subgraphs in yeast TR network

Subgraph

A T A S

CAS CNV FFL SMR CMR
(dlvergence) (cascade) (convergence) (feed-fwd (single link with  (convergence with
loop) mutual regulation) mutual regulation)
Number in the original network 150 845 2898 2 655 392 307 118
After link randomization 151 477 £ 152 3543+ 156 2996 +23 176 + 22 126 + 148 2639
Significance of original (Z score) -4.2 -4.1 -15 9.7 1.2 30
Subgraph type Anti-motif Anti-motif Anti-motif Motif Motif Motif

Motifs are marked, and only subgraphs with at least 100 occurrences in the original network are listed. After link randomization the numbers of
FFL, SMR and CMR subgraphs decrease, while those of DIV, CAS, and CNV subgraphs are maintained with slight increases, indicating that FFL, SMR
and CMR are motifs in the TR network, while DIV, CAS and CNYV are anti-motifs [8,18].
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Figure 2

Signal integration in the yeast TR network. (A) The network of input (brown) and intermediate (purple) TFs is shown.
The size of a node is proportional to the number of genes it regulates, while the width of a line connecting two nodes is pro-
portional to the number of target genes jointly regulated by the two TFs. Except for Pdr3, Zap| (input TFs) and Mot2 (inter-
mediate TF), TFs are strongly connected to each other (i.e., share many of their target genes), indicating that the functions of
the TFs are widely integrated, and that most genes are jointly or combinatorially regulated by groups of regulators, rather than
individual ones. (B) Functional cartography in the network of TFs. Each node represents one TF and each link represents a reg-
ulatory interaction. The area of a TF node is proportional to the number of genes it regulates, and colors refer to the GO Slim
annotation distributions of its target genes (see Methods for details). Input nodes are encircled by thick black lines. Regulatory
links from input to intermediate TFs are shown in black, while links among intermediate TFs are colored red. The single unidi-
rectional cycle connecting Digl, Tecl and Stel2 is shown by thick red edges. The portion enclosed in the dashed box is
enlarged in panel C. (C) The overlapping origons Ino4 and Stb| integrate cellular functions (see text for detailed analysis).
Enlarged versions of panels A-C are provided as Supplementary Figure S2A-C.
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score: 2.2) to the distribution deduced from the sets A\B
and B\A summed together (see Methods for details). Thus,
we infer that in the TR network of S. cerevisiae overlapping
pairs of origons significantly integrate regulatory tasks.

Topological organization of signal integration in the yeast
TR network

Complex environmental signals are decomposed into
more elementary signals that eventually elicit an inte-
grated transcriptional response in the context of the cell's
own internal state. Since intermediate TFs (by definition)
transmit signals from input to output nodes and provide
connections among all TFs (Fig. 1A), the topological
organization of their interactions is likely to play a key
role in developing such integrated responses. To examine
their relationships, we decomposed the TR network by an
iterative peeling algorithm (see Methods), where the top
and bottom layers of the network have been successively
removed until only 3 small isolated graph components
('cores') remained. Then these cores were consolidated by
adding back their nearest up- and downstream intermedi-
ate regulators (Fig. 3A). After this decomposition proce-
dure we found that the 45-node intermediate TF
subnetwork naturally segregated into three internally
densely-connected groups of TFs (referred to as 'organizer’
01, 02, and O3 hereafter), as well as several isolated TF
nodes (Figs. 3A,B). In contrast, the connections between
organizers are sparse (Fig. 3B): organizers O1 and O2 are
connected by one interaction (between Nrgl and Hap4),
and O2 and O3 have only two connections (Fkh1-Yhp1l
and Abf1-Put3). Of note, all three inter-organizer connec-
tions transfer a signal from the 'top' (as defined by the
flow of information) of one organizer to the 'bottom' of
the other. We also find that input TFs often co-regulate
intermediate TFs located in one or two organizers, but
never in all three of them. Note, that as an alternative
approach we also performed computational search for
partially overlapping communities [27] in the TR net-
work. This analysis yielded highly similar results (Supple-
mentary Fig. $3), suggesting that the concept of organizers
is valid irrespective of data stringency (Supplementary Fig.
S4), or the analytical technique used for their identifica-
tion.

Currently, on the global scale the dynamical utilization of
signal-specific transcription regulatory subnets can be best
tested with microarray expression data [12,13]. To analyze
the dynamical role of organizers, for each of the 45 inter-
mediate TFs we have defined the TF and the list of its tar-
gets as a group of genes, and computed the transcriptional
response of this group to a given external or internal signal
(see Methods). Under hyperosmotic shock (Fig. 3C), the
TFs (and their target genes) in organizer O2 displayed by
far the strongest average response, as measured by the
double Z score [13] (see Methods): 0.8, compared to -0.13
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and -0.14 in organizers O1 and O3, respectively. Within
this group the set of genes regulated by intermediate TFs
Hap4, Sok2, Phdl, and Rox 1 show the strongest
response. All these TFs are regulated by input TF, Skn7,
suggesting that this input TF is one of the main sensors of
hyperosmotic shockin S. cerevisiae, in agreement with pre-
vious results [28]. A similar conclusion can be drawn for
all other environmental stimuli tested (Supplementary
Fig. S5), suggesting that only a subnet of organizer(s) are
activated upon simple or complex environmental stimuli.

Discussion

The multitude of cellular tasks makes it necessary for cel-
lular components to be hierarchically organized into
modules based on functional association [29]. One well-
studied aspect of this functional organization is the 'static
map' of a TR network, i.e., the list of all possible transcrip-
tion regulatory (TR) interactions within a cell. Small num-
bers of individual TR nodes (TFs and their regulated
genes) are known to be arranged into overrepresented,
specifically wired information processing units (motifs)
[8], which in turn participate in a series of sequentially
embedded higher order structures [9,10]. In an actual
response, however, from all topological (static) possibili-
ties in the TR network the cell utilizes only limited sets of
these interactions [12]. These interactions are often signal-
specific [13], though there are also many TR nodes that are
known to be generic responders [12].

However, TR interactions represent only a subset of regu-
latory interactions. In fact, protein-protein- and protein-
metabolite interactions represent the majority of informa-
tion processing interactions of a cell (Fig. 4). When taking
this into account, additional heterogeneous interaction
patterns can be uncovered at various hierarchical scales
[10,30]. Nevertheless, TR interactions represent the 'slow
component' of the overall network, whose behavior deter-
mines long-range response [1-3]. Thus, it is of great
importance to understand how the large-scale structure of
a TR network reflects the integration of the vast variety of
individual external signals with each other and with the
cell's internal state.

Detailed methods, a supplementary table and supplemen-
tary figures are also available [see Additional file 1].

Conclusion

From the analyses presented here the system-level picture
arising for the integration of TR signals suggests the pres-
ence of a small number of large-scale signal integration
'pools' (organizers) in the yeast TR network, along which
signals are processed and transmitted towards all target
genes (Fig. 4). Regulatory connections inside organizers
are dense, while inter-organizer connections are sparse. In
addition to this topological separation, the target genes of
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Topological organization of signal integration. (A) Decomposition of the TR network by removing its top- (input TFs)
and bottom layers (output nodes) identifies the intermediate TF layer, which, based on the high local density and distribution of
connections, is naturally subdivided into three major groups (organizers), as well as a number of isolated TFs. The connections
between organizers are sparse. Nodes are arranged hierarchically based on the direction of information flow. The chain of links
colored red shows the longest path through the network. Regulatory signals flow from darker nodes towards lighter ones. (B)
The three emerging organizers of the yeast TR network are enclosed by blue, red, and green rectangles, respectively, while iso-
lated intermediate TFs are on the right. The relative size and color code of each node conform to the descriptions given in Fig.
2B. Within organizers the density of links is more than 10 times higher than that between the organizers. Input TF nodes regu-
lating the intermediate TFs in the organizers are shown by rectangles. The blue nodes on the left side of Ol, the green ones on
the right of O3, and the red ones above/below O2 are the inputs that regulate each one organizer. The magenta, cyan and yel-
low nodes regulate pairs of organizers, as indicated by the links. Note that there is no input TF regulating all the three organiz-
ers. The number of transcriptional inputs for each of the intermediate TFs is shown in parentheses. Essential TFs (+) and those
with autoregulatory loops (@) are indicated. (C) Transcriptional response of organizers to hyperosmotic shock. The double Z
scores (ordinate) [13] measure the significance of the response of each organizer node plus its target genes to the external
condition as compared to the control condition (a strong up- and downregulation both give a high Z score). The numbers in
the bottom part of each graph denote the average double Z scores for Ol (blue) O2 (red) and O3 (green), respectively, while
the colored dots represent the average double Z-score of genes regulated by the indicated intermediate TF. Black dots repre-
sent the same for the input TF(s) directly regulating the indicated intermediate TF.
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Schematic representation of intracellular information processing. The transcriptional-regulatory (TR) network is
composed of input TFs (not regulated by other TFs) (squares), intermediate TFs (regulated by at least one other TF) (circles)
and output nodes (regulated effector genes) (triangles). Signals external to the cell can affect the input- and at least some of the
intermediate TFs directly or indirectly through signaling cascades. Internal signals, through the activity of the overall molecular
interaction network of the cell (shaded in grey) can potentially affect all nodes of the TR network through allosteric regulation,
posttranslational modification, etc. Within the TR network the various signals are integrated within relatively distinct subnet-
works, or organizers (brown-shaded boxes) composed of intermediate TFs. The TFs within organizers are densely linked but
there are only sparse links with TFs in other organizers. A given elementary signal (e.g., Signal X) may affect only a single origon
[13], depicted here as the filled symbols, but complex signals may affect several origons simultaneously. As transcription is the
'slow' component of the overall regulatory network in which each link adds a time delay in the regulation, there is a very rich
possibility of dynamics carried out on the topology. In particular, nodes might be activated at several time steps (represented
by the different fill patterns) corresponding to the propagation of subsequent reaction waves in chemical/interaction space

[46].

different organizers also elicit remarkably different tran-
scriptional responses (Fig. 3C). Moreover, due to the
slowness of the interactions (minute-scale delays due to
transcription and translation) a given signal can elicit sub-
sequent waves of transcriptional regulatory events that are
usually integrated through feedbacks of rapid interactions
(Fig. 4). For example, transcriptional regulation in
response to decreasing concentration of oxygen (as Signal
Xin Fig. 4) is carried out mainly by two TFs, ENR and ArcA

in E. coli. Although ArcA can be transcriptionally activated
by FNR (i.e., ArcA is an intermediate TF), FNR is confor-
mationally activated at a lower oxygen level than ArcA.
Thus, ArcA-specific genes are activated first, followed by a
subsequent wave of activation of a second set of genes
(many co-activated by FNR and ArcA) that partially over-
laps with genes activated during the first wave [31,32]. In
turn, rapid non-transcriptional feedback, such as phospo-
rylation of TFs, may alter the activity of other intermediate
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TFs. This may initiate additional sets of 'transcriptional
waves' leading to the comprehensive response of the cell
observed upon the aerobic-anaerobic shift (Fig. 4).

What explains the evolution of the observed topological
architecture? The TR network appears to grow by node
duplication [33], resulting in structurally related TF pro-
tein families, in which diversification is both a result of TF
structural evolution [34] and the evolution of DNA bind-
ing motifs [35]. The subsequent natural selection of
motifs and higher order structures might have been driven
by their ability to provide reliable information processing
functions to the cell, including robustness against muta-
tions [36], noise [19,20], and oscillating signals [37,38],
while simultaneously allowing rapid response to com-
mon signals in an overall highly variable environment
[21]. The future availability of additional types of interac-
tion maps, such as those of phosphoproteins [39],
together with an improved understanding of the behavior
of fast- (signaling), slow- (transcriptional) and combined
circuits [38,40-42] will probably further explain the emer-
gence of the observed small and large-scale topological
structures of the cell's information processing network.

Methods

Databases and Software

The publicly available dataset on the TR network of Sac-
charomyces cerevisiae was downloaded from the supporting
website of the original publication [6]. This computation-
ally filtered dataset, originally obtained in rich media and
a few other growth conditions, lists directed binary inter-
actions at various confidence levels, and is further
improved by including additional transcriptional interac-
tions from the literature [6]. All computational analyses
were performed with the SGD IDs of the genes that were
then transformed back to traditional gene names for eas-
ier presentation. Conversion tables were downloaded
from the Saccharomyces Genome Database (SGD) and
the MIPS Comprehensive Yeast Genome Database
(CYGD). Of the six different datasets representing various
confidence levels [6], we used the highest confidence data
set for most of our analyses (Supplementary Table S1).
Originally, the network derived from this dataset con-
tained 1905 nodes and 3406 regulatory interactions,
which we reduced to 1905 nodes and 3394 directed links
by removing 12 autoregulatory links. The resulting net-
work contained 99 TFs (54 input and 45 intermediate
nodes) and except for two small isolated groups - with the
input nodes Pdr3 (drug resistance, regulating itself and
one other gene) and Zap1 (zinc-regulated, regulating four
other genes) - it is comprised of one giant connected com-
ponent. Most targets (intermediate and output nodes) are
regulated by more than one (on the average, 1.8) TFs. We
quantify the relative overlap between the target lists (A;
and A)) of two TFs (i and j) by the Jaccard correlation, [A;
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N Ajl/|A; L Aj], between the two sets. An alternative repre-
sentation of the TR network is to consider only TFs and
the regulatory interactions between them, in which case
the network contains 99 nodes of which 69 are connected
in a giant component.

The normalized microarray expression data sets GDS18-
20, GDS112-115, and GDS362 were downloaded from
the FTP directory of NCBI's Gene Expression Omnibus
(GEO). Our programs were written in Perl and C++, and
for visualization we used the Linux tools Xfig and Gnuplot
together with the network drawing program Pajek [43].

Network randomization and graph motifs

To assess the enrichment of 3-node subgraphs in the reg-
ulatory network, we used link randomization tests [8] that
preserve the number of incoming and outgoing links
around each node, but obliterate all other information
about the connectivity of the network. In one step of this
method two links, A—B and C—D, are selected randomly
and moved to the unoccupied A—D and C—B positions.
We examined ny = 100 randomized networks, each pro-
duced with ng = 100,000 rewiring steps starting from the
original TR network, i.e., each link was moved approxi-
mately 60 times to generate a given randomized network.
Following Ref. [8] a subgraph with M, copies in the origi-
nal TR network and M + AM copies in the randomized ver-
sions is called a graph motif, provided that the associated
Z score, Z = (M, - M)/ AM, is significantly positive. We also
verified that for the TR network studied here n,,and ngare
both sufficiently large to ensure the convergence of the Z-
scores for 3-node subgraphs.

Cumulative GO categories

For functional characterization of yeast proteins we
grouped the 33 Gene Ontology (GO) Slim Biological
Process terms [22] into the following eight categories: cell
cycle-related (GO terms: cell cycle, cell budding, conjuga-
tion, cytokinesis, meiosis, pseudohyphal growth, sporula-
tion), metabolism-related (GO terms: amino acid and
derivative metabolism, carbohydrate metabolism, cellular
respiration, DNA metabolism, generation of precursor
metabolites and energy, lipid metabolism, protein catab-
olism, RNA metabolism, vitamin metabolism), morpho-
genesis-related (GO terms: cell wall organization and
biogenesis, cytoskeleton organization and biogenesis,
membrane organization and biogenesis, morphogenesis,
nuclear organization and biogenesis, organelle organiza-
tion and biogenesis, ribosome biogenesis and assembly),
transcription and protein synthesis-related (GO terms: pro-
tein biosynthesis, protein modification, transcription),
transport-related (GO terms: electron transport, transport,
vesicle-mediated transport), stress and homeostasis-related
(GO terms: cell homeostasis, response to stress, signal
transduction), cell movement-related (GO terms: substrate-
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bound cell migration and cell extension), unknown
biological_process, biological_process unknown,
unknown), respectively.

Task integration by overlapping origons

A simplifying view of the TR network is provided by the
origon representation [13], shown by color-coded circles
in Figure 1B. Each origon represents a cluster of nodes
originating from a common (input) TF (54 of them in the
present case), and the color code therein describes the
occurrence of four types of interaction motifs distin-
guished by their high Z-scores (see below). Except for the
two input nodes mentioned above (Prd3 and Zap1), all
origons are interconnected due to the partial overlaps
between their members at intermediate and output layers.
The number of shared members is reflected by the thick-
ness of the links between the origons. The examined yeast
TR network has 418 such overlapping pairs of origons.

Of interest is to characterize the degree of integration of
functional tasks between overlapping pairs of origons. To
this aim, we first removed from the TR network all gene
(products) with GO Slim annotation "unknown", and
counted the number of genes annotated by a given GO
Slim term, within the subsets A”B (overlap), A\B and B\A
(genes contained only by A or B) for each pair of overlap-
ping origons (A. B). Three vectors, defined by the frac-
tions/probabilities of GO Slim terms were thus generated
for each pair, denoted as a (for A\B), b (for B\A), or ¢ (for
A/B). The overlap (A”B) integrates tasks from the other
two regions, if ¢ is sufficiently similar to both a and b. The
extent of similarity between the three probability distribu-
tions was then assessed by the correlation cosines (c-a)
and (c-b), expressed by the sum K = ¢ (a+b), where the
dot designates the scalar product. We found that the K val-
ues for pairs of origons in the yeast TR network were sig-
nificantly higher than those calculated for 100
randomized test cases. The corresponding Z score - i.e.
(<original K value>-<average K in random cases>)/<stand-
ard deviation in random cases> - averaged over all pairs
was <Z(K)>=2.2.

Locating densely connected subnetworks (organizers) of
Transcription Factors

In the network of TFs (nodes: Transcription Factors, links:
regulatory interactions) we identified subnetworks distin-
guished by their dense interconnection and central role
(i.e., organizers) by using an iterative layer-peeling algo-
rithm [44], as follows. After first removing all autoregula-
tory loops, we repeatedly removed the nodes in the top
and bottom layers of the network until only three small
isolated (graph) components ('cores') remained. To these
cores we then added in 3 subsequent steps their up- and
downstream intermediate regulators to obtain three
major organizers (see Results). Alternatively, to locate
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overlapping, densely connected groups of nodes among
the 69 non-isolated TFs we applied CFinder [45] to the
underlying undirected network and identified the k-clique
communities (groups of densely interconnected nodes) at
k = 3 corresponding to 'rolling' a triangle by moving one
of its nodes at each step.. Note that any TF (node) was
allowed to belong to more than one community. Next, we
added to each community, C,, all nodes reachable from a
node of C, via regulatory interactions, but not yet con-
tained by any of the communities. Last, we merged com-
munities C, and Cg, if all exclusively contained nodes of
C, were directly regulated by an exclusively contained
node of Cg,.

Significance of the transcriptional response of a group of
genes

Our goal was to quantify the effect of particular (environ-
mental or internal) conditions (or signals) S on the tran-
script levels of a selected group of genes. First, we grouped
experiments (GSMs, Geo SaMples) according to their plat-
forms (GPLs). Then to each experiment obtained under a
'normal’ condition (e.g., stationary state) we assigned the
signal S = -1 and to all others (e.g., hyper-osmotic shock,
N depletion, or DNA damage with MMS) we assigned the
signal S = +1. Next, we computed the Pearson correlation,
C;, between the ith gene's expression E;; and the jth exper-
imental condition §; using

(EiS; ), — (i), (Si) ’
)~ | [t ]

where the subscript j includes both those experiments
under the condition of interest (i.e. experiments a,, a,, ...,
a,, signal value: ;= +1) and those under 'normal’ condi-
tions (j = by, by, ..., b, and ;= -1). The ith gene's response
to signal S is significant, i.e., it is strongly activated
(repressed), if its C; value is higher (lower) than the major-
ity of the correlation values calculated for all yeast genes.
This can be measured with the Z score, Z; = |C; - C|/AC, of
the ith gene's response, where C and AC are the average
and standard deviation of the correlation values of all
yeast genes. Here we use the absolute value, because a
strong activation and a strong repression are equally
important responses and should both give a high Z score.

Ci(Ej.8;) =

The significance of the response of the entire group G to
condition S can be assessed by comparing the average Z
score in G, Zg = <Z;>;c ¢, to the similarly computed aver-
ages (Zy1, Zy---) in other, randomly selected groups of
genes of the same size (H1, H2, ...). We used 1,000 such
control groups. Denoting by <Z,;> and AZ, the average
and standard deviation of Z,; values, the double Z score of
the response of group G is Y = (Z¢ - <Z;;>)/AZy.
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